跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡佩紋
研究生(外文):Pei-Wen Tsai
論文名稱:利用分子模擬探討異丁醇對氣體水合物生長機制之影響
論文名稱(外文):The Effect of tert-Butanol on the Growth Mechanism of Gas Hydrates via Molecular Dynamics Simulations
指導教授:林祥泰
指導教授(外文):Shiang-Tai Lin
口試委員:陳立仁郭哲來董彥佃
口試委員(外文):Li-Jen ChenJer-Lai KuoYen-Tien, Tung
口試日期:2012-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:90
中文關鍵詞:氣體水合物熱力學促進劑動力學抑制劑第三丁醇
外文關鍵詞:gas hydratethermodynamic promoterkinetic inhibitortert-butanol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
搭配適當的促進劑,擴大氣體水合物穩定存在的區域,氣體水合物將有機會取代高成本、高風險的氣體加壓方法,作為貯存與運輸天然氣的替代方案。本研究利用分子動態模擬研究實驗上已知的熱力學促進劑:第三丁醇對甲烷水合物生長機制的影響。經力場的調整,本研究可模擬出與實驗結果相符合的三相平衡圖,利用此分子模擬參數,搭配氣(甲烷)-液(水與第三丁醇)-固(氣體水合物晶相)三相系統,進一步觀察水分子與第三丁醇分子間的互動。本研究模擬加入第三丁醇前後甲烷水合物的生長情形,發現水合物籠狀結構的形成可分為兩個步驟:首先疏水的客體分子(甲烷或第三丁醇)受破碎的水合物籠狀結構吸引進入其結構中心,接著,客體分子的存在將有效穩定該孔隙,促使周圍水分子排列成完整的籠狀結構。由於兩種常見的氣體水合物結構(結構一型sI,結構二型sII)在幾合上有許多相似的排列方式,第三丁醇有很高的機會吸附在空間較小的結構一型的大籠子(51262)的位置,阻礙了甲烷水合物的生長,因此雖然第三丁醇在熱力學上是甲烷水合物的促進劑,在動力學方面卻是甲烷水合物的抑制劑。

Conventional approach for transport and storage of natural gas by pressurization is energy costly and also potentially risky. Gas hydrates are an alternative form of handling natural gas at lowered pressures. The addition of a suitable promoter can further stabilize the hydrate structure and shift the hydrate formation condition to an even lower pressure. It has been reported that tert-butaonol (TBA) is a thermodynamic promoter of methane hydrates. In this work we use molecular dynamics simulations to elucidate how tert-Butanol effects the growth of gas hydrate, and compare the similarity and difference between the growth of gas hydrates with and without tert-Butanol. Three-phase models comprising liquid, gas and solid hydrate phases are used. Both thermodynamic and kinetic properties are studied, it is found that a tert-Butanol molecule can stabilize the large cage in structure II (sII) hydrate (51264), while its size is too large to be enclosed by a large cage in structure I (sI) hydrate (51262). The encapsulation of TBA in to the large cage of sII hydrate is found to be a two-step process: first, a TBA molecule is adsorbed into an incomplete-cage; second, the TBA stabilizes the cage and attracts surrounding water molecules to form an entire cage. The similar geometry of sI and sII often leads to adsorption of tert-Butanol to the incorrect position at the hydrate-liquid interface, which hinders the growth of hydrate. As a consequence, while TBA is a thermodynamic promoter, it is a kinetic inhibitor.

