(3.236.214.19) 您好!臺灣時間:2021/05/06 21:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張鎮
研究生(外文):Jen Jang
論文名稱:利用化學氣相沉積聚合法製備N-羥基琥珀酰亞胺酯聚對二甲苯鍍膜及其在生物界面改質應用
論文名稱(外文):Vapor-Based Synthesis of N-hydroxysuccinimide ester Functionalized Poly-p-xylylene and Its Use for Biointerface Modifications
指導教授:陳賢燁
指導教授(外文):Hsien-Yeh Chen
口試委員:蔡偉博游佳欣彭之皓
口試委員(外文):Wei-Bor TsaiJiashing YuChi-How Peng
口試日期:2013-07-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:52
中文關鍵詞:生物界面N-羥基琥珀酰亞胺酯化學氣相沉積聚合技術功能性聚對二甲苯鍍膜生物耦合反應
外文關鍵詞:BiointerfaceN-hydroxysuccinimide esterCVD polymerizationFunctionalized poly(p-xylylene)Bioconjugation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去數十年中,生物分子和表面的交互作用一直以來都是研究學者所注意的領域之一,這些作用統稱為生物界面科學。在生物界面科學的發展之下,連帶探討出許多生物分子的特性以及對於生物環境的交互作用,而且其應用在許多人工材料上發展出許多新興領域和科技。為了有效發展生物界面科學,生物分子鍵結是一大重點,而化學共價鍵結生物分子因為其持久性以及穩定性的優點,加上生物正交性的生物耦合鍵結特性,能快速且準確應用於各種領域中。而在文獻指出,化學氣相沉積具有官能性的聚對二甲苯,只需一步驟即可簡易地達到表面改質,且化學氣相沉積改質各種材料的選擇性極低,而為了因應生物分子的鍵結,發展出不同種類官能基的聚對二甲苯高分子來應用到生物領域上,例如具有炔基、胺基等官能性之聚對二甲苯等。而本研究將開發出一個新的官能基N-羥基琥珀酰亞胺酯(N-hydroxysuccinimide ester),介紹其合成方式,並藉由化學氣相沉積聚合法將其鍍在表面上,再利用各種不同特殊性的生物耦合技術來達到控制生物分子鍵結,未來希望可以應用在許多生物領域上,例如控制細胞生長、抗汙表面等。

In past decades, the field of biointerface science, which is the reaction between surface and biomolecules, has been focused by chemists and biologists. Because more and more papers reported about surface biological chemistry, the functions of biomolecules and the interactions between biomolecules and environments has been discussed, and they were applied in various types of artificial materials. Moreover, according to growth of biointerface science, many new fields and technologies have been developed, such as biomedical, tissue engineering, micro total analysis systems (μTAS) and biosensors. For the studying surface biological chemistry effectively, the selective conjugation onto surface is one of most important issue and, for the characteristics of enduring and stability, the covalence conjugation is superior. For the reason of the characteristics, the recently developing surface bioconjugations are fast and site-specific, including the carbondimide reaction of amine and carboxylic acid, the thiol-ene reaction and the click chemistry. However, many artificial materials have no functional group such as metals and ceramics. It is the reason that a new field of surface modification has raised. Through chemistry vapor deposition, coating functional poly-p-xylene onto surface to modify surface is a one-step process, and it doesn’t have any inhibition for materials. Even, for the functional groups of biomolecules, papers directed that various types of functional poly-p-xylene, such as Poly (4-ethynyl-p-xylylene-co-p-xylylene), Poly (4- aminomethyl-p-xylylene-co- p-xylylene), have been synthesized to conjugate the biomolecules and apply in many fields. My research is that synthesize a new functional group N-hydroxysuccinimide ester, and coating N-hydroxysuccinimide ester poly-p-xylene onto surface by CVD for the unique selective bioconjugation. In the future, it can control the covalence of biomolecules and can be applied in biology fields such as controlling cell growth and anti-fouling.

