|
文獻參考
[1]Bioconjugate Techniques, 2nd Edition (2008) Greg T. Hermanson, Academic Press, Inc., 1202 pages. [2]Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 1998, 74, 69. [3]Ratner, B. D.; Bryant, S. J., Biomaterials: Where we have been and where we are going. Annual Review of Biomedical Engineering 2004, 6, 41. [4]Castner, D. G.; Ratner, B. D., Biomedical surface science: Foundations to frontiers. Surface Science 2002, 500, (1-3), 28. [5]Chilkoti, A.; Hubbell, J. A., Biointerface science. Mrs Bulletin 2005, 30, (3), 175. [6]Berg, A.; Olthius, W.; Bergveld, P., Micro Total Analysis Systems 2000. 1st ed.; Springer: 2000. [7]Fu, A. Y.; Spence, C.; Scherer, A.; Arnold, F. H.; Quake, S. R., A microfabricated fluorescence-activated cell sorter. Nature Biotechnology 1999, 17, (11), 1109. [8]Effenhauser, C. S.; Bruin, G. J. M.; Paulus, A.; Ehrat, M., Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips. Analytical Chemistry 1997, 69, (17), 3451. [9]Chen, S. H.; Sung, W. C.; Lee, G. B.; Lin, Z. Y.; Chen, P. W.; Liao, P. C., A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis 2001, 22, (18), 3972. [10]Mao, H.; Yang, T.; Cremer, P. S., Design and characterization of immobilized enzymes in microfluidic systems. Analytical Chemistry 2002, 74, (2), 379. [11]Li, P. C. H.; Harrison, D. J., Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Analytical Chemistry 1997, 69, (8), 1564. [12]Lucchetta, E. M.; Lee, J. H.; Fu, L. A.; Patel, N. H.; Ismagilov, R. F., Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 2005, 434, (7037), 1134. [13]Lahann, J., Vapor-based polymer coatings for potential biomedical applications. Polymer International 2006, 55, (12), 1361. [14]Scouten, W. H.; Luong, J. H. T.; Brown, R. S., Enzyme or Protein Immobilization Techniques for Applications in Biosensor Design. Trends in Biotechnology 1995, 13, (5), 178. [15]Kallury, K. M. R.; Lee, W. E.; Thompson, M., Enhanced Stability of Urease Immobilized onto Phospholipid Covalently Bound to Silica, Tungsten, and Fluoropolymer Surfaces. Analytical Chemistry 1993, 65, (18), 2459. [16]Bhatia, S. K.; Cooney, M. J.; Shriverlake, L. C.; Fare, T. L.; Ligler, F. S., Immobilization of Acetylcholinesterase on Solid-Surfaces - Chemistry and Activity Studies. Sensors and Actuators B-Chemical 1991, 3, (4), 311. [17]Elender, G.; Kuhner, M.; Sackmann, E., Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosensors & Bioelectronics 1996, 11, (6-7), 565. [18]Flounders, A. W.; Brandon, D. L.; Bates, A. H., Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosensors & Bioelectronics 1997, 12, (6), 447. [19]Matveev, S. V., Controlled Modification of the Quartz Surface by Amino-Groups. Biosensors & Bioelectronics 1994, 9, (4-5), 333. [20]Vandenberg, E. T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundstrom, I., Structure of 3-Aminopropyl Triethoxy Silane on Silicon-Oxide. Journal of Colloid and Interface Science 1991, 147, (1), 103. [21]Collioud, A.; Clemence, J. F.; Sanger, M.; Sigrist, H., Oriented and Covalent Immobilization of Target Molecules to Solid Supports - Synthesis and Application of a Light-Activatable and Thiol-Reactive Cross-Linking Reagent. Bioconjugate Chemistry 1993, 4, (6), 528. [22]Delamarche, E.; Sundarababu, G.; Biebuyck, H.; Michel, B.; Gerber, C.; Sigrist, H.; Wolf, H.; Ringsdorf, H.; Xanthopoulos, N.; Mathieu, H. J., Immobilization of Antibodies on a Photoactive Self-Assembled Monolayer on Gold. Langmuir 1996, 12, (8), 1997. [23]Duschl, C.; Sevin-Landais, A.