(3.238.96.184) 您好!臺灣時間:2021/05/08 22:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝長霖
研究生(外文):Chang-Lin Hsieh
論文名稱:新世代金屬分子導線的合成、結構與物理性質研究
論文名稱(外文):Design and Synthesis of A New Generation Metal Wires Supported by Anthyridine Ligands
指導教授:彭旭明彭旭明引用關係
指導教授(外文):Shie-Ming Peng
口試委員:劉緒宗王志傑葉鎮宇陳俊顯
口試日期:2013-07-24
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:151
中文關鍵詞:鈴木偶合反應楊-泰勒效應
外文關鍵詞:Suzuki couplingJahn-Teller effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的目標在於透過鈴木偶合反應 ( Suzuki coupling ) 開發出新型的蒽啶衍生物配基,並利用此三氮配基合成直線型三核金屬串與雙核錯合物。
dbay (1) (dibenzanthyridine) 配基可與金屬過氯酸根鹽類反應形成雙核錯合物,M2(dbay)4(ClO4)4 (M = Fe (2), Co (3), Ni (4), Cu (5), Zn (6))。 由X-ray 單晶結構解析,所有錯合物為四個配基架橋兩個金屬形成正四價之雙核錯合物。錯合物中每個配基其中兩個氮原子鉗合一個金屬而第三個氮原子與另一個金屬配位。結構解析也分析出這五個錯合物有著相同的空間群,並且在雙核銅的錯合物有明顯的楊-泰勒效應 ( Jahn-Teller effect )。Cu-Cu距離較短為2.907(1) Å,其餘雙核錯合物金屬-金屬間的距離為3.3 Å。在鐵、鈷、鎳和銅錯合物,金屬與金屬間作用力,為反鐵磁作用力, 在鎳與銅的錯合物中,其磁交換作用常數J值分別為 -148 與 -6 cm-1。 透過自旋極化、超交換交互作用及DFT理論計算等剖析其交互作用的機制,金屬配位的幾何形狀扭曲程度較明顯而削弱了軌域正相交的作用產生了軌域混合效應,反應出比較強的反鐵磁作用。由密度泛函B3LYP方法計算出的J值與實驗值相吻合。
另外,dbay配基可與無水NiCl2/NiBr2/CuCl 金屬起始物與四苯硼鈉反應生成新一代直線型金屬串錯合物 [Ni3(dbay)4Cl2]Cl/[Ni3(Hdbay)4Br]Br/ [Ni3(dbay)4NCS]Br/[Cu3(dbay)4Cl]I 此類直線型錯合物也由單晶結構解析鑑定確認。

Fused and aromatic molecules are among the most attractive candidates for materials in organic thin layer devices. A pentacene analogue was prepared in only two steps by the diiodination of 2,6-diaminopyridine followed by a double Suzuki coupling with 2-formylphenyl boronic acid and spontaneous cyclization and aromatization.
Dinuclear iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of 1, 13, 14-triaza-dibenz[a, j]anthracene (dibenzanthyridine = dbay, L), [M2L4](ClO4)4 (M = Fe, Co, Ni, Cu, Zn), were synthesized and their magnetic properties were studied. All complexes are dinuclear, tetracationic complexes bridged by four tridentate ligands. In a complex each L coordinates to two metal atoms with two nitrogen atoms chelating to one metal and the third nitrogen atom mono-coordinating to another metal. Crystal structure analysis indicated that the molecular structures of the five complexes are essentially the same despite various space groups and significant distortion from the Jahn-Teller effect of the copper complex. The Cu–Cu distance is 2.907(1) Å, and all other M–M distances are ca. 3.3 Å. Antiferromagnetic couplings were observed for the Fe, Co, Ni and Cu complexes. The exchange parameters were J = –148 and –6 cm–1 for Ni and Cu complexes, respectively. The mechanism was dissected by spin-polarization, superexchange coupling and DFT calculations. The seriously distorted coordination geometry of center atom might diminish the orbital orthogonality and result in orbital mixing, which leads to a strong antiferromagnetic coupling. The J value from the density functional B3LYP calculations is in good agreement with the experimentally determined value.
The tridentate ligand 1,13,14-triaza-dibenz[a,j]anthracene (dibenzanthyridine = dbay) reacts with anhydrous NiCl2/NiBr2/CuCl and sodium tetraphenylborate to form a novel trinuclear complex [Ni3(dbay)4Cl2]Cl/[Ni3(Hdbay)4Br]Br/[Ni3(Hdbay)4NCS]Br/[Cu3(dbay)4Cl]I with low valent state has been structurally characterized.

