(3.238.173.209) 您好!臺灣時間:2021/05/17 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭宇辰
研究生(外文):Yu-Chen Cheng
論文名稱:多種金屬離子雜質對碳酸鈣薄膜晶型影響之探討
論文名稱(外文):Exploring the Effects of Various Metal Ionic Impurities on the Polymorphism of CaCO3 Thin-film
指導教授:王勝仕
指導教授(外文):Steven Sheng-Shih Wang
口試委員:陳寶祺劉懷勝
口試委員(外文):Pao-Chi ChenHwai-Shen Liu
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:141
中文關鍵詞:仿生材料CaCO3/有機複合薄膜相對過飽和度離子雜質
外文關鍵詞:biomimetic materialCaCO3/organic hybrid thin-filmsupersaturation effectionic impurity effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物礦化(biomineralization)為自然界中生物用以製造生物礦物的重要程序,而生物礦物中之貝殼,其具有之珍珠層即以一層層的霰石板片及有機物所堆積而成,特殊的層狀結構及霰石晶型缺乏晶劈面的特性,使珍珠層擁有極佳的硬度及韌性。為了研究此種複合結構,必須先分析單層之無機/有機複合碳酸鈣薄膜,而在薄膜的製備方面,文獻中採用雙注射法、擴散法、及CO2通氣法。周哲宇(2011)及王媛婷(2012)曾採用溶液流動法配製位於介穩區之碳酸鈣過飽和溶液,並加入可溶性高分子使碳酸鈣薄膜成長於固體模板上。此方法與以往製備薄膜之方法比較,具有以下三項優點:控制操作變數較容易、溶液配置時間短(約1小時)、及將薄膜的成長時間由數天縮短至數小時。因碳酸鈣具有三種不同的多晶型,此些多晶型由於它們晶型上的結構不同,而具有不同的性質,故在發展仿生材料的過程中,晶型的控制為一極為重要的課題。
本研究首先重複王媛婷(2012)探討pH效應及添加兩種離子雜質(Mg2+、Fe2+)效應之實驗;從實驗結果發現,本研究於同樣之條件下,生成之薄膜成長量及晶型特徵峰皆較王媛婷者(2012)為低;推測成長速率下降結果之差異可能來自兩研究中所使用之藥品來源不同所致。經由提升相對過飽和度的實驗證明,不論有無雜質離子存在下成長之碳酸鈣薄膜,其薄膜覆蓋率及XRD特徵峰強度皆有明顯上升。
由本實驗群多年的經驗得知,碳酸鈣的晶型明顯地受到如磁場、溫度、雜質離子的存在與否、pH值、及相對過飽和度等操作變數之影響。而王媛婷(2012)已探討了前三種操作變數對於碳酸鈣薄膜晶型的影響,而本研究延續其雜質離子效應之實驗,探討另外三種離子雜質(Zn2+、Cu2+、Mn2+)對碳酸鈣薄膜晶型之影響。
而本研究將溶液相對過飽和度提升至12後,以在40℃下、[Ca2+]/[COO-] =55、且無雜質時之結果當作參考值,以利於與添加不同離子雜質之結果進行比較;在此情況下,霰石比例為34.82%而球型方解石比例為65.18%。當添加[Mg2+]/[Ca2+]=0.2時,霰石晶型比例由34.82%提升至60.16%,而添加[Mg2+]/[Ca2+]=0.4及0.5時,會完全抑制球型方解石的生成,並且使霰石晶型比例幾乎達到100%;在添加[Fe2+](mg/L) =0.62~1.64時,則會導致霰石晶型從無Fe2+時之34.82%些微增加至40.11~41.31%,並且產生微量的方解石晶型,其比例介於0%~7.57%;而添加Zn2+、Cu2+之組別則由於XRD特徵峰不明顯,無法計算晶型比例;添加Cu2+之結果則與添加Zn2+者類似:添加[Zn2+](mg/L)=0.11或[Cu2+](mg/L)=0.082時,薄膜由霰石及球型方解石晶型構成,但其特徵峰強度大幅下降;[Zn2+](mg/L)=0.21或[Cu2+](mg/L)=0.164時,薄膜完全由球型方解石構成;而當[Zn2+](mg/L)=0.53或[Cu2+](mg/L) =0.414時,雖然無法於XRD結果觀察到特徵峰,但在[Cu2+](mg/L) =0.414時由POM可觀察到細小之霰石薄膜;最後,添加[Mn2+](mg/L) =0.616~2.466時,會大幅抑制霰石的成長,使霰石晶型由34.82%降至1.63%,並可使球型方解石由65.18%成長至95.27%,但對於方解石晶型並無明顯促進效果。


Biomineralization is an important process which organisms use to produce biominerals in nature. One of the biominerals, for example, the nacre of the shell in the ocean is made of layered aragonite and proteins. The layered hybrid structure and the absence of cleavage planes of aragonite allow the nacre to acquire certain excellent properties such as hardness and toughness. To investigate this composite structure, we have to analyze the single-layered organic / inorganic composite calcium-carbonate thin-film first. In order to prepare this biomimetic material, serveral method including double-jet method, diffusion method, and Kitano method have been employed. In addition, Chou (2011) and Wang (2012) used the technique developed in Professor Tai’s laboratory to prepare the supersaturated CaCO3 solution stabilized in the metastable region, and a thin-film of CaCO3 was successfully prepared on the surface of a solid matrix from the supersaturated solution in the presence of a soluble polymer. This method has three advantages over the others: the ease for controlling the solution properties, the simple procedure for preparing supersaturated solution, and the time-effectiveness for growing the CaCO3 thin-film. The calcium carbonate has been found to exhibit three polymorphs formed in the biominerals. Given that the difference in crystal structures between polymorphs results in their property distinction, the control of polymorphism is of primary importance in developing biomimetic materials.