-F.; Vogel, H., Surface engineering: optimization of antigen presentation in self-assembled monolayers. Biophysical Journal 1996, 70, (4), 1985. [24]Lu, B.; Xie, J.; Lu, C.; Wu, C.; Wei, Y., Oriented Immobilization of Fab'' Fragments on Silica Surfaces. Analytical Chemistry 1995, 67, (1), 83. [25]Keller, T. A.; Duschi, C.; Kroeger, D.; Sevin-Landais, A.-F.; Vogel, H.; Cervigni, S. E.; Dumy, P., Reversible oriented immobilization of histidine-tagged proteins on gold surfaces using a chelator thioalkane. Supramolecular Science 1996, 2, (3-4), 155. [26]Rickert, J.; Weiss, T.; Gopel, W., Self-assembled monolayers for chemical sensors: Molecular recognition by immobilized supramolecular structures. Sensors and Actuators B-Chemical 1996, 31, (1-2), 45. [27]Gosling, J. P., A decade of development in immunoassay methodology. Clinical Chemistry (Washington, DC, United States) 1990, 36, (8, Pt. 1), 1408. [28]Kossek, S.; Padeste, C.; Tiefenauer, L., Immobilization of streptavidin for immunosensors on nanostructured surfaces. Journal of Molecular Recognition 1996, 9, (5/6), 485. [29]Vreeke, M. S.; Rocca, P., Biosensors based on crosslinking of biotinylated glucose oxidase by avidin. Electroanalysis 1996, 8, (1), 55. [30]Narang, U.; Anderson, G. P.; King, K. D.; Liss, H. S.; Ligler, F. S., Enhanced biosensor performance using an avidin-biotin bridge for antibody immobilization. Proceedings of SPIE-The International Society for Optical Engineering 1997, 2980, (Advances in Fluorescence Sensing Technology III), 187. [31]Cosnier, S., Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors & Bioelectronics 1999, 14, (5), 443. [32]Linke, B.; Kerner, W.; Kiwit, M.; Pishko, M.; Heller, A., Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 1994, 9, (2), 151. [33]Yon-Hin, B. F. Y.; Smolander, M.; Crompton, T.; Lowe, C. R., Covalent electropolymerization of glucose oxidase in polypyrrole. Evaluation of methods of pyrrole attachment to glucose oxidase on the performance of electropolymerized glucose sensors. Analytical Chemistry 1993, 65, (15), 2067. [34]Cooper, J. C.; Schubert, F., A Biosensor for L-Amino-Acids Using Polytyramine for Enzyme Immobilization. Electroanalysis 1994, 6, (11-12), 957. [35]Hiller, M.; Kranz, C.; Huber, J.; Baeuerle, P.; Schuhmann, W., Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Advanced Materials 1996, 8, (3), 219. [36]Sirkar, K.; Pishko, M. V., Amperometric Biosensors Based on Oxidoreductases Immobilized in Photopolymerized Poly(ethylene glycol) Redox Polymer Hydrogels. Analytical Chemistry 1998, 70, (14), 2888. [37]Qian, J.; Liu, Y.; Liu, H.; Yu, T.; Deng, J., Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H2O2 sensor. Biosensors & Bioelectronics 1997, 12, (12), 1213. [38]Xiao, D. Q.; Wirth, M. J., Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules 2002, 35, (8), 2919. [39]Bergbreiter, D. E.; Xu, G. F.; Zapata, C., Heterogeneous Grafting Chemistry Using Residual Unsaturation as a Graft Site Precursor. Macromolecules 1994, 27, (6), 1597. [40]Chen, H.; Belfort, G., Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization. Journal of Applied Polymer Science 1999, 72, (13), 1699. [41]Hu, S. W.; Ren, X. Q.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L., Surface-directed, graft polymerization within microfluidic channels. Analytical Chemistry 2004, 76, (7), 1865. [42]Hu, S. W.; Ren, X. Q.