目錄

誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
第一章 前言 1
1.1 N-羥基琥珀酰亞胺酯 1
1.2功能性生醫鍍膜表面在生物耦合技術上之應用 2
1.3研究動機及目的 13
第二章 製備N-羥基琥珀酰亞胺酯聚對二甲苯薄膜 14
2.1合成N-羥基琥珀酰亞胺酯對二甲苯二聚體二聚體 14
2.2 N-羥基琥珀酰亞胺酯對二甲苯二聚體化學特性測定 16
2.3化學氣相沉積法製備N-羥基琥珀酰亞胺酯聚對二甲苯薄膜 20
2.4 N-羥基琥珀酰亞胺酯聚對二甲苯薄膜化學特性測定 22
第三章 N-羥基琥珀酰亞胺酯聚對二甲苯薄膜之生物耦合反應 24
3.1耦合胜肽 24
3.2耦合抗結垢分子 28
3.3耦合抗菌分子 31
3.4耦合蛋白質 36
第四章 結論與未來研究方針 44
文獻參考 45


文獻參考


[1]Bioconjugate Techniques, 2nd Edition (2008) Greg T. Hermanson, Academic Press, Inc., 1202 pages.
[2]Vogler, E. A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science 1998, 74, 69.
[3]Ratner, B. D.; Bryant, S. J., Biomaterials: Where we have been and where we are going. Annual Review of Biomedical Engineering 2004, 6, 41.
[4]Castner, D. G.; Ratner, B. D., Biomedical surface science: Foundations to frontiers. Surface Science 2002, 500, (1-3), 28.
[5]Chilkoti, A.; Hubbell, J. A., Biointerface science. Mrs Bulletin 2005, 30, (3), 175.
[6]Berg, A.; Olthius, W.; Bergveld, P., Micro Total Analysis Systems 2000. 1st ed.; Springer: 2000.
[7]Fu, A. Y.; Spence, C.; Scherer, A.; Arnold, F. H.; Quake, S. R., A microfabricated fluorescence-activated cell sorter. Nature Biotechnology 1999, 17, (11), 1109.
[8]Effenhauser, C. S.; Bruin, G. J. M.; Paulus, A.; Ehrat, M., Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips. Analytical Chemistry 1997, 69, (17), 3451.
[9]Chen, S. H.; Sung, W. C.; Lee, G. B.; Lin, Z. Y.; Chen, P. W.; Liao, P. C., A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis 2001, 22, (18), 3972.
[10]Mao, H.; Yang, T.; Cremer, P. S., Design and characterization of immobilized enzymes in microfluidic systems. Analytical Chemistry 2002, 74, (2), 379.
[11]Li, P. C. H.; Harrison, D. J., Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Analytical Chemistry 1997, 69, (8), 1564.
[12]Lucchetta, E. M.; Lee, J. H.; Fu, L. A.; Patel, N. H.; Ismagilov, R. F., Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 2005, 434, (7037), 1134.
[13]Lahann, J., Vapor-based polymer coatings for potential biomedical applications. Polymer International 2006, 55, (12), 1361.
[14]Scouten, W. H.; Luong, J. H. T.; Brown, R. S., Enzyme or Protein Immobilization Techniques for Applications in Biosensor Design. Trends in Biotechnology 1995, 13, (5), 178.
[15]Kallury, K. M. R.; Lee, W. E.; Thompson, M., Enhanced Stability of Urease Immobilized onto Phospholipid Covalently Bound to Silica, Tungsten, and Fluoropolymer Surfaces. Analytical Chemistry 1993, 65, (18), 2459.
[16]Bhatia, S. K.; Cooney, M. J.; Shriverlake, L. C.; Fare, T. L.; Ligler, F. S., Immobilization of Acetylcholinesterase on Solid-Surfaces - Chemistry and Activity Studies. Sensors and Actuators B-Chemical 1991, 3, (4), 311.
[17]Elender, G.; Kuhner, M.; Sackmann, E., Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosensors & Bioelectronics 1996, 11, (6-7), 565.
[18]Flounders, A. W.; Brandon, D. L.; Bates, A. H., Patterning of immobilized antibody layers via photolithography and oxygen plasma exposure. Biosensors & Bioelectronics 1997, 12, (6), 447.
[19]Matveev, S. V., Controlled Modification of the Quartz Surface by Amino-Groups. Biosensors & Bioelectronics 1994, 9, (4-5), 333.
[20]Vandenberg, E. T.; Bertilsson, L.; Liedberg, B.; Uvdal, K.; Erlandsson, R.; Elwing, H.; Lundstrom, I., Structure of 3-Aminopropyl Triethoxy Silane on Silicon-Oxide. Journal of Colloid and Interface Science 1991, 147, (1), 103.