摘要 iii
Abstract iv
Outline v
Figures vii
Tables xiii
Chapter 1. Introduction 1
1.1 Clathrate Hydrates 1
1.2 Structures of Clathrate hydrate 2
1.3 Application of Clathrate hydrate 6
1.4 Additives - Promoters & Inhibitors 7
1.5 Computational Molecular Simulation 10
1.6 Motivation 10
Chapter 2. Theory 12
2.1 Molecular Dynamics Simulations 12
2.2 Integration of Equation of Motion 13
2.3 Force Field 14
2.3.1 Non-Bond Terms 15
2.3.2 Valence Terms 18
2.4 System Controls 19
2.4.1 Temperature Thermostat 20
2.4.2 Pressure Barostat 21
Chapter 3. Computational Details 22
3.1 Simulation Models & Settings 22
3.1.1 Pure Methane Hydrate 23
3.1.2 Methane Hydrate with TBA 25
3.1.3 Force Field 27
3.2 Angular Order Parameter 29
3.3 Hydrogen Bond Identification 30
3.4 Definition of “Right Position” in sII gas Hydrates 31
3.5 Determination of Cage Types 36
Chapter 4. Results & Discussion 38
4.1 Thermodynamic Properties 38
4.1.1 Melting Point 38
4.1.2 Stability of Clathrate hydrates 44
4.2 Kinetic Properties 46
4.2.1 Growth Rate 46
4.2.2 Interactions between Water Molecules and tert-Butanol Molecules 51
4.2.3 Occupancy 61
4.2.4 Growth Mechanism 62
Chapter 5. Conclusions 77
References 79
Appendix Cycle Detection 87


1.Sloan, E.D., Clathrate Hydrate of Natural Gases: Revised and Expanded. 1998.
2.Komai, T., et al., In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point. Journal of Physical Chemistry B, 2004. 108(23): p. 8062-8068.
3.Kvenvolden, K.A., Potential effects of gas hydrate on human welfare. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(7): p. 3420-3426.
4.Kvenvolden, K.A., Gas hydrate and humans. Gas Hydrates: Challenges for the Future, 2000. 912: p. 17-22.
5.Davidson, D.W., Water: A Comprehensive Treatise, ed. F. Franks. Vol. 2. 1973, New York: Plenum.
6.Davidson, D.W., et al., Some Physical and Thermo-Physical Properties of Clathrate Hydrates. Journal of Inclusion Phenomena, 1987. 5(2): p. 219-223.
7.Jeffrey, G.A., Hydrate inclusion compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1984. 1(3): p. 211-222.
8.Jeffrey, G.A., T.H. Jordan, and R.K. Mcmullan, Clathrate Hydrates of Some Amines. Science, 1967. 155(3763): p. 689-&.
9.Mehta, A.P. and E.D. Sloan, Structure H hydrates: The state-of-the-art. Gas Processors Association - Seventy-Fifth Annual Convention, Proceedings, 1996: p. 27-37.
10.Mooijer-van den Heuvel, M.M., R. Witteman, and C.J. Peters, Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilibria, 2001. 182(1): p. 97-110.
11.Nasrifar, K., et al., Measurements and modeling of bubble points in binary carbon dioxide systems with tetrahydropyran and methylcyclohexane. Fluid Phase Equilibria, 2003. 204(1): p. 1-14.
12.Ripmeester, J.A., C.I. Ratcliffe, and J.S. Tse, The Nuclear Magnetic-Resonance of Xe-129 Trapped in Clathrates and Some Other Solids. Journal of the Chemical Society-Faraday Transactions I, 1988. 84: p. 3731-3745.
13.Ripmeester, J.A., et al., A New Clathrate Hydrate Structure. Nature, 1987. 325(6100): p. 135-136.
14.Udachin, K.A., et al., Structure H hydrate: a single crystal diffraction study of 2,2-dimethylpentane center dot 5(Xe,H2S)center dot 34H(2)O. Supramolecular Chemistry, 1997. 8(3): p. 173-176.
15.Claussen, W.F., A Second Water Structure for Inert Gas Hydrates. The Journal of Chemical Physics, 1951. 19(11): p. 1425-1426.
16.Jeffrey, G.A., T. Jordan, and R.K. Mcmullan, Some New Structures of Organic Polyhedral Clathrate Hydrates. Acta Crystallographica, 1966. S 21: p. A118-&.