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N., Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry 2002, 74, (16), 4117. [43]Loh, F. C.; Tan, K. L.; Kang, E. T.; Neoh, K. G.; Pun, M. Y., Near-Uv Radiation-Induced Surface Graft-Copolymerization of Some O-3-Pretreated Conventional Polymer-Films. European Polymer Journal 1995, 31, (5), 481. [44]Genzer, J.; Fischer, D. A.; Efimenko, K., Fabricating two-dimensional molecular gradients via asymmetric deformation of uniformly-coated elastomer sheets. Advanced Materials 2003, 15, (18), 1545. [45]Corelli, J. C.; Steckl, A. J.; Pulver, D.; Randall, J. N., Ultralow Dose Effects in Ion-Beam Induced Grafting of Polymethylmethacrylate (Pmma). Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 1987, 19-2, 1009. [46]Srinivasan, R.; Maynebanton, V., Self-Developing Photoetching of Poly(Ethylene-Terephthalate) Films by Far Ultraviolet Excimer Laser-Radiation. Applied Physics Letters 1982, 41, (6), 576. [47]Rohr, T.; Ogletree, D. F.; Svec, F.; Frechet, J. M. J., Surface functionalization of thermoplastic polymers for the fabrication of microfluidic devices by photoinitiated grafting. Advanced Functional Materials 2003, 13, (4), 264. [48]Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, (5330), 1232. [49]Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O''Brien, S.; Murray, C. B., Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, (7072), 55. [50]Lahann, J., Reactive polymer coatings for biomimetic surface engineering. Chemical Engineering Communications 2006, 193, (11), 1457. [51]Murthy, S. K.; Olsen, B. D.; Gleason, K. K., Effect of filament temperature on the chemical vapor deposition of fluorocarbon-organosilicon copolymers. Journal of Applied Polymer Science 2004, 91, (4), 2176. [52]Dygert, N. L.; Gies, A. P.; Schriver, K. E.; Haglund, R. F., Deposition of polyimide precursor by resonant infrared laser ablation. Applied Physics a-Materials Science & Processing 2007, 89, (2), 481. [53]Lee, K. R.; Yu, Y. J.; Joo, S. H.; Lee, C. Y.; Choi, D. H.; Joo, J. S.; Park, Y. S.; Jin, J. I., Poly(2,5-thienylene vinylene) in nano shapes by CVD polymerization. Macromolecular Rapid Communications 2007, 28, (9), 1057. [54]Cao, L.; Chang, M.; Lee, C. Y.; Castnet, D. G.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A., Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. Journal of Biomedical Materials Research Part A 2007, 81A, (4), 827. [55]Lee, N. H.; Frank, C. W., Surface-initiated vapor polymerization of various alpha-amino acids. Langmuir 2003, 19, (4), 1295. [56]Rhee, S. W.; Taylor, A. M.; Tu, C. H.; Cribbs, D. H.; Cotman, C. W.; Jeon, N. L., Patterned cell culture inside microfluidic devices. Lab on a Chip 2005, 5, (1), 102. [57]Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B., Using soft lithography to pattern highly oriented polyacetylene (HOPA) films via solventless polymerization. Advanced Materials 2004, 16, (15), 1356. [58]Gorham, W. F., A new general synthetic method for the preparation of linear poly-p-xylylenes. Journal of Polymer Science, Polymer Chemistry Edition 1966, 4, (12), 3027. [59]Grzybowski, B. A.; Haag, R.; Bowden, N.; Whitesides, G. M., Generation of Micrometer-Sized Patterns for Microanalytical Applications Using a Laser Direct-Write Method and Microcontact Printing. Analytical Chemistry 1998, 70, (22), 4645. [60]Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry 1998, 70, (23), 4974. [61]Senkevich, J. J.; Mitchell, C. J.; Vijayaraghavan, A.; Barnat, E. V.; McDonald, J. F.; Lu, T. M., Unique structure/properties of chemical vapor deposited parylene E. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 2002, 20, (4), 1445. [62]Nowlin, T. E.; Smith, D. F., Surface Characterization of Plasma-Treated Poly-P-Xylylene Films. Journal of Applied Polymer Science 1980, 25, (8), 1619. [63]Herrera-Alonso, M.; McCarthy, T. J., Chemical surface modification of poly(p-xylylene) thin films. Langmuir 2004, 20, (21), 9184. [64]Ishaque, M.; Agarwal, S.; Greiner, A., Synthesis and properties of novel poly(p-xylylene)s with aliphatic substituents. E-Polymers 2002. [65]Gilch, H. G.; Wheelwri.Wl, Polymerization of Alpha-Halogenated P-Xylenes with Base. Journal of Polymer Science Part a-1-Polymer Chemistry 1966, 4, (6Pa1), 1337. [66]Senkevich, J. J.; Yang, G. R.; Lu, T. M., The facile surface modification of poly(p-xylylene) ultrathin films. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2003, 216, (1-3), 167. [67]Lahann, J.; Langer, R., Novel Poly(p-xylylenes): Thin Films with Tailored Chemical and Optical Properties. Macromolecules 2002, 35, (11), 4380. [68]Lahann, J.; Hocker, H.; Langer, R., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726. [69]Lahann, J.; Klee, D.; Hocker, H., Chemical vapour deposition polymerization of substituted [2.2]paracyclophanes. Macromolecular Rapid Communications 1998, 19, (9), 441. [70]Lahann, J.; Langer, R., Surface-initiated ring-opening polymerization of epsilon-caprolactone from a patterned poly(hydroxymethyl-p-xylylene). Macromolecular Rapid Communications 2001, 22, (12), 968. [71]Schurmann, K.; Lahann, J.; Niggemann, P.; Klosterhalfen, B.; Meyer, J.; Kulisch, A.; Klee, D.; Gunther, R. W.; Vorwerk, D., Biologic response to polymer-coated stents: In vitro analysis and results in an iliac artery sheep model. Radiology 2004, 230, (1), 151. [72]Nandivada, H.; Chen, H. Y.; Lahann, J., Vapor-based synthesis of poly [(4-formyl-p-xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications. Macromolecular Rapid Communications 2005, 26, (22), 1794. [73]Lahann, J.; Balcells, M.; Lu, H.; Rodon, T.; Jensen, K. F.; Langer, R., Reactive polymer coatings: A first step toward surface engineering of microfluidic devices. Analytical Chemistry 2003, 75, (9), 2117. [74]Lahann, J.; Choi, I. S.; Lee, J.; Jenson, K. F.; Langer, R., A new method toward microengineered surfaces based on reactive coating. Angewandte Chemie-International Edition 2001, 40, (17), 3166. [75]Nandivada, H.; Chen, H. Y.; Bondarenko, L.; Lahann, J., Reactive polymer coatings that "click"". Angewandte Chemie-International Edition 2006, 45, (20), 3360. [76]Lahann, J.; Balcells, M.; Rodon, T.; Lee, J.; Choi, I. S.; Jensen, K. F.; Langer, R., Reactive polymer coatings: A platform for patterning proteins and mammalian cells onto a broad range of materials. Langmuir 2002, 18, (9), 3632. [78]Hopf, H., [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angewandte Chemie- International Edition 2008, 47, (51), 9808. [79]Waters, J. F., J. K. Sutter, M. A. B. Meador, L. J. Baldwin and M. A. Meador., Addition curing thermosets endcapped with 4-amino [2.2] paracyclophane. Journal of Polymer Science Part A: Polymer Chemistry 1991, 29, (13), 1917 [80]Cipiciani, A., F. Fringuelli, V. Mancini, O. Piermatti, F. Pizzo and R. Ruzziconi., Synthesis of Chiral (R)-4-Hydroxy- and (R)-4-Halogeno[2.2]paracyclophanes