In the first part of this research work, efforts were directed toward exploring how the polymorphism of CaCO3 thin-film was affected by pH and ionic impurity (Mg2+、Fe2+) in the experimental conditions which were identical to the ones used in Wang (2012). A lower growth rate of CaCO3 thin-film formation and smaller characteristic peaks of associated XRD spectrum were observed in this work, as compared with the results reported in Wang (2012). We speculated that the difference between the results of this and Wang’s studies might be attributed to the batch-to-batch variation of the chemicals used. We found that the growth rate and the intensities of characteristic peaks of XRD spectrum could be raised by increasing the relative supersaturation of the supersaturated CaCO3 solution.
Results of our group, indicates that the polymorphism of calcium carbonate can be profoundly affected by several operating variables, including the magnetic field intensity, temperature, type of ionic impurity, pH value, and relative supersaturation. Wang (2012) have explored the effects of the first three operating variables. As a continuation, we examined the effects of three ionic impurities (Zn2+、Cu2+、Mn2+) on the polymorphism of CaCO3 thin-film in this thesis.
Our results showed that, when no ionic impurity was present (the control group), 34.82% aragonite and 65.18% vaterite were observed at the relative supersaturation of 12, 40 ℃ and [Ca2+]/[COO-]=55. At the [Mg2+]/[Ca2+] ratio of 0.2, the composition of aragonite increased from 34.82% to 60.16%. When the [Mg2+]/[Ca2+] ratios=0.4 and 0.5, the formation of vaterite was completely suppressed, and the 100% aragonite film was formed. When [Fe2+] was increased from 0 to 0.62-1.64 mg/L, the proportion of aragonite was found to increase from 34.82% (with no Fe2+) to 40.11~41.31%, whereas the proportion of calcite rose from 0% (with no Fe2+) to 0%~7.57%. However, the composition of polymorphism of CaCO3 thin-film in the presence of Zn2+ and Cu2+ due to the insignificant characteristic peaks of XRD spectrum. Similar results were obtained in the groups with the treatment of Cu2+ and Zn2+. At [Zn2+]=0.11 mg/L or [Cu2+]=0.082 mg/L, the polymorphism was composed of vaterite and aragonite, but the intensity of characteristic peaks of XRD spectrum considerably decreased. At [Zn2+]=0.21 mg/L or [Cu2+]=0.164 mg/L, the polymorphism was only composed of vaterite. At [Zn2+]=0.53 mg/L or [Cu2+]=0.414 mg/L, no characteristic peaks were observed in the XRD spctrum, whereas tiny aragonite thin-films were found at the surface of solid matrix of Cu2+ sample through POM. Moreover, while no change in the composition of calcite was detected, the proportion of aragonite was significantly decreased from 34.82% in the control group (with no Mn2+) to 1.63% when the concentration of Mn2+ was increased from 0 to 0.616~2.466 mg/L.