Chapter 1 Introduction  01
1.1 Oligo-α-pyridylamines as Supported Ligands of Metal Wire  01
1.2 Incoorporation of Naphthyridine Gives a New Page of EMACs  07
1.3 Single Molecular Conductance Measurements  09
1.4 Heteronuclear Metal String Complexes  10
1.5 Copper Clusters Supported by Polypyridylamido Ligands  11
1.6 Strategy to Synthesize the Anthyridine Ligand 15

Chapter 2 Experimental Section  19
2.1 Experimental Drugs   19
2.2 Instrument  20
2.3 Physical Measurements  20
2.4 Sample Preparation   22

Chapter 3 Dinuclear Complex of a Rigid Anthyridine Ligand 27
3.1 Introduction  27
3.2 Synthesis and Structure Results  28
3.3 Magnetic Properties  41
3.4 DFT Calculations  45

Chapter 4 Low-Valent Trinuclear Metal String Complexes 48
4.1 Structural Results   48
4.2 Magnetic Properties  60
4.3 Electrochemistry  65
4.4 Near-IR Spectra  67
4.5 Electronic Paramagnetic Resonance  70
4.6 Computational Study  72

Chapter 5 Conclusions  75

Reference  77

Appendix  80


1.(a) C.-Y. Yeh, C.-C. Wang, Y.-H. Chen, S.-M. Peng, in Redox Systems Under Nano-Space Control, ed. T. Hirao, Springer, Germany, 2006, ch. 5; (b) S.-M. Peng, C.-C. Wang, Y.-L. Jang, Y.-H. Chen, F.-Y. Li, C.-Y. Mou and M.-K. Leung, J. Magn. Magn. Mater., 2000, 209, 80–83; (c) S.-Y. Lin, I.-W. P. Chen, C.-H. Chen, M.-H. Hsieh, C.-Y. Yeh, T.-W. Lin, Y.-H. Chen and S.-M. Peng, J. Phys. Chem. B, 2004, 108, 959–964; (d) C.-H. Chien, J.-C. Chang, C.-Y. Yeh, G.-H. Lee, J.-M. Fang, Y. Song and S.-M. Peng, Dalton Trans., 2006, 3249; (e) W.-Z. Wang, R. H. Ismayilov, R.-R. Wang, Y.-L. Huang, C.-Y. Yeh, G.-H. Lee and S.-M. Peng, Dalton Trans., 2008, 6808–6816.
2.J. F. Berry, F. A. Cotton, L. M. Daniels, C. A. Murillo, X. P. Wang, Inorg. Chem. 2003, 42, 2418
3.M.-K. Leung, A. B. Mandal, C.-C. Wang, G.-H. Lee, S.-M. Peng, H.-L. Cheng, G.-R. Her, I. Chao,H.-F. Lu,Y.-C. Sun, M.-Y. Shiao, P.-T. Chou, J. Am. Chem. Soc. 2002, 124, 4287.
4.H. Hasanov, U.-K. Tan, R.-R. Wang, S.-M. Peng, Tetrahedron Letters 2004, 45, 7765
5.(a) M.-M. Rohmer, I. P.-C. Liu, J.-C. Lin, M.-J. Chiu, C.-H. Lee, G.-H. Lee, M. Bénard, X. López, S.-M. Peng, Angew. Chem. Int. Ed. 2007, 46, 3533. (b) G.-C. Huang, M. Bénard, M.-M. Rohmer, L.-A. Li, M.-J. Chiu, C.-Y. Yeh, G.-H. Lee, S.-M. Peng, Eur. J. Inorg. Chem. 2008, 1767. (c) M. Nippe, G. H. Timmer, J. F. Berry, Chem. Commun., 2009, 4357.
6.(a) C.-H. Chen, J.-C. Chang, C.-Y. Yeh, L.-M. Fang, Y. Song, S.-M. Peng, Dalton Trans. 2006, 3249. (b) C.-K. Kuo, I. P.-C. Liu, C.-Y. Yeh, C.-H. Chou, T.-B. Tsao, G.-H, G.-H. Lee, S.-M. Peng, Chem. Eur. J. 2007, 13, 1442. (c) R. H. Ismayilov, W.-Z. Wang, G.-H. Lee, C.-Y. Yeh, S.-A. Hua, Y. Song, M.-M. Rohmer, M. Benard, S.-M. Peng, Angew. Chem. Int. Ed. 2011, 50, 2045.
7.I. P.-C. Liu, M. Benard, H. Hasanov, I.-W. P. Chen, W.-H. Tseng, M.-D. Fu, M.-M. Rohmer, C.-h. Chen, G.-H. Lee, S.-M Peng, Chem-Eur. J., 2007, 13, 8667.