and Group Polarizability. Optical Rotation Relationship. The Journal of Organic Chemistry 1997, 62, (11), 3744. [81]Reich, H. J. and D. J. Cram., Macro rings. XXXVII. Multiple electrophilic substitution reactions of [2.2]paracyclophanes and interconversions of polysubstituted derivatives. Journal of the American Chemical Society 1969, 91, (13), 3527. [81]Lahann, J., H. Hocker and R. Langer., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726. [82]Lahann, J., H. Hocker and R. Langer., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726. [83]Olah, G. A. and S. C. Narang., Synthetic Methods and Reactions; 491. Perfluorinated Resinsulfonic Acid (Nafion-H)2 Catalyzed Nitration of Aromatic Compounds with Butyl Nitrate. Synthesis 1978, 1978, (09), 690. [84]Tsai, M.-Y., C.-Y. Lin, C.-H. Huang, J.-A. Gu, S.-T. Huang, J. Yu and H.-Y. Chen., Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications 2012, 48, (89), 10969. [85]Sletten, E. M. and C. R. Bertozzi., Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angewandte Chemie International Edition 2009, 48, (38), 6974. [86]Lutz, J.-F. and H. G. Borner., Modern trends in polymer bioconjugates design. Progress in Polymer Science 2008, 33, (1), 1. [87]Nandivada, H., H.-Y. Chen and J. Lahann., Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular Rapid Communications 2005, 26, (22), 1794. [88]Chen, H.-Y., M. Hirtz, X. Deng, T. Laue, H. Fuchs and J. Lahann., Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. Journal of the American Chemical Society 2010, 132, (51), 18023. [89]Nandivada, H., H.-Y. Chen, L. Bondarenko and J. Lahann., Reactive Polymer Coatings that “Click”. Angewandte Chemie International Edition 2006, 45, (20), 3360. [90]Deng, X., C. Friedmann and J. Lahann., Bio-orthogonal “Double-Click” Chemistry Based on Multifunctional Coatings. Angewandte Chemie International Edition 2011, 50, (29), 6522. [91]Lahann, J., H. Hocker and R. Langer., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726. [92]Encinas, M. V. and J. C. Scaiano., Reaction of benzophenone triplets with allylic hydrogens. Laser flash photolysis study. Journal of the American Chemical Society 1981, 103, (21), 6393. [93]Lin, A. A., V. R. Sastri, G. Tesoro, A. Reiser and R. Eachus., On the crosslinking mechanism of benzophenone-containing polyimides. Macromolecules 1988, 21, (4), 1165. [94]Suh, K. Y., R. Langer and J. Lahann., A Novel Photodefinable Reactive Polymer Coating and Its Use for Microfabrication of Hydrogel Elements. Advanced Materials 2004, 16, (16), 1401. [95]Wu, M.-G., H.-L. Hsu, K.-W. Hsiao, C.-C. Hsieh and H.-Y. Chen., Vapor-Deposited Parylene Photoresist: A Multipotent Approach toward Chemically and Topographically Defined Biointerfaces. Langmuir 2012, 28, (40), 14313. [96]Kade, M. J., D. J. Burke and C. J. Hawker., The Power of Thiol-ene Chemistry. Journal of Polymer Science Part a-Polymer Chemistry 2010, 48, (4), 743. [97]Campos, L. M., K. L. Killops, R. Sakai, J. M. J. Paulusse, D. Damiron, E. Drockenmuller, B. W. Messmore and C. J. Hawker., Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules 2008, 41, (19), 7063. [98]Hoyle, C. E. and C. N. Bowman., Thiol-Ene Click Chemistry. Angewandte Chemie-International Edition 2010, 49, (9), 1540. [99]Wu, J.-T., C.-H. Huang, W.-C. Liang, Y.-L. Wu, J. Yu and H.-Y. Chen., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromolecular Rapid Communications 2012, 33, (10), 922.
|