摘要 I
Abstract III
目錄 VI
圖索引 VIII
表索引 XVII
第一章 緒論 1
第二章 文獻回顧 4
2-1 微溶物系之結晶行為 4
2-1-1 過飽和度 4
2-1-2 介穩區 8
2-1-3 碳酸鈣之多晶型 12
2-2 pH值對碳酸鈣晶型之影響 19
2-3一般溶液結晶(Bulk crystallization)中,雜質對碳酸鈣結晶之影響 20
2-3-1 離子雜質對碳酸鈣成長與成核速率之影響 20
2-3-2 離子雜質對碳酸鈣晶型之影響 24
2-4 天然生物材料結構與仿生學 29
2-4-1 貝殼的微結構 32
2-4-2 珍珠層的力學性質 35
2-4-3 仿生學(Biomimetics) 36
2-5 CaCO3/有機複合薄膜之製備與合成原理 37
2-5-1 研究方法 37
2-5-2 水溶性基質於CaCO3薄膜合成之角色 41
2-5-3 固體模板於CaCO3薄膜合成之角色 43
2-5-4 以巨分子模板製備CaCO3/有機複合薄膜 45
2-6 碳酸鈣薄膜多晶型之鑑定 51
2-6-1 X-ray diffraction (XRD)分析 51
2-6-2 Polarizing optical microscopy (POM)分析 53
第三章 實驗裝置與步驟 58
3-1 實驗裝置 58
3-2 實驗藥品 62
3-3 分析儀器 64
3-4 實驗步驟 65
3-4-1 甲殼素基材之製備 65
3-4-2 過飽和水溶液之製備 66
3-4-3 碳酸鈣薄膜成長實驗-液相流動系統 70
3-4-4 產物分析 72
第四章 結果與討論 73
4-1 與以往實驗比較及再現性的探討 73
4-1-1 pH值效應 73
4-1-1 離子雜質效應 77
4-2 過飽和對晶型之影響 84
4-2-1 未添加雜質之過飽和效應 84
4-2-2 Mg2+存在時之過飽和效應 88
4-2-3 Fe2+存在時之過飽和效應 92
4-3 定過飽和下操作變數對晶型之影響 96
4-3-1 PAA濃度效應 96
4-3-2 pH效應 101
4-4 金屬離子雜質對晶型之影響 105
4-4-1 Mg2+效應 106
4-4-2 Fe2+效應 112
4-4-3 Zn2+效應 116
4-4-4 Cu2+效應 120
4-4-5 Mn2+效應 126
4-5 各種金屬雜質對CaCO3晶型影響之比較 130
第五章 結論 133
參考文獻 137


[1]崔福齋, "仿生材料," 新文京, 2006.
[2]J. S. Evans, ""Tuning in" to Mollusk Shell Nacre- and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganic-Organic Composites," Chemical Reviews, vol. 108, pp. 4455-4462, Nov 2008.
[3]M. Fritz, A. M. Belcher, M. Radmacher, D. A. Walters, P. K. Hansma, G. D. Stucky, et al., "Flat Pearls from Biofabrication of Organized Composites on Inorganic Substrates," Nature, vol. 371, pp. 49-51, Sep 1 1994.
[4]F. Marin and G. Luquet, "Molluscan shell proteins," Comptes Rendus Palevol, vol. 3, pp. 469-492, Oct 2004.
[5]A. Sugawara and T. Kato, "Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices," Chemical Communications, pp. 487-488, 2000.