17.Chou, I.M., et al., Transformations in methane hydrates. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(25): p. 13484-13487.
18.Chatti, I., et al., Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Conversion and Management, 2005. 46(9-10): p. 1333-1343.
19.Chapman, P.K. and W.E. Haynes, Power from space and the hydrogen economy. Acta Astronautica, 2005. 57(2-8): p. 372-383.
20.Pooladi-Darvish, M., Gas production from hydrate reservoirs and its modeling. Journal of Petroleum Technology, 2004. 56(6): p. 65-71.
21.Koh, C.A., A.K. Sum, and E.D. Sloan, Gas hydrates: Unlocking the energy from icy cages. Journal of Applied Physics, 2009. 106(6).
22.Englezos, P. and J.D. Lee, Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. Korean Journal of Chemical Engineering, 2005. 22(5): p. 671-681.
23.Komai, T. and Y. Yamamoto, Equilibrium properties and kinetics of methane and carbon dioxide gas hydrate formation/dissociation. Abstracts of Papers of the American Chemical Society, 1997. 213: p. 90-Fuel.
24.Mao, W.L. and H.K. Mao, Hydrogen storage in molecular compounds. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(3): p. 708-710.
25.Mao, W.L., et al., Hydrogen clusters in clathrate hydrate. Science, 2002. 297(5590): p. 2247-2249.
26.Patchkovskii, S. and J.S. Tse, Thermodynamic stability of hydrogen clathrates. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(25): p. 14645-14650.
27.Yamamoto, Y., T. Komai, and A. Wakisaka, Study on formation/dissociation mechanism of gas-hydrate and recovery of pure hydrate crystal using high pressure crystallization technique. Abstracts of Papers of the American Chemical Society, 1997. 213: p. 91-Fuel.
28.Khokhar, A.A., E.D. Sloan, and J.S. Gudmundsson, Natural gas storage properties of structure H hydrate. Gas Hydrates: Challenges for the Future, 2000. 912: p. 950-957.
29.Okuchi, T., et al., Fast molecular transport in hydrogen hydrates by high-pressure diamond anvil cell NMR. Physical Review B, 2007. 75(14).
30.Thomas, S. and R.A. Dawe, Review of ways to transport natural gas energy from countries which do not need the gas for domestic use. Energy, 2003. 28(14): p. 1461-1477.
31.Jamaluddin, A.K.M., N. Kalogerakis, and P.R. Bishnoi, Hydrate plugging problems in undersea natural gas pipelines under shutdown conditions. Journal of Petroleum Science and Engineering, 1991. 5(4): p. 323-335.
32.Wu, M., S. Wang, and H. Liu, A study on inhibitors for the prevention of hydrate formation in gas transmission pipeline. Journal of Natural Gas Chemistry, 2007. 16(1): p. 81-85.
33.Barchas, R. and R. Davis, The Kerr-Mcgee Abb Lummus Crest Technology for the Recovery of Co2 from Stack Gases. Energy Conversion and Management, 1992. 33(5-8): p. 333-340.
34.Klara, S.M. and R.D. Srivastava, US DOE integrated collaborative technology development program for CO2 separation and capture. Environmental Progress, 2002. 21(4): p. 247-253.
35.Nebbia, G. and G.N. Menozzi, Early Experiments on Water Desalination by Freezing. Desalination, 1968. 5(1): p. 49-&.
36.Gudmundsson, J.S., et al., Laboratory for continuous production of natural gas hydrates. Gas Hydrates: Challenges for the Future, 2000. 912: p. 851-858.
37.Karaaslan, U. and M. Parlaktuna, Promotion effect of polymers and surfactants on hydrate formation rate. Energy & Fuels, 2002. 16(6): p. 1413-1416.
38.Gayet, P., et al., Experimental determination of methane hydrate dissociation curve up to 55 MPa by using a small amount of surfactant as hydrate promoter. Chemical Engineering Science, 2005. 60(21): p. 5751-5758.
