|
1.Sloan, E.D., Clathrate Hydrate of Natural Gases: Revised and Expanded. 1998. 2.Komai, T., et al., In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point. Journal of Physical Chemistry B, 2004. 108(23): p. 8062-8068. 3.Kvenvolden, K.A., Potential effects of gas hydrate on human welfare. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(7): p. 3420-3426. 4.Kvenvolden, K.A., Gas hydrate and humans. Gas Hydrates: Challenges for the Future, 2000. 912: p. 17-22. 5.Davidson, D.W., Water: A Comprehensive Treatise, ed. F. Franks. Vol. 2. 1973, New York: Plenum. 6.Davidson, D.W., et al., Some Physical and Thermo-Physical Properties of Clathrate Hydrates. Journal of Inclusion Phenomena, 1987. 5(2): p. 219-223. 7.Jeffrey, G.A., Hydrate inclusion compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1984. 1(3): p. 211-222. 8.Jeffrey, G.A., T.H. Jordan, and R.K. Mcmullan, Clathrate Hydrates of Some Amines. Science, 1967. 155(3763): p. 689-&. 9.Mehta, A.P. and E.D. Sloan, Structure H hydrates: The state-of-the-art. Gas Processors Association - Seventy-Fifth Annual Convention, Proceedings, 1996: p. 27-37. 10.Mooijer-van den Heuvel, M.M., R. Witteman, and C.J. Peters, Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilibria, 2001. 182(1): p. 97-110. 11.Nasrifar, K., et al., Measurements and modeling of bubble points in binary carbon dioxide systems with tetrahydropyran and methylcyclohexane. Fluid Phase Equilibria, 2003. 204(1): p. 1-14. 12.Ripmeester, J.A., C.I. Ratcliffe, and J.S. Tse, The Nuclear Magnetic-Resonance of Xe-129 Trapped in Clathrates and Some Other Solids. Journal of the Chemical Society-Faraday Transactions I, 1988. 84: p. 3731-3745. 13.Ripmeester, J.A., et al., A New Clathrate Hydrate Structure. Nature, 1987. 325(6100): p. 135-136. 14.Udachin, K.A., et al., Structure H hydrate: a single crystal diffraction study of 2,2-dimethylpentane center dot 5(Xe,H2S)center dot 34H(2)O. Supramolecular Chemistry, 1997. 8(3): p. 173-176. 15.Claussen, W.F., A Second Water Structure for Inert Gas Hydrates. The Journal of Chemical Physics, 1951. 19(11): p. 1425-1426. 16.Jeffrey, G.A., T. Jordan, and R.K. Mcmullan, Some New Structures of Organic Polyhedral Clathrate Hydrates. Acta Crystallographica, 1966. S 21: p. A118-&. 17.Chou, I.M., et al., Transformations in methane hydrates. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(25): p. 13484-13487. 18.Chatti, I., et al., Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management, 2005. 46(9-10): p. 1333-1343. 19.Chapman, P.K. and W.E. Haynes, Power from space and the hydrogen economy. Acta Astronautica, 2005. 57(2-8): p. 372-383. 20.Pooladi-Darvish, M., Gas production from hydrate reservoirs and its modeling. Journal of Petroleum Technology, 2004. 56(6): p. 65-71. 21.Koh, C.A., A.K. Sum, and E.D. Sloan, Gas hydrates: Unlocking the energy from icy cages. Journal of Applied Physics, 2009. 106(6). 22.Englezos, P. and J.D. Lee, Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. Korean Journal of Chemical Engineering, 2005. 22(5): p. 671-681. 23.Komai, T. and Y. Yamamoto, Equilibrium properties and kinetics of methane and carbon dioxide gas hydrate formation/dissociation. Abstracts of Papers of the American Chemical Society, 1997. 213: p. 90-Fuel. 24.Mao, W.L. and H.K. Mao, Hydrogen storage in molecular compounds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(3): p. 708-710. 25.Mao, W.L., et al., Hydrogen clusters in clathrate hydrate. Science, 2002. 297(5590): p. 2247-2249. 26.Patchkovskii, S. and J.S. Tse, Thermodynamic stability of hydrogen clathrates. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(25): p. 14645-14650. 27.Yamamoto, Y., T. Komai, and A. Wakisaka, Study on formation/dissociation mechanism of gas-hydrate and recovery of pure hydrate crystal using high pressure crystallization technique. Abstracts of Papers of the American Chemical Society, 1997. 