(3.236.118.225) 您好!臺灣時間:2021/05/16 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖士翔
研究生(外文):Shih-Hsiang Liao
論文名稱:結合共沈澱及預凝膠法合成氧化鐵/海藻膠奈米粒子並用於肝癌細胞的標靶溫熱治療
論文名稱(外文):Synthesis of Iron(II, III) Oxide/Alginate Nanoparticles through a Combined Pre-gel and Co-precipitation Method for Targeted Liver Cancer Hyperthermia
指導教授:吳嘉文吳嘉文引用關係
指導教授(外文):Kevin Chia-Wen Wu
口試委員:林嘉和謝發坤林峯輝林義峰山内悠輔
口試委員(外文):Chia-Her LinFa-Kuen ShiehFeng-Huei LinYi-Feng LinYusuke Yamauchi
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:81
中文關鍵詞:溫熱治療葉酸半乳糖預凝膠海藻膠四氧化三鐵
外文關鍵詞:hyperthermiafolic acidD-galactosepre-gelalginateiron(IIIII) oxide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是合成親水性、分散性良好且能標靶人類肝癌細胞HepG2 (Human hepatocellular carcinoma cell line)的磁性奈米粒子,並用外加交流磁場進行溫熱治療,以達到殺死癌細胞的效果。結合預凝膠(Pre-gel)與共沉澱法(Co-precipitation),能藉由調整pH值與海藻膠量合成出流體力學直徑(Hydrodynamic diameter)為122 nm到560 nm的Fe3O4@Alg奈米複合材料,此合成方法無需多步驟合成且皆在水溶液中反應,用於生物體內較為安全。由於海藻膠上富含羥基(−OH)與羧酸基(−COOH),提供材料表面高負電性與親水性,因此材料合成好即可在水中長期穩定分散,且羧酸基能進一步修飾上標靶分子。海藻膠包覆的磁性奈米粒子經由EDC/NHS活化粒子表面的羧酸基,使其與標靶分子(Folic acid和D-galactosamine)上的一級胺基產生胜肽鍵,使磁性奈米粒子成為擁有folic acid和D-galactose兩種標靶分子的Fe3O4@Alg-FA和Fe3O4@Alg-(D-Gal),以標靶人類肝癌細胞HepG2。
藉由測量到表面電位的下降、羧酸基的C-O伸縮震動峰的消失與偏移和高溫(800°C)處理後重量百分比的改變來確認材料中有海藻膠與標靶分子,並推算各成分的重量百分比。經SQUID測量材料磁性近似超順磁性(Superparamagnetism)且飽和磁化強度皆約在70 emu/g。接有標靶分子的材料(濃度0.5 mg/mL)經高週波產生的磁場(780 kHz;99 kA/m)加熱純水,測得specific absorption rate (SAR)皆為308.4 W/gFe。利用ICP-MS量測發現接上folic acid後材料在細胞中的Fe3O4累積量多了15.4倍,而接上D-Galactose後多了19.7倍。材料藉由高週波產生的磁場在細胞內加熱進行溫熱治療,Fe3O4@Alg-FA和Fe3O4@Alg-(D-Gal)分別能使細胞的相對存活率降為0.1和0.04,比起Fe3O4@Alg的0.61有更好的療效,證實接有標靶分子的Fe3O4@Alg能有效的累積在細胞內,使溫熱治療殺死HepG2細胞的效果更好。最後測量材料的血漿凝血時間(Plasma clotting time)與進行溶血試驗(Hemolytic test),證實材料不易造成血液凝血和溶血,能安全用於生物體內。


The purpose of this study is to synthesize well-dispersed and hydrophilic magnetic nanoparticles that can target HepG2 (Human hepatocellular carcinoma cell line). Hyperthermia to kill cancer cells can be achieved by applying an AC magnetic field. A combined pre-gel and co-precipitation method can adjust the hydrodynamic diameter of Fe3O4@Alg nanoparticles from 552 nm to 122 nm by varying the pH value and amount of sodium alginate. This method does not need a multi-step synthesis and synthesis in an aqueous solution is more suitable for in vivo usage. Since alginates are rich in hydroxyl (−OH) and carboxylic acid (−COOH) groups, they can provide a highly negative surface charge and make the particle hydrophilic. Alginate can stabilize the dispersion of Fe3O4 in water, and the carboxylic acid groups can be further modified with targeting molecules. Alginate coated magnetic nanoparticles further modified by EDC/NHS activated carboxylic acids will react with the primary amine groups of the targeting molecule (Folic acid and D-galactosamine) to become amino peptide bonds. The magnetic nanoparticles then become Fe3O4@Alg-FA and Fe3O4@Alg-(D-Gal), so these nanoparticles can target HepG2 cell.