[21]Collioud, A.; Clemence, J. F.; Sanger, M.; Sigrist, H., Oriented and Covalent Immobilization of Target Molecules to Solid Supports - Synthesis and Application of a Light-Activatable and Thiol-Reactive Cross-Linking Reagent. Bioconjugate Chemistry 1993, 4, (6), 528.
[22]Delamarche, E.; Sundarababu, G.; Biebuyck, H.; Michel, B.; Gerber, C.; Sigrist, H.; Wolf, H.; Ringsdorf, H.; Xanthopoulos, N.; Mathieu, H. J., Immobilization of Antibodies on a Photoactive Self-Assembled Monolayer on Gold. Langmuir 1996, 12, (8), 1997.
[23]Duschl, C.; Sevin-Landais, A.-F.; Vogel, H., Surface engineering: optimization of antigen presentation in self-assembled monolayers. Biophysical Journal 1996, 70, (4), 1985.
[24]Lu, B.; Xie, J.; Lu, C.; Wu, C.; Wei, Y., Oriented Immobilization of Fab'' Fragments on Silica Surfaces. Analytical Chemistry 1995, 67, (1), 83.
[25]Keller, T. A.; Duschi, C.; Kroeger, D.; Sevin-Landais, A.-F.; Vogel, H.; Cervigni, S. E.; Dumy, P., Reversible oriented immobilization of histidine-tagged proteins on gold surfaces using a chelator thioalkane. Supramolecular Science 1996, 2, (3-4), 155.
[26]Rickert, J.; Weiss, T.; Gopel, W., Self-assembled monolayers for chemical sensors: Molecular recognition by immobilized supramolecular structures. Sensors and Actuators B-Chemical 1996, 31, (1-2), 45.
[27]Gosling, J. P., A decade of development in immunoassay methodology. Clinical Chemistry (Washington, DC, United States) 1990, 36, (8, Pt. 1), 1408.
[28]Kossek, S.; Padeste, C.; Tiefenauer, L., Immobilization of streptavidin for immunosensors on nanostructured surfaces. Journal of Molecular Recognition 1996, 9, (5/6), 485.
[29]Vreeke, M. S.; Rocca, P., Biosensors based on crosslinking of biotinylated glucose oxidase by avidin. Electroanalysis 1996, 8, (1), 55.
[30]Narang, U.; Anderson, G. P.; King, K. D.; Liss, H. S.; Ligler, F. S., Enhanced biosensor performance using an avidin-biotin bridge for antibody immobilization. Proceedings of SPIE-The International Society for Optical Engineering 1997, 2980, (Advances in Fluorescence Sensing Technology III), 187.
[31]Cosnier, S., Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosensors & Bioelectronics 1999, 14, (5), 443.
[32]Linke, B.; Kerner, W.; Kiwit, M.; Pishko, M.; Heller, A., Amperometric biosensor for in vivo glucose sensing based on glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 1994, 9, (2), 151.
[33]Yon-Hin, B. F. Y.; Smolander, M.; Crompton, T.; Lowe, C. R., Covalent electropolymerization of glucose oxidase in polypyrrole. Evaluation of methods of pyrrole attachment to glucose oxidase on the performance of electropolymerized glucose sensors. Analytical Chemistry 1993, 65, (15), 2067.
[34]Cooper, J. C.; Schubert, F., A Biosensor for L-Amino-Acids Using Polytyramine for Enzyme Immobilization. Electroanalysis 1994, 6, (11-12), 957.
[35]Hiller, M.; Kranz, C.; Huber, J.; Baeuerle, P.; Schuhmann, W., Amperometric biosensors produced by immobilization of redox enzymes at polythiophene-modified electrode surfaces. Advanced Materials 1996, 8, (3), 219.
[36]Sirkar, K.; Pishko, M. V., Amperometric Biosensors Based on Oxidoreductases Immobilized in Photopolymerized Poly(ethylene glycol) Redox Polymer Hydrogels. Analytical Chemistry 1998, 70, (14), 2888.
[37]Qian, J.; Liu, Y.; Liu, H.; Yu, T.; Deng, J., Immobilization of horseradish peroxidase with a regenerated silk fibroin membrane and its application to a tetrathiafulvalene-mediating H2O2 sensor. Biosensors & Bioelectronics 1997, 12, (12), 1213.
[38]Xiao, D. Q.; Wirth, M. J., Kinetics of surface-initiated atom transfer radical polymerization of acrylamide on silica. Macromolecules 2002, 35, (8), 2919.