213: p. 91-Fuel. 28.Khokhar, A.A., E.D. Sloan, and J.S. Gudmundsson, Natural gas storage properties of structure H hydrate. Gas Hydrates: Challenges for the Future, 2000. 912: p. 950-957. 29.Okuchi, T., et al., Fast molecular transport in hydrogen hydrates by high-pressure diamond anvil cell NMR. Physical Review B, 2007. 75(14). 30.Thomas, S. and R.A. Dawe, Review of ways to transport natural gas energy from countries which do not need the gas for domestic use. Energy, 2003. 28(14): p. 1461-1477. 31.Jamaluddin, A.K.M., N. Kalogerakis, and P.R. Bishnoi, Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions. Journal of Petroleum Science and Engineering, 1991. 5(4): p. 323-335. 32.Wu, M., S. Wang, and H. Liu, A study on inhibitors for the prevention of hydrate formation in gas transmission pipeline. Journal of Natural Gas Chemistry, 2007. 16(1): p. 81-85. 33.Barchas, R. and R. Davis, The Kerr-Mcgee Abb Lummus Crest Technology for the Recovery of Co2 from Stack Gases. Energy Conversion and Management, 1992. 33(5-8): p. 333-340. 34.Klara, S.M. and R.D. Srivastava, US DOE integrated collaborative technology development program for CO2 separation and capture. Environmental Progress, 2002. 21(4): p. 247-253. 35.Nebbia, G. and G.N. Menozzi, Early Experiments on Water Desalination by Freezing. Desalination, 1968. 5(1): p. 49-&. 36.Gudmundsson, J.S., et al., Laboratory for continuous production of natural gas hydrates. Gas Hydrates: Challenges for the Future, 2000. 912: p. 851-858. 37.Karaaslan, U. and M. Parlaktuna, Promotion effect of polymers and surfactants on hydrate formation rate. Energy & Fuels, 2002. 16(6): p. 1413-1416. 38.Gayet, P., et al., Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chemical Engineering Science, 2005. 60(21): p. 5751-5758. 39.Ning, Z.F., et al., Experimental and Modeling study of kinetics for methane hydrate formation with tetrahydrofuran as promoter. Petroleum Science, 2007. 4(1): p. 61-65. 40.Giavarini, C., F. Maccioni, and M.L. Santarelli, Dissociation Rate of THF-methane Hydrates. Petroleum Science and Technology, 2008. 26(18): p. 2147-2158. 41.Wang, X.L., et al., The Dependence of the Dissociation Rate of Methane-SDS Hydrate below Ice Point on Its Manners of Forming and Processing. Chinese Journal of Chemical Engineering, 2009. 17(1): p. 128-135. 42.Koga, K., H. Tanaka, and K. Nakanishi, On the Stability of Clathrate Hydrates Encaging Polar Guest Molecules - Contrast in the Hydrogen-Bonds of Methylamine and Methanol Hydrates. Molecular Simulation, 1994. 12(3-6): p. 241-&. 43.Kvamme, B., G. Huseby, and O.K. Forrisdahl, Molecular dynamics simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems. Molecular Physics, 1997. 90(6): p. 979-991. 44.Larsen, R., C.A. Knight, and E.D. Sloan, Clathrate hydrate growth and inhibition. Fluid Phase Equilibria, 1998. 150: p. 353-360. 45.Freer, E.M. and E.D. Sloan, An engineering approach to kinetic inhibitor design using molecular dynamics simulations. Gas Hydrates: Challenges for the Future, 2000. 912: p. 651-657. 46.Koh, C.A., et al., Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 2002. 194: p. 143-151. 47.Jager, M.D., et al., Experimental determination and modeling of structure II hydrates in mixtures of methane plus water plus 1,4-dioxane. Fluid Phase Equilibria, 1999. 165(2): p. 209-223. 48.Ko, W.Y., et al., Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 1,3,5-Trioxane and Oxolan-2-ylmethanol. Journal of Chemical and Engineering Data, 2011. 56(8): p. 3406-3410. 49.Kuo, P.C., et al., Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 2-Methyl-2-propanol. Journal of Chemical and Engineering Data, 2010. 55(11): p. 5036-5039. 