Through a decrease in the zeta potential, as well as a disappearance and multiple shifts in the C−O stretching vibration peaks, we can confirm that alginate and targeting molecules are bonded on the material. Calculation of the wt% of each component can be done using the remaining wt% after heating to 800°C. With SQUID measurements, the materials almost have superparamagnetism properties, and the saturation magnetization is about 70 emu/g. The magnetic field generated by the high frequency (780 kHz; 99 kA/m) causes the targeting-functionalized materials (concentration 0.5 mg/mL) to heat water, and the specific absorption rate (SAR) was detected to be 308.4 W/gFe. Using ICP-MS, we found that the accumulation of Fe3O4 in HepG2 for Fe3O4@Alg-FA and Fe3O4@Alg-(D-Gal) are 15.4 and 19.7 times respectively more than that of Fe3O4@Alg. The materials generate heat in HepG2 through an applied magnetic field, leading to hyperthermia. The relative cell viabilities of the Fe3O4@Alg-FA and Fe3O4@Alg-(D-Gal) groups are 0.1 and 0.04, respectively, which is better compared to Fe3O4@Alg (0.61). This result confirms that targeting molecules help Fe3O4@Alg accumulate in cells effectively, resulting in an increased chance for the death of HepG2. Lastly, measurements of the plasma clotting time of the material and hemolytic tests confirmed that the material does not speed up blood clotting and trigger hemolysis, which means that it is safe to be utilized in vivo.


誌謝 I
英文摘要 II
中文摘要 IV
目錄 V
圖目錄 IX
表目錄 XI
符號索引 XII
第一章 緒論 1
第二章 文獻回顧 3
2-1 癌症 3
2-1-1 癌症 3
2-1-2 癌症的傳統療法 4
2-1-3 其他療法 5
2-2 溫熱治療(Hyperthermia) 6
2-2-1 溫熱治療的起源 6
2-2-2 溫度與加熱時間對癌細胞存活率的影響 6
2-2-3 腫瘤組織的低pH值提高癌細胞對溫度的敏感性 8
2-2-4 熱休克蛋白引起抗腫瘤免疫反應 10
2-2-5 腫瘤組織的散熱能力差 11
2-2-6 溫熱治療的分類 13
2-2-7 磁性奈米粒子用於溫熱治療的加熱方式 13
2-3 標靶療法 14
2-3-1 被動標靶 15
2-3-2 主動式標靶 15
2-4 磁性原理 18
2-4-1 磁化率與介磁常數 18
2-4-2 磁性物質的種類 19
2-4-3 磁滯現象(Magnetic hysteresis) 22
2-5 磁性奈米粒子的合成方式 23
2-5-1 氧化鐵奈米粒子的合成 23
2-5-2 高分子與超順磁氧化鐵的混成奈米材料 25
2-6 奈米粒子用於生物系統 28
2-6-1 奈米粒子進入人體的方式 28
2-6-2 材料的選擇 28
2-6-3 粒徑的限制 29
2-6-4 氧化鐵奈米粒子進入人體 29
2-7 海藻膠 30
2-7-1 海藻膠的簡介 30
2-7-2 預凝膠(Pre-gel)法 31
2-8 表面改質(Surface modification) 34
2-8-1 常見的表面改質方法 34
2-8-2 EDC/NHS 36
第三章 研究動機與目的 38
第四章 實驗方法 40
4-1 實驗藥品 40
4-2 實驗儀器 41
4-3 材料製備 42
4-3-1 實驗總流程 42
4-3-2 Fe3O4@Alg製備 43
4-3-3 Fe3O4@Alg接上Folic Acid 43
4-3-4 Fe3O4@Alg接上Galactose殘基 44
4-4 材料性質分析 44
4-4-1 粒徑、電位分析儀 44
4-4-3 傅立葉轉換紅外吸收光譜(FTIR) 45
4-4-4 熱重分析(TGA) 45
4-4-5 X光繞射儀(XRD) 46
4-4-6 超導量子干涉磁量儀(SQUID) 46
4-4-7 材料藉由高週波(High-frequency)產生的磁場加熱水 46
4-5 細胞實驗 46
4-5-1 生物相容性測試 46
4-5-2 顯微鏡實驗 47
4-5-3 感應耦合電漿質譜分析儀(ICP-MS) 48
4-5-4 磁性溫熱治療實驗 48
4-5-5 測量材料在血漿中的Plasma Clotting Time 50
4-5-6 紅血球的溶血試驗(Hemolytic test) 50
第五章 結果與討論 51
5-1 材料性質 51
5-1-1 材料合成 52
5-1-2 材料中海藻膠及標靶分子的確認及含量 56
5-1-3 材料磁力特性與加熱效果 63