[39]Bergbreiter, D. E.; Xu, G. F.; Zapata, C., Heterogeneous Grafting Chemistry Using Residual Unsaturation as a Graft Site Precursor. Macromolecules 1994, 27, (6), 1597.
[40]Chen, H.; Belfort, G., Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization. Journal of Applied Polymer Science 1999, 72, (13), 1699.
[41]Hu, S. W.; Ren, X. Q.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N. L., Surface-directed, graft polymerization within microfluidic channels. Analytical Chemistry 2004, 76, (7), 1865.
[42]Hu, S. W.; Ren, X. Q.; Bachman, M.; Sims, C. E.; Li, G. P.; Allbritton, N., Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Analytical Chemistry 2002, 74, (16), 4117.
[43]Loh, F. C.; Tan, K. L.; Kang, E. T.; Neoh, K. G.; Pun, M. Y., Near-Uv Radiation-Induced Surface Graft-Copolymerization of Some O-3-Pretreated Conventional Polymer-Films. European Polymer Journal 1995, 31, (5), 481.
[44]Genzer, J.; Fischer, D. A.; Efimenko, K., Fabricating two-dimensional molecular gradients via asymmetric deformation of uniformly-coated elastomer sheets. Advanced Materials 2003, 15, (18), 1545.
[45]Corelli, J. C.; Steckl, A. J.; Pulver, D.; Randall, J. N., Ultralow Dose Effects in Ion-Beam Induced Grafting of Polymethylmethacrylate (Pmma). Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 1987, 19-2, 1009.
[46]Srinivasan, R.; Maynebanton, V., Self-Developing Photoetching of Poly(Ethylene-Terephthalate) Films by Far Ultraviolet Excimer Laser-Radiation. Applied Physics Letters 1982, 41, (6), 576.
[47]Rohr, T.; Ogletree, D. F.; Svec, F.; Frechet, J. M. J., Surface functionalization of thermoplastic polymers for the fabrication of microfluidic devices by photoinitiated grafting. Advanced Functional Materials 2003, 13, (4), 264.
[48]Decher, G., Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, (5330), 1232.
[49]Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O''Brien, S.; Murray, C. B., Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, (7072), 55.
[50]Lahann, J., Reactive polymer coatings for biomimetic surface engineering. Chemical Engineering Communications 2006, 193, (11), 1457.
[51]Murthy, S. K.; Olsen, B. D.; Gleason, K. K., Effect of filament temperature on the chemical vapor deposition of fluorocarbon-organosilicon copolymers. Journal of Applied Polymer Science 2004, 91, (4), 2176.
[52]Dygert, N. L.; Gies, A. P.; Schriver, K. E.; Haglund, R. F., Deposition of polyimide precursor by resonant infrared laser ablation. Applied Physics a-Materials Science & Processing 2007, 89, (2), 481.
[53]Lee, K. R.; Yu, Y. J.; Joo, S. H.; Lee, C. Y.; Choi, D. H.; Joo, J. S.; Park, Y. S.; Jin, J. I., Poly(2,5-thienylene vinylene) in nano shapes by CVD polymerization. Macromolecular Rapid Communications 2007, 28, (9), 1057.
[54]Cao, L.; Chang, M.; Lee, C. Y.; Castnet, D. G.; Sukavaneshvar, S.; Ratner, B. D.; Horbett, T. A., Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. Journal of Biomedical Materials Research Part A 2007, 81A, (4), 827.
[55]Lee, N. H.; Frank, C. W., Surface-initiated vapor polymerization of various alpha-amino acids. Langmuir 2003, 19, (4), 1295.
[56]Rhee, S. W.; Taylor, A. M.; Tu, C. H.; Cribbs, D. H.; Cotman, C. W.; Jeon, N. L., Patterned cell culture inside microfluidic devices. Lab on a Chip 2005, 5, (1), 102.
[57]Gu, H. W.; Zheng, R. K.; Zhang, X. X.; Xu, B., Using soft lithography to pattern highly oriented polyacetylene (HOPA) films via solventless polymerization. Advanced Materials 2004, 16, (15), 1356.
[58]Gorham, W. F., A new general synthetic method for the preparation of linear poly-p-xylylenes. Journal of Polymer Science, Polymer Chemistry Edition 1966, 4, (12), 3027.
[59]Grzybowski, B. A.; Haag, R.; Bowden, N.; Whitesides, G. M., Generation of Micrometer-Sized Patterns for Microanalytical Applications Using a Laser Direct-Write Method and Microcontact Printing. Analytical Chemistry 1998, 70, (22), 4645.