50.Ohmura, R., et al., Clathrate hydrate formation in (methane plus water plus methylcyclohexanone) systems: the first phase equilibrium data. Journal of Chemical Thermodynamics, 2003. 35(12): p. 2045-2054. 51.Seo, Y.T., S.P. Kang, and H. Lee, Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1,4-dioxane and acetone. Fluid Phase Equilibria, 2001. 189(1-2): p. 99-110. 52.Iwasaki, K. and T. Fujiyama, Light-Scattering Study of Clathrate Hydrate Formation in Binary-Mixtures of Tert-Butyl Alcohol and Water. Journal of Physical Chemistry, 1977. 81(20): p. 1908-1912. 53.Iwasaki, K. and T. Fujiyama, Light-Scattering Study of Clathrate Hydrate Formation in Binary-Mixtures of Tert-Butyl Alcohol and Water .2. Temperature Effect. Journal of Physical Chemistry, 1979. 83(4): p. 463-468. 54.Nishikawa, K. and T. Iijima, Structural Study of Tert-Butyl Alcohol and Water Mixtures by X-Ray-Diffraction. Journal of Physical Chemistry, 1990. 94(16): p. 6227-6231. 55.Park, Y., et al., Spectroscopic observation of critical guest concentration appearing in tert-butyl alcohol clathrate hydrate. Journal of Physical Chemistry B, 2008. 112(29): p. 8443-8446. 56.Wang, B., et al., CO(2) bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 2008. 79(5): p. 707-718. 57.Swope, W.C., et al., A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. Journal of Chemical Physics, 1982. 76(1): p. 637-649. 58.Verlet, L. and D. Levesque, On Theory of Classical Fluids 6. Physica, 1967. 36(2): p. 254-&. 59.Ewald, P.P., The calculation of optical and electrostatic grid potential. Annalen Der Physik, 1921. 64(3): p. 253-287. 60.Toukmaji, A.Y. and J.A. Board Jr, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92. 61.Kittel, C.H.K., Thermal Physics, 2nd 1980, San Francisco: W.H. Freeman and Company. P 31. 62.Landau, L.D.L., E.M., Statistical Physics. Pergamon Press.1980. 63.Nose, S., A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. Journal of Chemical Physics, 1984. 81(1): p. 511-519. 64.Hoover, W.G., Canonical Dynamics - Equilibrium Phase-Space Distributions. Physical Review A, 1985. 31(3): p. 1695-1697. 65.Tung, Y.T., et al., The Growth of Structure I Methane Hydrate from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010. 114(33): p. 10804-10813. 66.Horn, H.W., et al., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. Journal of Chemical Physics, 2004. 120(20): p. 9665-9678. 67.Damm, W., et al., OPLS all-atom force field for carbohydrates. Journal of Computational Chemistry, 1997. 18(16): p. 1955-1970. 68.Jorgensen, W.L., D.S. Maxwell, and J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996. 118(45): p. 11225-11236. 69.McDonald, N.A. and W.L. Jorgensen, Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. Journal of Physical Chemistry B, 1998. 102(41): p. 8049-8059. 70.Rizzo, R.C. and W.L. Jorgensen, OPLS all-atom model for amines: Resolution of the amine hydration problem. Journal of the American Chemical Society, 1999. 121(20): p. 4827-4836. 71.Krautler, V., W.F. Van Gunsteren, and P.H. Hunenberger, A fast SHAKE: Algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 2001. 22(5): p. 501-508. 72.Eastwood, J.W., Optimal Particle-Mesh Algorithms. Journal of Computational Physics, 1975. 18(1): p. 1-20. 73.Eastwood, J.W. and R.W. Hockney, Shaping Force Law in 2-Dimensional Particle-Mesh Models. Journal of Comparative Physiology, 1974. 16(4): p. 342-359. 74.Eastwood, J.W., R.W. Hockney, and D.N. Lawrence, P3m3dp - the 3-Dimensional Periodic Particle-Particle-Particle-Mesh Program. Computer Physics Communications, 1980. 19(2): p. 215-261. 75.Hockney, R.W., S.P. Goel, and J.W. Eastwood, 10000 Particle Molecular Dynamics Model with Long-Range Forces. Chemical Physics Letters, 1973. 21(3): p. 589-591. 