39.Ning, Z.F., et al., Experimental and Modeling study of kinetics for methane hydrate formation with tetrahydrofuran as promoter. Petroleum Science, 2007. 4(1): p. 61-65.
40.Giavarini, C., F. Maccioni, and M.L. Santarelli, Dissociation Rate of THF-methane Hydrates. Petroleum Science and Technology, 2008. 26(18): p. 2147-2158.
41.Wang, X.L., et al., The Dependence of the Dissociation Rate of Methane-SDS Hydrate below Ice Point on Its Manners of Forming and Processing. Chinese Journal of Chemical Engineering, 2009. 17(1): p. 128-135.
42.Koga, K., H. Tanaka, and K. Nakanishi, On the Stability of Clathrate Hydrates Encaging Polar Guest Molecules - Contrast in the Hydrogen-Bonds of Methylamine and Methanol Hydrates. Molecular Simulation, 1994. 12(3-6): p. 241-&.
43.Kvamme, B., G. Huseby, and O.K. Forrisdahl, Molecular dynamics simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems. Molecular Physics, 1997. 90(6): p. 979-991.
44.Larsen, R., C.A. Knight, and E.D. Sloan, Clathrate hydrate growth and inhibition. Fluid Phase Equilibria, 1998. 150: p. 353-360.
45.Freer, E.M. and E.D. Sloan, An engineering approach to kinetic inhibitor design using molecular dynamics simulations. Gas Hydrates: Challenges for the Future, 2000. 912: p. 651-657.
46.Koh, C.A., et al., Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 2002. 194: p. 143-151.
47.Jager, M.D., et al., Experimental determination and modeling of structure II hydrates in mixtures of methane plus water plus 1,4-dioxane. Fluid Phase Equilibria, 1999. 165(2): p. 209-223.
48.Ko, W.Y., et al., Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 1,3,5-Trioxane and Oxolan-2-ylmethanol. Journal of Chemical and Engineering Data, 2011. 56(8): p. 3406-3410.
49.Kuo, P.C., et al., Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 2-Methyl-2-propanol. Journal of Chemical and Engineering Data, 2010. 55(11): p. 5036-5039.
50.Ohmura, R., et al., Clathrate hydrate formation in (methane plus water plus methylcyclohexanone) systems: the first phase equilibrium data. Journal of Chemical Thermodynamics, 2003. 35(12): p. 2045-2054.
51.Seo, Y.T., S.P. Kang, and H. Lee, Experimental determination and thermodynamic modeling of methane and nitrogen hydrates in the presence of THF, propylene oxide, 1,4-dioxane and acetone. Fluid Phase Equilibria, 2001. 189(1-2): p. 99-110.
52.Iwasaki, K. and T. Fujiyama, Light-Scattering Study of Clathrate Hydrate Formation in Binary-Mixtures of Tert-Butyl Alcohol and Water. Journal of Physical Chemistry, 1977. 81(20): p. 1908-1912.
53.Iwasaki, K. and T. Fujiyama, Light-Scattering Study of Clathrate Hydrate Formation in Binary-Mixtures of Tert-Butyl Alcohol and Water .2. Temperature Effect. Journal of Physical Chemistry, 1979. 83(4): p. 463-468.
54.Nishikawa, K. and T. Iijima, Structural Study of Tert-Butyl Alcohol and Water Mixtures by X-Ray-Diffraction. Journal of Physical Chemistry, 1990. 94(16): p. 6227-6231.
55.Park, Y., et al., Spectroscopic observation of critical guest concentration appearing in tert-butyl alcohol clathrate hydrate. Journal of Physical Chemistry B, 2008. 112(29): p. 8443-8446.
56.Wang, B., et al., CO(2) bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 2008. 79(5): p. 707-718.