[6]A. Sugawara, A. Oichi, H. Suzuki, Y. Shigesato, T. Kogure, and T. Kato, "Assembled structures of nanocrystals in polymer/calcium carbonate thin-film composites formed by the cooperation of chitosan and poly(aspartate)," Journal of Polymer Science Part a-Polymer Chemistry, vol. 44, pp. 5153-5160, Sep 1 2006.
[7]T. Kato, T. Suzuki, T. Amamiya, T. Irie, and N. Komiyama, "Effects of macromolecules on the crystallization of CaCO3 the formation of organic/inorganic composites," Supramolecular Science, vol. 5, pp. 411-415, Jul-Sep 1998.
[8]N. Wada, S. Suda, K. Kanamura, and T. Umegaki, "Formation of thin calcium carbonate films with aragonite and vaterite forms coexisting with polyacrylic acids and chitosan membranes," Journal of Colloid and Interface Science, vol. 279, pp. 167-174, Nov 1 2004.
[9]T. Kato, T. Suzuki, and T. Irie, "Layered thin-film composite consisting of polymers and calcium carbonate: A novel organic/inorganic material with an organized structure," Chemistry Letters, pp. 186-187, Feb 5 2000.
[10]N. Hosoda, A. Sugawara, and T. Kato, "Template effect of crystalline poly(vinyl alcohol) for selective formation of aragonite and vaterite CaCO3 thin films," Macromolecules, vol. 36, pp. 6449-6452, Aug 26 2003.
[11]N. Hosoda and T. Kato, "Thin-film formation of calcium carbonate crystals: Effects of functional groups of matrix polymers," Chemistry of Materials, vol. 13, pp. 688-693, Feb 2001.
[12]T. Sakamoto, A. Oichi, Y. Oaki, T. Nishimura, A. Sugawara, and T. Kato, "Three-Dimensional Relief Structures of CaCO3 Crystal Assemblies Formed by Spontaneous Two-Step Crystal Growth on a Polymer Thin Film," Crystal Growth & Design, vol. 9, pp. 622-625, Jan 2009.
[13]A. Sugawara and T. Kato, "Calcium carbonate/polymer composites: polymorph control for aragonite," Composite Interfaces, vol. 11, pp. 287-295, 2004.
[14]蔡國斌, 郭曉輝, and 俞書宏, "聚合物控制模擬生物礦化," 化學進展, vol. 20, 2008.
[15]N. Wada, K. Yamashita, and T. Umegaki, "Effects of Divalent-Cations Upon Nucleation, Growth and Transformation of Calcium-Carbonate Polymorphs under Conditions of Double Diffusion," Journal of Crystal Growth, vol. 148, pp. 297-304, Mar 1995.
[16]Y. Kitano, D. W. Hood, and K. Park, "Pure Aragonite Synthesis," Journal of Geophysical Research, vol. 67, pp. 4873-&, 1962.
[17]周哲宇, "操作變數對CaCO3/有機複合薄膜之影響," 臺大化工所碩士學位論文, 2011.
[18]王媛婷, "離子雜質對碳酸鈣薄膜晶型之影響," 臺大化工所碩士學位論文, 2012.
[19]H. Roques and A. Girou, "Kinetics of Formation Conditions of Carbonate Tartars," Water Research, vol. 8, pp. 907-920, 1974.
[20]C. Y. Tai, W. C. Chien, and P. C. Chen, "Particle nucleation and growth," In Encyclopedia of surface and collid science, vol. Marcel Dekker, pp. 3903-3914, 2002.
[21]A. E. Nielsen and J. M. Toft, "Electrolyte Crystal-Growth Kinetics," Journal of Crystal Growth, vol. 67, pp. 278-288, 1984.
[22]A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, and D. E. Morse, "Control of crystal phase switching and orientation by soluble mollusc-shell proteins," Nature, vol. 381, pp. 56-58, May 2 1996.
[23]C. Y. Tai, W. C. Chien, and C. Y. Chen, "Crystal growth kinetics of calcite in a dense fluidized-bed crystallizer," Aiche Journal, vol. 45, pp. 1605-1614, Aug 1999.
[24]C. Y. Tai, C. S. Cheng, and Y. C. Huang, "Interpretation of Crystal-Growth Rate Data Using a Modified 2-Step Model," Journal of Crystal Growth, vol. 123, pp. 236-246, Sep 1992.