76.Cao, Z.T., et al., Molecular computations using robust hydrocarbon-water potentials for predicting gas hydrate phase equilibria. Journal of Physical Chemistry B, 2001. 105(44): p. 10950-10960. 77.Cao, Z.T., J.W. Tester, and B.L. Trout, Computation of the methane-water potential energy hypersurface via ab initio methods. Journal of Chemical Physics, 2001. 115(6): p. 2550-2559. 78.Alavi, S., J.A. Ripmeester, and D.D. Klug, Molecular dynamics study of the stability of methane structure H clathrate hydrates. Journal of Chemical Physics, 2007. 126(12). 79.Hawtin, R.W., D. Quigley, and P.M. Rodger, Gas hydrate nucleation and cage formation at a water/methane interface. Physical Chemistry Chemical Physics, 2008. 10(32): p. 4853-4864. 80.Susilo, R., et al., Tuning methane content in gas hydrates via thermodynamic modeling and molecular dynamics simulation. Fluid Phase Equilibria, 2008. 263(1): p. 6-17. 81.Walsh, M.R., et al., Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth. Science, 2009. 326(5956): p. 1095-1098. 82.Anderson, B.J., et al., Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. Journal of the American Chemical Society, 2005. 127(50): p. 17852-17862. 83.Jacobson, L.C., W. Hujo, and V. Molinero, Amorphous Precursors in the Nucleation of Clathrate Hydrates. Journal of the American Chemical Society, 2010. 132(33): p. 11806-11811. 84.Ripmeester, J.A. and S. Alavi, Molecular Simulations of Methane Hydrate Nucleation. Chemphyschem, 2010. 11(5): p. 978-980. 85.Luzar, A. and D. Chandler, STRUCTURE AND HYDROGEN-BOND DYNAMICS OF WATER-DIMETHYL SULFOXIDE MIXTURES BY COMPUTER-SIMULATIONS. Journal of Chemical Physics, 1993. 98(10): p. 8160-8173. 86.Dillenburg, J.F. and P.C. Nelson, Improving the Efficiency of Depth-1st Search by Cycle Elimination. Information Processing Letters, 1993. 45(1): p. 5-10. 87.Korf, R.E., DEPTH-1ST ITERATIVE-DEEPENING - AN OPTIMAL ADMISSIBLE TREE-SEARCH. Artificial Intelligence, 1985. 27(1): p. 97-109. 88.Tarjan, R. Depth-first search and linear graph algorithms. in Switching and Automata Theory, 1971., 12th Annual Symposium on. 1971. 89.Jacobson, N., STRUCTURE THEORY OF SIMPLE RINGS WITHOUT FINITENESS ASSUMPTIONS. Transactions of the American Mathematical Society, 1945. 57(MAR): p. 228-245. 90.Fernandez, R.G., J.L.F. Abascal, and C. Vega, The melting point of ice I-h for common water models calculated from direct coexistence of the solid-liquid interface. Journal of Chemical Physics, 2006. 124(14). 91.Gmehling, J., et al., Vapor-Liquid Equilibrium Data Collection. Vol. I, Part 1b. 1988: DECHEMA. 92.Adisasmito, S., R.J. Frank, and E.D. Sloan, Hydrates of Carbon-Dioxide and Methane Mixtures. Journal of Chemical and Engineering Data, 1991. 36(1): p. 68-71. 93.Deroo, J.L., et al., Occurrence of Methane Hydrate in Saturated and Unsaturated Solutions of Sodium-Chloride and Water in Dependence of Temperature and Pressure. Aiche Journal, 1983. 29(4): p. 651-657. 94.Galloway, T.J., et al., Experimental Measurement of Hydrate Numbers for Methane and Ethane and Comparison with Theoretical Values. Industrial & Engineering Chemistry Fundamentals, 1970. 9(2): p. 237-&. 95.Jager, M.D., C.J. Peters, and E.D. Sloan, Experimental determination of methane hydrate stability in methanol and electrolyte solutions. Fluid Phase Equilibria, 2002. 193(1-2): p. 17-28. 96.Nakamura, T., et al., Stability boundaries of gas hydrates helped by methane-structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chemical Engineering Science, 2003. 58(2): p. 269-273. 97.Wooldridge, P.J., H.H. Richardson, and J.P. Devlin, MOBILE BJERRUM DEFECTS - A CRITERION FOR ICE-LIKE CRYSTAL-GROWTH. Journal of Chemical Physics, 1987. 87(7): p. 4126-4131. 98.Vatamanu, J. and P.G. Kusalik, Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face. Journal of Physical Chemistry B, 2008. 112(8): p. 2399-2404.
|