5-2 細胞實驗 65
5-2-1 生物相容性測試 65
5-2-2 顯微鏡觀察 66
5-2-3 ICP-MS測量細胞內含鐵量 68
5-2-4 高週波產生磁場加熱材料進行溫熱治療 68
5-2-5 材料在人類血漿中的抗凝血活性 70
5-2-6 材料的紅血球溶血試驗 71
第六章 結論 72
第七章 未來展望 73
第八章 參考文獻 74


[1] Meade VM, Burton MA, Gray BN, Self GW. Distribution of different sized microspheres in experimental hepatic tumours. European journal of cancer & clinical oncology. 1987;23:37-41.
[2] Yamada R, Kishi K, Sato M, Sonomura T, Nishida N, Tanaka K, et al. Transcatheter arterial chemoembolization (TACE) in the treatment of unresectable liver cancer. World J surg. 1995;19:795-800.
[3] Kettenbach J, Stadler A, Katzler I, Schernthaner R, Blum M, Lammer J, et al. Drug-loaded microspheres for the treatment of liver cancer: Review of current results. cardiovasc intervent radiol. 2008;31:468-76.
[4] Moroz P, Jones SK, Gray BN. Status of hyperthermia in the treatment of advanced liver cancer. Journal of surgical oncology. 2001;77:259-69.
[5] Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE. Cellular responses to combinations of hyperthermia and radiation. radiology. 1977;123:463-74.
[6] Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer res. 1984;44:4721s-30s.
[7] Gerweck LE. Modification of cell lethality at elevated temperatures the pH effect. Radiation research. 1977;70:224-35.
[8] Gullino PM, Clark SH, Grantham FH. The interstitial fluid of solid tumors. Cancer research. 1964;24:780-97.
[9] Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Antitumor immunity induction by intracellular hyperthermia using magnetite cationic liposomes. Japanese journal of cancer research : Gann. 1998;89:775-82.
[10] Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. Journal of materials chemistry. 2004;14:2161-75.
[11] 李門輝. 癌的基礎科學. 合記圖書出版社; 1987. p. 196-204.
[12] Mottram JC. A developing factor in experimental blastogenesis. The journal of pathology and bacteriology. 1944;56:181-7.
[13] Rous P, Kidd JG. Conditional neoplasms and subthreshold neoplastic states: a study of the tar tumors of rabbits. The Journal of experimental medicine. 1941;73:365-90.
[14] 李門輝. 癌的基礎科學. 合記圖書出版社; 1987. p. 103 - 130.
[15] 王尉任. 可分解性生醫玻璃於腫瘤熱治療之研究: 國立台灣大學碩士論文; 2005.
[16] 陳冠羽. 賀癌平包覆之氧化鐵奈米粒子之製備與生醫上的應用: 國立台灣大學碩士論文; 2006.
[17] Selawry OS, Goldstein MN, McCormick T. Hyperthermia in tissue-cultured cells of malignant origin. Cancer research. 1957;17:785-91.
[18] Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clinical orthopaedics and related research. 1991:3-11.
[19] Coley WB. Treatment of inoperable malignant tumors with the toxines of erysipelas and the bacillus prodigiosus. The american journal of the medical sciences. 1894;108:50-66.
[20] Crile G, Jr. Selective destruction of cancers after exposure to heat. Annals of surgery. 1962;156:404-7.