57.Swope, W.C., et al., A Computer-Simulation Method for the Calculation of Equilibrium-Constants for the Formation of Physical Clusters of Molecules - Application to Small Water Clusters. Journal of Chemical Physics, 1982. 76(1): p. 637-649.
58.Verlet, L. and D. Levesque, On Theory of Classical Fluids 6. Physica, 1967. 36(2): p. 254-&.
59.Ewald, P.P., The calculation of optical and electrostatic grid potential. Annalen Der Physik, 1921. 64(3): p. 253-287.
60.Toukmaji, A.Y. and J.A. Board Jr, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92.
61.Kittel, C.H.K., Thermal Physics, 2nd 1980, San Francisco: W.H. Freeman and Company. P 31.
62.Landau, L.D.L., E.M., Statistical Physics. Pergamon Press.1980.
63.Nose, S., A Unified Formulation of the Constant Temperature Molecular-Dynamics Methods. Journal of Chemical Physics, 1984. 81(1): p. 511-519.
64.Hoover, W.G., Canonical Dynamics - Equilibrium Phase-Space Distributions. Physical Review A, 1985. 31(3): p. 1695-1697.
65.Tung, Y.T., et al., The Growth of Structure I Methane Hydrate from Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010. 114(33): p. 10804-10813.
66.Horn, H.W., et al., Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. Journal of Chemical Physics, 2004. 120(20): p. 9665-9678.
67.Damm, W., et al., OPLS all-atom force field for carbohydrates. Journal of Computational Chemistry, 1997. 18(16): p. 1955-1970.
68.Jorgensen, W.L., D.S. Maxwell, and J. TiradoRives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996. 118(45): p. 11225-11236.
69.McDonald, N.A. and W.L. Jorgensen, Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. Journal of Physical Chemistry B, 1998. 102(41): p. 8049-8059.
70.Rizzo, R.C. and W.L. Jorgensen, OPLS all-atom model for amines: Resolution of the amine hydration problem. Journal of the American Chemical Society, 1999. 121(20): p. 4827-4836.
71.Krautler, V., W.F. Van Gunsteren, and P.H. Hunenberger, A fast SHAKE: Algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 2001. 22(5): p. 501-508.
72.Eastwood, J.W., Optimal Particle-Mesh Algorithms. Journal of Computational Physics, 1975. 18(1): p. 1-20.
73.Eastwood, J.W. and R.W. Hockney, Shaping Force Law in 2-Dimensional Particle-Mesh Models. Journal of Comparative Physiology, 1974. 16(4): p. 342-359.
74.Eastwood, J.W., R.W. Hockney, and D.N. Lawrence, P3m3dp - the 3-Dimensional Periodic Particle-Particle-Particle-Mesh Program. Computer Physics Communications, 1980. 19(2): p. 215-261.
75.Hockney, R.W., S.P. Goel, and J.W. Eastwood, 10000 Particle Molecular Dynamics Model with Long-Range Forces. Chemical Physics Letters, 1973. 21(3): p. 589-591.
76.Cao, Z.T., et al., Molecular computations using robust hydrocarbon-water potentials for predicting gas hydrate phase equilibria. Journal of Physical Chemistry B, 2001. 105(44): p. 10950-10960.
77.Cao, Z.T., J.W. Tester, and B.L. Trout, Computation of the methane-water potential energy hypersurface via ab initio methods. Journal of Chemical Physics, 2001. 115(6): p. 2550-2559.
78.Alavi, S., J.A. Ripmeester, and D.D. Klug, Molecular dynamics study of the stability of methane structure H clathrate hydrates. Journal of Chemical Physics, 2007. 126(12).
79.Hawtin, R.W., D. Quigley, and P.M. Rodger, Gas hydrate nucleation and cage formation at a water/methane interface. Physical Chemistry Chemical Physics, 2008. 10(32): p. 4853-4864.