8.M.-D. Fu, I.-W. P. Chen, H.-C. Lu, C.-T, Kuo, W.-H. Tseng, C.-H. Chen, J. Phys. Chem. C. 2007, 111, 11450.
9.G. J. Pyrka, M. E. Mekki, A. A. Pinkerton, J. Chem. Soc., Chem. Commun. 1991, 84.
10.F. A. Cotton, X. Feng, D. J. Timmons, Inorg. Chem. 1998, 37, 4066.
11.Z.-K. Chan, Y.-Y Wu, J.-D. Chen, C.-Y. Yeh, C.-C. Wang, Y.-F. Tsai, J.-C. Wang, Dalton Trans., 2005, 985
12.J. Beck, J. Strahle, Angew. Chem. Int. Ed. Engl. 1985, 5, 409.
13.S. Djurdjevic, D. A. Leigh, H. McNab, S. Parsons, G. Teobaldi and F. Zerbetto, J. Am. Chem. Soc., 2007, 129, 476–477.
14.(a) R.-T. Liao, W.-C. Yang, P. Thanasekaran, C.-C. Tsai, Y.-H. Liu, T. Rajendran, H.-M. Lin, M. Sathiyendiran, T.-W. Tseng and K.-L. Lu, Chem. Commun., 2008, 3175–3177; (b) Q. Chen, J.-B. Lin, W. Xue, M.-H. Zeng and X.-M. Chen, Inorg. Chem., 2011, 50, 2321–2328.
15.(a) A. Noble, J. Olguín, R. Clérac and S. Brooker, Inorg. Chem., 2010, 49, 4560–4569; (b) P. Guionneau, C. Brigouleix, Y. Barrans,A. E. Goeta, J.-F. Létard, J. A. K. Howard, J. Gaultier and D. C.R. Chasseau, C. R. Acad. Sci., Paris Ser. IIc: Chim., 2001, 4,161–171; (c) F. A. Deeney, J. H. Charles, G. G. Morgan, V. McKee, J. Nelson, S. J. Teat and W. Clegg, J. Chem. Soc., Dalton Trans., 1998, 1837–1843.
16.O. Kahn, Molecular Magnetism, VCH, New York, 1993.
17.R. H. Ismayilov, W.-Z. Wang, G.-H. Lee, S.-M. Peng, Dalton Trans., 2006, 478–491.
18.(a) J. N. Niekerk and F. R. L. Schoening, Acta Crystallogr., 1953, 6, 227–232; (b) M. Kato, H. B. Jonassen and J. C. Fanning, Chem. Rev., 1964, 64, 99–128.
19.(a) H. Wayne, W. E. Hatfield, J. Am. Chem. Soc., 1976, 98, 835–839; (b) I. C. Bonner and M. E. Fisher, Phys. Rev., 1958, 112, 309–316; (c) D. Armentano, G. Munno, F. Guerra, J. Faus, F. Lloret and M. Julve, Dalton Trans., 2003, 4626–4634; (d) J. Carranza, C. Brennan, J. Sletten, J. M. Clemente-Juan, F. Lloret and M. Julve, Inorg. Chem., 2003, 42, 8716–8727.
20.(a) L. Gutiérrez, G. Alzuet, J. Borrás, A. Castińeiras, A. Rodríguez-Fortea and E. Ruiz, Inorg. Chem., 2001, 40, 3089–3096; (b) O. Das, N. Adarsh, A. Paul and T. K. Paine, Inorg. Chem., 2010, 49, 541–551.
21.P. J. Hay, J. C. Thibeault and R. J. Hoffmann, J. Am. Chem. Soc., 1975, 97, 4884–4889.
22.O. Kahn, Structure and Bonding, Berlin, 1987, vol. 68, p. 91.
23.S. Carboni, A. Da Settimo, I. Tonetti, Journal of Heterocyclic Chemistry, 1970, 7, 875
24.S. Aduldecha, B. Hathaway, J. Chem. Soc. Dalton. Ttrans, 1991, 993
25. J. L. Sadler and A. J. Bard, J. Am. Chem. Soc., 1968, 90, 1979
26. A. J. Bellamy, I. S. MacKirdy, C. E. Niven, J. Chem. Soc. Perkin Trans. II 1983, 183.
27. P.-H. Ho, M.-S. Tsai, G.-H. Lee, C.-M. Che and S.-M. Peng, J. Chin. Chem. Soc. 2013, 60, 813-822
28. N. S. Hush, Coord. Chem. Rev. 1985, 64, 135

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