[21] Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced drug delivery reviews. 2011;63:789-808.
[22] Suit HD, Gerweck LE. Potential for hyperthermia and radiation therapy. Cancer research. 1979;39:2290-8.
[23] Burgess EA, Sylven B. Changes in glucose and lactate content of ascites fluid and blood plasma during growth and decay of the ELD ascites tumour. British journal of cancer. 1962;16:298-305.
[24] Rhee JG, Kim TH, Levitt SH, Song CW. Changes in acidity of mouse tumor by hyperthermia. International journal of radiation oncology, biology, physics. 1984;10:393-9.
[25] De Maio A. Heat shock proteins: facts, thoughts, and dreams. Shock (Augusta, Ga). 1999;11:1-12.
[26] Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Molecular and cellular biology. 2000;20:7146-59.
[27] Menoret A, Chandawarkar R. Heat-shock protein-based anticancer immunotherapy: an idea whose time has come. Seminars in oncology. 1998;25:654-60.
[28] Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M. Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. International immunology. 1998;10:609-17.
[29] Ito A, Shinkai M, Honda H, Yoshikawa K, Saga S, Wakabayashi T, et al. Heat shock protein 70 expression induces antitumor immunity during intracellular hyperthermia using magnetite nanoparticles. Cancer immunology, immunotherapy : CII. 2003;52:80-8.
[30] Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of "heat-controlled necrosis" with heat shock protein expression. Cancer immunology, immunotherapy : CII. 2006;55:320-8.
[31] Hall EJ. Radiobiology for the radiologist, 5e: Lippincott Williams&Wilki; 2000.
[32] Laurent S, Dutz S, Hafeli UO, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Advances in colloid and interface science. 2011;166:8-23.
[33] Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat rev drug discov. 2010;9:615-27.
[34] Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Advances in enzyme regulation. 2001;41:189-207.
[35] Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer research. 1986;46:6387-92.
[36] Huang X, Molema G, King S, Watkins L, Edgington TS, Thorpe PE. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275:547-50.
[37] Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proceedings of the national academy of sciences. 2006;103:6315-20.
[38] Ferdinandi ES, Vassilakos A, Lee Y, Lightfoot J, Fitsialos D, Wright JA, et al. Preclinical toxicity and toxicokinetics of GTI-2040, a phosphorothioate oligonucleotide targeting ribonucleotide reductase R2. Cancer chemotherapy and pharmacology. 2011;68:193-205.
[39] Soudy R, Gill A, Sprules T, Lavasanifar A, Kaur K. Proteolytically stable cancer targeting peptides with high affinity for breast cancer cells. Journal of medicinal chemistry. 2011;54:7523-34.
[40] Moore JL. The significance of folic acid for epilepsy patients. Epilepsy & behavior : E&B. 2005;7:172-81.
[41] Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc chem res. 2008;41:120-9.
[42] Lee RJ, Low PS. Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochimica et biophysica acta. 1995;1233:134-44.
[43] Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Analytical biochemistry. 2005;338:284-93.
[44] Leamon CP, Reddy JA. Folate-targeted chemotherapy. Advanced drug delivery reviews. 2004;56:1127-41.
[45] Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proceedings of the national academy of sciences of the united states of america. 1991;88:5572-6.
[46] Fan N-C, Cheng F-Y, Ho J-aA, Yeh C-S. Photocontrolled targeted drug delivery: photocaged biologically active folic acid as a light-responsive tumor-targeting molecule. Angewandte chemie international edition. 2012;51:8806-10.
[47] Ye WL, Teng ZH, Liu DZ, Cui H, Liu M, Cheng Y, et al. Synthesis of a new pH-sensitive folate-doxorubicin conjugate and its antitumor activity in vitro. Journal of pharmaceutical sciences. 2013;102:530-40.
[48] Abdel Nour AM, Ringot D, Gueant JL, Chango A. Folate receptor and human reduced folate carrier expression in HepG2 cell line exposed to fumonisin B1 and folate deficiency. Carcinogenesis. 2007;28:2291-7.
[49] Kumar M, Singh G, Arora V, Mewar S, Sharma U, Jagannathan NR, et al. Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. International journal of nanomedicine. 2012;7:3503-16.