[60]Duffy, D. C.; McDonald, J. C.; Schueller, O. J. A.; Whitesides, G. M., Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry 1998, 70, (23), 4974.
[61]Senkevich, J. J.; Mitchell, C. J.; Vijayaraghavan, A.; Barnat, E. V.; McDonald, J. F.; Lu, T. M., Unique structure/properties of chemical vapor deposited parylene E. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 2002, 20, (4), 1445.
[62]Nowlin, T. E.; Smith, D. F., Surface Characterization of Plasma-Treated Poly-P-Xylylene Films. Journal of Applied Polymer Science 1980, 25, (8), 1619.
[63]Herrera-Alonso, M.; McCarthy, T. J., Chemical surface modification of poly(p-xylylene) thin films. Langmuir 2004, 20, (21), 9184.
[64]Ishaque, M.; Agarwal, S.; Greiner, A., Synthesis and properties of novel poly(p-xylylene)s with aliphatic substituents. E-Polymers 2002.
[65]Gilch, H. G.; Wheelwri.Wl, Polymerization of Alpha-Halogenated P-Xylenes with Base. Journal of Polymer Science Part a-1-Polymer Chemistry 1966, 4, (6Pa1), 1337.
[66]Senkevich, J. J.; Yang, G. R.; Lu, T. M., The facile surface modification of poly(p-xylylene) ultrathin films. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2003, 216, (1-3), 167.
[67]Lahann, J.; Langer, R., Novel Poly(p-xylylenes): Thin Films with Tailored Chemical and Optical Properties. Macromolecules 2002, 35, (11), 4380.
[68]Lahann, J.; Hocker, H.; Langer, R., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726.
[69]Lahann, J.; Klee, D.; Hocker, H., Chemical vapour deposition polymerization of substituted [2.2]paracyclophanes. Macromolecular Rapid Communications 1998, 19, (9), 441.
[70]Lahann, J.; Langer, R., Surface-initiated ring-opening polymerization of epsilon-caprolactone from a patterned poly(hydroxymethyl-p-xylylene). Macromolecular Rapid Communications 2001, 22, (12), 968.
[71]Schurmann, K.; Lahann, J.; Niggemann, P.; Klosterhalfen, B.; Meyer, J.; Kulisch, A.; Klee, D.; Gunther, R. W.; Vorwerk, D., Biologic response to polymer-coated stents: In vitro analysis and results in an iliac artery sheep model. Radiology 2004, 230, (1), 151.
[72]Nandivada, H.; Chen, H. Y.; Lahann, J., Vapor-based synthesis of poly [(4-formyl-p-xylylene)-co-(p-xylylene)] and its use for biomimetic surface modifications. Macromolecular Rapid Communications 2005, 26, (22), 1794.
[73]Lahann, J.; Balcells, M.; Lu, H.; Rodon, T.; Jensen, K. F.; Langer, R., Reactive polymer coatings: A first step toward surface engineering of microfluidic devices. Analytical Chemistry 2003, 75, (9), 2117.
[74]Lahann, J.; Choi, I. S.; Lee, J.; Jenson, K. F.; Langer, R., A new method toward microengineered surfaces based on reactive coating. Angewandte Chemie-International Edition 2001, 40, (17), 3166.
[75]Nandivada, H.; Chen, H. Y.; Bondarenko, L.; Lahann, J., Reactive polymer coatings that "click"". Angewandte Chemie-International Edition 2006, 45, (20), 3360.
[76]Lahann, J.; Balcells, M.; Rodon, T.; Lee, J.; Choi, I. S.; Jensen, K. F.; Langer, R., Reactive polymer coatings: A platform for patterning proteins and mammalian cells onto a broad range of materials. Langmuir 2002, 18, (9), 3632.
[78]Hopf, H., [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angewandte Chemie- International Edition 2008, 47, (51), 9808.
[79]Waters, J. F., J. K. Sutter, M. A. B. Meador, L. J. Baldwin and M. A. Meador., Addition curing thermosets endcapped with 4-amino [2.2] paracyclophane. Journal of Polymer Science Part A: Polymer Chemistry 1991, 29, (13), 1917
[80]Cipiciani, A., F. Fringuelli, V. Mancini, O. Piermatti, F. Pizzo and R. Ruzziconi., Synthesis of Chiral (R)-4-Hydroxy- and (R)-4-Halogeno[2.2]paracyclophanes and Group Polarizability. Optical Rotation Relationship. The Journal of Organic Chemistry 1997, 62, (11), 3744.