[25]J. L. Wray and F. Daniels, "Precipitation of Calcite and Aragonite," Journal of the American Chemical Society, vol. 79, pp. 2031-2034, 1957.
[26]W. Johannes and D. Puhan, "Calcite-Aragonite Transition, Reinvestigated," Contributions to Mineralogy and Petrology, vol. 31, pp. 28-&, 1971.
[27]O. Sohnel and J. W. Mullin, "Precipitation of Calcium-Carbonate," Journal of Crystal Growth, vol. 60, pp. 239-250, 1982.
[28]J. Kawano, N. Shimobayashi, A. Miyake, and M. Kitamura, "Precipitation diagram of calcium carbonate polymorphs: its construction and significance," Journal of Physics-Condensed Matter, vol. 21, Oct 21 2009.
[29]H. Elfil and H. Roques, "Prediction of the limit of the metastable zone in the "CaCO3-CO2-H2O" system," Aiche Journal, vol. 50, pp. 1908-1916, Aug 2004.
[30]H. Elfil and H. Roques, "Role of hydrate phases of calcium carbonate on the scaling phenomenon," Desalination, vol. 137, pp. 177-186, May 1 2001.
[31]J. C. Jamieson, "Phase Equilibrium in the System Calcite-Aragonite," Journal of Chemical Physics, vol. 21, pp. 1385-1390, 1953.
[32]M. E. Mclester, D. F. Martin, and W. H. Taft, "Effects of Alkaline-Earth Metal Ions on Transformation of Aragonite to Calcite in Aqueous Solution," Journal of Inorganic & Nuclear Chemistry, vol. 32, pp. 391-&, 1970.
[33]J. D. H. Donnay, H. M. Ondik, and United States. National Bureau of Standards., Crystal data; determinative tables, 3d ed. Washington: National Bureau of Standards, 1972.
[34]L. N. Plummer and E. Busenberg, "The Solubilities of Calcite, Aragonite and Vaterite in Co2-H2o Solutions between 0-Degrees-C and 90-Degrees-C, and an Evaluation of the Aqueous Model for the System Caco3-Co2-H2o," Geochimica Et Cosmochimica Acta, vol. 46, pp. 1011-1040, 1982.
[35]L. Brecevic and A. E. Nielsen, "Solubility of Amorphous Calcium-Carbonate," Journal of Crystal Growth, vol. 98, pp. 504-510, Nov 1989.
[36]D. Kralj and L. Brecevic, "Dissolution Kinetics and Solubility of Calcium-Carbonate Monohydrate," Colloids and Surfaces a-Physicochemical and Engineering Aspects, vol. 96, pp. 287-293, Mar 20 1995.
[37]J. L. Bischoff, J. A. Fitzpatrick, and R. J. Rosenbauer, "The Solubility and Stabilization of Ikaite (Caco3.6h2o) from 0-Degrees-C to 25-Degrees-C - Environmental and Paleoclimatic Implications for Thinolite Tufa," Journal of Geology, vol. 101, pp. 21-33, Jan 1993.
[38]S. R. Kamhi, "On Structure of Vaterite, Caco3," Acta Crystallographica, vol. 16, pp. 770-&, 1963.
[39]J. P. R. de Villiers, "Crystal structures of aragonite, strontianite, and witherite," American Mineralogist, vol. 56, pp. 758-767, 1971.
[40]M. Prencipe, F. Pascale, C. M. Zicovich-Wilson, V. R. Saunders, R. Orlando, and R. Dovesi, "The vibrational spectrum of calcite (CaCO3): an ab initio quantum-mechanical calculation," Physics and Chemistry of Minerals, vol. 31, pp. 559-564, Oct 2004.
[41]陳復邦, "以定組成法探討碳酸鈣多晶型之形成," 臺大化工所碩士學位論文, 1995.
[42]H. J. Meyer, "The Influence of Impurities on the Growth-Rate of Calcite," Journal of Crystal Growth, vol. 66, pp. 639-646, 1984.