[50] Saunier B, Triyatni M, Ulianich L, Maruvada P, Yen P, Kohn LD. Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. Journal of virology. 2003;77:546-59.
[51] Park EI, Mi Y, Unverzagt C, Gabius HJ, Baenziger JU. The asialoglycoprotein receptor clears glycoconjugates terminating with sialic acid alpha 2,6GalNAc. Proceedings of the national academy of sciences of the united states of america. 2005;102:17125-9.
[52] Rigopoulou EI, Roggenbuck D, Smyk DS, Liaskos C, Mytilinaiou MG, Feist E, et al. Asialoglycoprotein receptor (ASGPR) as target autoantigen in liver autoimmunity: lost and found. Autoimmunity reviews. 2012;12:260-9.
[53] Yoo MK, Kim IY, Kim EM, Jeong HJ, Lee CM, Jeong YY, et al. Superparamagnetic iron oxide nanoparticles coated with galactose-carrying polymer for hepatocyte targeting. Journal of biomedicine & biotechnology. 2007;2007:94740.
[54] Schwartz AL, Fridovich SE, Knowles BB, Lodish HF. Characterization of the asialoglycoprotein receptor in a continuous hepatoma line. The journal of biological chemistry. 1981;256:8878-81.
[55] Huang G, Diakur J, Xu Z, Wiebe LI. Asialoglycoprotein receptor-targeted superparamagnetic iron oxide nanoparticles. Int J pharm. 2008;360:197-203.
[56] 林清涼, 戴念祖. 電磁學:宏觀電磁學,光學和狹義相對論: 五南圖書出版股份有限公司; 2001.
[57] Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Progress in polymer science. 2011;36:168-89.
[58] Latorre M, Rinaldi C. Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto rico health sciences journal. 2009;28:227-38.
[59] Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J am chem soc. 2001;123:12798-801.
[60] Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. Journal of the american chemical society. 2002;124:8204-5.
[61] 蘇品書. 超微粒子材料技術: 復漢出版社有限公司; 1999.
[62] Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, et al. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chemistry of materials. 2006;18:4399-404.
[63] Silva A, Silva-Freitas E, Carvalho J, Pontes T, Araujo-Neto R, Silva K, et al. Magnetic particles in biotechnology: from drug targeting to tissue engineering2012.
[64] Lutz JF, Stiller S, Hoth A, Kaufner L, Pison U, Cartier R. One-pot synthesis of pegylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents. Biomacromolecules. 2006;7:3132-8.
[65] Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park H, et al. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Advanced materials. 2008;20:4154-7.
[66] Qin J, Laurent S, Jo YS, Roch A, Mikhaylova M, Bhujwalla ZM, et al. A high-performance magnetic resonance imaging T2 contrast agent. Advanced materials. 2007;19:1874-8.
[67] Fan QL, Neoh KG, Kang ET, Shuter B, Wang SC. Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethyleneglycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials. 2007;28:5426-36.
[68] Wang Y, Teng X, Wang J-S, Yang H. Solvent-free atom transfer radical polymerization in the synthesis of Fe2O3@polystyrene core−shell nanoparticles. Nano letters. 2003;3:789-93.
[69] Czaun M, Hevesi L, Takafuji M, Ihara H. A novel approach to magneto-responsive polymeric gels assisted by iron nanoparticles as nano cross-linkers. Chemical communications. 2008;0:2124-6.
[70] Li G, Zeng DL, Wang L, Baoyu, Zong, Neoh KG, et al. Hairy hybrid nanoparticles of magnetic core, fluorescent silica shell, and functional polymer brushes. Macromolecules. 2009;42:8561-5.
[71] Hu F, Neoh KG, Kang E-T. Synthesis of folic acid functionalized PLLA-b-PPEGMA nanoparticles for cancer cell targeting. Macromolecular rapid communications. 2009;30:609-14.
[72] Frankamp BL, Boal AK, Tuominen MT, Rotello VM. Direct control of the magnetic interaction between iron cxide nanoparticles through dendrimer-mediated self-assembly. Journal of the american chemical society. 2005;127:9731-5.
[73] Xu ZZ, Wang CC, Yang WL, Deng YH, Fu SK. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. Journal of magnetism and magnetic materials. 2004;277:136-43.
[74] Arshady R. Suspension, emulsion, and dispersion polymerization: a methodological survey. Colloid polym sci. 1992;270:717-32.