80.Susilo, R., et al., Tuning methane content in gas hydrates via thermodynamic modeling and molecular dynamics simulation. Fluid Phase Equilibria, 2008. 263(1): p. 6-17.
81.Walsh, M.R., et al., Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth. Science, 2009. 326(5956): p. 1095-1098.
82.Anderson, B.J., et al., Properties of inhibitors of methane hydrate formation via molecular dynamics simulations. Journal of the American Chemical Society, 2005. 127(50): p. 17852-17862.
83.Jacobson, L.C., W. Hujo, and V. Molinero, Amorphous Precursors in the Nucleation of Clathrate Hydrates. Journal of the American Chemical Society, 2010. 132(33): p. 11806-11811.
84.Ripmeester, J.A. and S. Alavi, Molecular Simulations of Methane Hydrate Nucleation. Chemphyschem, 2010. 11(5): p. 978-980.
85.Luzar, A. and D. Chandler, STRUCTURE AND HYDROGEN-BOND DYNAMICS OF WATER-DIMETHYL SULFOXIDE MIXTURES BY COMPUTER-SIMULATIONS. Journal of Chemical Physics, 1993. 98(10): p. 8160-8173.
86.Dillenburg, J.F. and P.C. Nelson, Improving the Efficiency of Depth-1st Search by Cycle Elimination. Information Processing Letters, 1993. 45(1): p. 5-10.
87.Korf, R.E., DEPTH-1ST ITERATIVE-DEEPENING - AN OPTIMAL ADMISSIBLE TREE-SEARCH. Artificial Intelligence, 1985. 27(1): p. 97-109.
88.Tarjan, R. Depth-first search and linear graph algorithms. in Switching and Automata Theory, 1971., 12th Annual Symposium on. 1971.
89.Jacobson, N., STRUCTURE THEORY OF SIMPLE RINGS WITHOUT FINITENESS ASSUMPTIONS. Transactions of the American Mathematical Society, 1945. 57(MAR): p. 228-245.
90.Fernandez, R.G., J.L.F. Abascal, and C. Vega, The melting point of ice I-h for common water models calculated from direct coexistence of the solid-liquid interface. Journal of Chemical Physics, 2006. 124(14).
91.Gmehling, J., et al., Vapor-Liquid Equilibrium Data Collection. Vol. I, Part 1b. 1988: DECHEMA.
92.Adisasmito, S., R.J. Frank, and E.D. Sloan, Hydrates of Carbon-Dioxide and Methane Mixtures. Journal of Chemical and Engineering Data, 1991. 36(1): p. 68-71.
93.Deroo, J.L., et al., Occurrence of Methane Hydrate in Saturated and Unsaturated Solutions of Sodium-Chloride and Water in Dependence of Temperature and Pressure. Aiche Journal, 1983. 29(4): p. 651-657.
94.Galloway, T.J., et al., Experimental Measurement of Hydrate Numbers for Methane and Ethane and Comparison with Theoretical Values. Industrial & Engineering Chemistry Fundamentals, 1970. 9(2): p. 237-&.
95.Jager, M.D., C.J. Peters, and E.D. Sloan, Experimental determination of methane hydrate stability in methanol and electrolyte solutions. Fluid Phase Equilibria, 2002. 193(1-2): p. 17-28.
96.Nakamura, T., et al., Stability boundaries of gas hydrates helped by methane-structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chemical Engineering Science, 2003. 58(2): p. 269-273.
97.Wooldridge, P.J., H.H. Richardson, and J.P. Devlin, MOBILE BJERRUM DEFECTS - A CRITERION FOR ICE-LIKE CRYSTAL-GROWTH. Journal of Chemical Physics, 1987. 87(7): p. 4126-4131.
98.Vatamanu, J. and P.G. Kusalik, Heterogeneous crystal growth of methane hydrate on its sII [001] crystallographic face. Journal of Physical Chemistry B, 2008. 112(8): p. 2399-2404.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top