[81]Reich, H. J. and D. J. Cram., Macro rings. XXXVII. Multiple electrophilic substitution reactions of [2.2]paracyclophanes and interconversions of polysubstituted derivatives. Journal of the American Chemical Society 1969, 91, (13), 3527.
[81]Lahann, J., H. Hocker and R. Langer., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726.
[82]Lahann, J., H. Hocker and R. Langer., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726.
[83]Olah, G. A. and S. C. Narang., Synthetic Methods and Reactions; 491. Perfluorinated Resinsulfonic Acid (Nafion-H)2 Catalyzed Nitration of Aromatic Compounds with Butyl Nitrate. Synthesis 1978, 1978, (09), 690.
[84]Tsai, M.-Y., C.-Y. Lin, C.-H. Huang, J.-A. Gu, S.-T. Huang, J. Yu and H.-Y. Chen., Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chemical Communications 2012, 48, (89), 10969.
[85]Sletten, E. M. and C. R. Bertozzi., Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angewandte Chemie International Edition 2009, 48, (38), 6974.
[86]Lutz, J.-F. and H. G. Borner., Modern trends in polymer bioconjugates design. Progress in Polymer Science 2008, 33, (1), 1.
[87]Nandivada, H., H.-Y. Chen and J. Lahann., Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular Rapid Communications 2005, 26, (22), 1794.
[88]Chen, H.-Y., M. Hirtz, X. Deng, T. Laue, H. Fuchs and J. Lahann., Substrate-Independent Dip-Pen Nanolithography Based on Reactive Coatings. Journal of the American Chemical Society 2010, 132, (51), 18023.
[89]Nandivada, H., H.-Y. Chen, L. Bondarenko and J. Lahann., Reactive Polymer Coatings that “Click”. Angewandte Chemie International Edition 2006, 45, (20), 3360.
[90]Deng, X., C. Friedmann and J. Lahann., Bio-orthogonal “Double-Click” Chemistry Based on Multifunctional Coatings. Angewandte Chemie International Edition 2011, 50, (29), 6522.
[91]Lahann, J., H. Hocker and R. Langer., Synthesis of amino[2.2]paracyclophanes - Beneficial monomers for bioactive coating of medical implant materials. Angewandte Chemie-International Edition 2001, 40, (4), 726.
[92]Encinas, M. V. and J. C. Scaiano., Reaction of benzophenone triplets with allylic hydrogens. Laser flash photolysis study. Journal of the American Chemical Society 1981, 103, (21), 6393.
[93]Lin, A. A., V. R. Sastri, G. Tesoro, A. Reiser and R. Eachus., On the crosslinking mechanism of benzophenone-containing polyimides. Macromolecules 1988, 21, (4), 1165.
[94]Suh, K. Y., R. Langer and J. Lahann., A Novel Photodefinable Reactive Polymer Coating and Its Use for Microfabrication of Hydrogel Elements. Advanced Materials 2004, 16, (16), 1401.
[95]Wu, M.-G., H.-L. Hsu, K.-W. Hsiao, C.-C. Hsieh and H.-Y. Chen., Vapor-Deposited Parylene Photoresist: A Multipotent Approach toward Chemically and Topographically Defined Biointerfaces. Langmuir 2012, 28, (40), 14313.
[96]Kade, M. J., D. J. Burke and C. J. Hawker., The Power of Thiol-ene Chemistry. Journal of Polymer Science Part a-Polymer Chemistry 2010, 48, (4), 743.
[97]Campos, L. M., K. L. Killops, R. Sakai, J. M. J. Paulusse, D. Damiron, E. Drockenmuller, B. W. Messmore and C. J. Hawker., Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules 2008, 41, (19), 7063.
[98]Hoyle, C. E. and C. N. Bowman., Thiol-Ene Click Chemistry. Angewandte Chemie-International Edition 2010, 49, (9), 1540.
[99]Wu, J.-T., C.-H. Huang, W.-C. Liang, Y.-L. Wu, J. Yu and H.-Y. Chen., Reactive Polymer Coatings: A General Route to Thiol-ene and Thiol-yne Click Reactions. Macromolecular Rapid Communications 2012, 33, (10), 922.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