[75] Zhang J, Xu S, Kumacheva E. Polymer microgels:  reactors for semiconductor, metal, and magnetic nanoparticles. Journal of the american chemical society. 2004;126:7908-14.
[76] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews. 2002;54:631-51.
[77] Singh R, Lillard JW, Jr. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology. 2009;86:215-23.
[78] Joshi A, Keerthiprasad R, Jayant RD, Srivastava R. Nano-in-micro alginate based hybrid particles. Carbohydrate polymers. 2010;81:790-8.
[79] 廖祐德. 合成包覆中孔洞氧化矽奈米顆粒之海藻酸微米顆粒應用於穩定釋放及標靶化學治療: 國立台灣大學碩士論文; 2012.
[80] 梁永和. 以預凝膠法製備磷酸鈣/海藻膠之核/殼奈米粒子並應用於酸鹼應答型的藥物釋放: 國立台灣大學碩士論文; 2012.
[81] Miyazaki S, Ishii K, Nadai T. The use of chitin and chitosan as drug carriers. Chemical & pharmaceutical bulletin. 1981;29:3067-9.
[82] Kristl J, Šmid-Korbar J, Štruc E, Schara M, Rupprecht H. Hydrocolloids and gels of chitosan as drug carriers. International journal of pharmaceutics. 1993;99:13-9.
[83] Won C-Y, Chu C-C, Yu T-J. Synthesis of starch-based drug carrier for the control/release of estrone hormone. Carbohydrate polymers. 1997;32:239-44.
[84] Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews. 2010;62:284-304.
[85] Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and surfaces B, Biointerfaces. 2008;66:274-80.
[86] Corot C, Robert P, Idee J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced drug delivery reviews. 2006;58:1471-504.
[87] Johannsen M, Gneveckow U, Taymoorian K, Thiesen B, Waldofner N, Scholz R, et al. Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: results of a prospective phase I trial. International journal of hyperthermia : the official journal of european society for hyperthermic oncology, north american hyperthermia group. 2007;23:315-23.
[88] Wee S, Gombotz WR. Protein release from alginate matrices. Advanced drug delivery reviews. 1998;31:267-85.
[89] De S, Robinson D. Polymer relationships during preparation of chitosan–alginate and poly-l-lysine–alginate nanospheres. Journal of controlled release. 2003;89:101-12.
[90] Skaugrud O, Hagen A, Borgersen B, Dornish M. Biomedical and pharmaceutical applications of alginate and chitosan. Biotechnology & genetic engineering reviews. 1999;16:23-40.
[91] Rees DA, Welsh EJ. Secondary and tertiary structure of polysaccharides in solutions and gels. Angewandte chemie international edition in english. 1977;16:214-24.
[92] Akihiko Kikuchi MK, Atsushi Watanabe, Masayasu Sugihara, Yasuhisa Sakurai, Teruo Okano. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. Journal of controlled release. 1999;58:21-8.
[93] Veiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced drug delivery reviews. 2010;62:284-304.
[94] Grabarek Z, Gergely J. Zero-length crosslinking procedure with the use of active esters. Analytical biochemistry. 1990;185:131-5.
[95] Lian S, Wang E, Kang Z, Bai Y, Gao L, Jiang M, et al. Synthesis of magnetite nanorods and porous hematite nanorods. Solid state communications. 2004;129:485-90.
[96] Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of biomedical materials research part A. 2007;80:333-41.
[97] Ma H-l, Qi X-r, Maitani Y, Nagai T. Preparation and characterization of superparamagnetic iron oxide nanoparticles stabilized by alginate. International journal of pharmaceutics. 2007;333:177-86.
[98] Khandhar AP, Ferguson RM, Krishnan KM. Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: Implications in biological systems. J appl phys. 2011;109:7B310-7B3103.
[99] Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080-91.
[100] Liang Y-H, Liu C-H, Liao S-H, Lin Y-Y, Tang H-W, Liu S-Y, Lai I-R, and Kevin C.-W. Wu. Cosynthesis of cargo-loaded hydroxyapatite/alginate core–shell nanoparticles (HAP@Alg) as pH-responsive nanovehicles by a pre-gel method. ACS applied materials & interfaces. 2012;4:6720-7.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