[43]R. E. Herzog, Q. H. Shi, J. N. Patil, and J. L. Katz, "Magnetic Water-Treatment - the Effect of Iron on Calcium-Carbonate Nucleation and Growth," Langmuir, vol. 5, pp. 861-867, May-Jun 1989.
[44]A. Gutjahr, H. Dabringhaus, and R. Lacmann, "Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite .1. Growth and dissolution rates in water," Journal of Crystal Growth, vol. 158, pp. 296-309, Jan 1996.
[45]A. Gutjahr, H. Dabringhaus, and R. Lacmann, "Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite .2. The influence of divalent cation additives on the growth and dissolution rates," Journal of Crystal Growth, vol. 158, pp. 310-315, Jan 1996.
[46]J. MacAdam and S. Parsons, "The Effect of Metal Ions on Calcium Carbonate Precipitation and Scale Formation," in Sustainability in Energy and Buildings, R. Howlett, L. Jain, and S. Lee, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 137-146.
[47]P. P. Coetzee, M. Yacoby, S. Howell, and S. Mubenga, "Scale reduction and scale modification effects induced by Zn and other metal species in physical water treatment," Water Sa, vol. 24, pp. 77-84, Jan 1998.
[48]彭永弘, "磁場對碳酸鈣在流體化床中成長動力之研究," 臺大化工所碩士學位論文, 1997.
[49]施雅齡, "磁場與雜質對文石成長速率之競爭作用," 臺大化工所碩士學位論文, 2008.
[50]張煥杰, "磁場、溫度與雜質對於文石及方解石晶體成長之影響," 臺大化工所碩士學位論文, 2010.
[51]劉崇成, "溫度、磁場與雜質對方解石晶體成長之影響," 臺大化工所碩士學位論文, 2009.
[52]T. G. Sabbides and P. G. Koutsoukos, "The Crystallization of Calcium-Carbonate in Artificial Seawater - Role of the Substrate," Journal of Crystal Growth, vol. 133, pp. 13-22, Oct 1993.
[53]N. Wada, K. Yamashita, and T. Umegaki, "Effects of carboxylic acids on calcite formation in the presence of Mg2+ ions," Journal of Colloid and Interface Science, vol. 212, pp. 357-364, Apr 15 1999.
[54]F. Nudelman, B. A. Gotliv, L. Addadi, and S. Weiner, "Mollusk shell formation: Mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre," Journal of Structural Biology, vol. 153, pp. 176-187, Feb 2006.
[55]L. A. Gower and D. A. Tirrell, "Calcium carbonate films and helices grown in solutions of poly(aspartate)," Journal of Crystal Growth, vol. 191, pp. 153-160, Jul 1998.
[56]K. Naka, S. C. Huang, and Y. Chujo, "Formation of stable vaterite with poly(acrylic acid) by the delayed addition method," Langmuir, vol. 22, pp. 7760-7767, Aug 29 2006.
[57]S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, "Controlled Crystallization of Caco3 under Stearic-Acid Monolayers," Nature, vol. 334, pp. 692-695, Aug 25 1988.
[58]T. Kato, T. Sakamoto, and T. Nishimura, "Macromolecular Templating for the Formation of Inorganic-Organic Hybrid Structures," Mrs Bulletin, vol. 35, pp. 127-132, Feb 2010.
[59]A. Sugawara, T. Nishimura, Y. Yamamoto, H. Inoue, H. Nagasawa, and T. Kato, "Self-organization of oriented calcium carbonate/polymer composites: Effects of a matrix peptide isolated from the exoskeleton of a crayfish," Angewandte Chemie-International Edition, vol. 45, pp. 2876-2879, 2006.
[60]Y. Oaki, S. Kajiyama, T. Nishimura, H. Imai, and T. Kato, "Nanosegregated Amorphous Composites of Calcium Carbonate and an Organic Polymer," Advanced Materials, vol. 20, pp. 3633-+, Oct 2 2008.
[61]T. Nishimura, T. Ito, Y. Yamamoto, M. Yoshio, and T. Kato, "Macroscopically ordered polymer/CaCO3 hybrids prepared by using a liquid-crystalline template," Angewandte Chemie-International Edition, vol. 47, pp. 2800-2803, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