(3.235.191.87) 您好!臺灣時間:2021/05/13 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林佳正
研究生(外文):Jia-Jheng Lin
論文名稱:含α-胺基-吡啶雙牙配位基之烯丙基有機鈀錯合物之合成、異構及催化
論文名稱(外文):The Synthesis, Isomerization and Catalysis of Allylpalladium(II) Complexes with the α-Amino-Pyridine Ligands
指導教授:陳竹亭陳竹亭引用關係
指導教授(外文):Jwu-Ting Chen
口試委員:劉緒宗林英智許益瑞
口試委員(外文):Shiuh-Tzung LiuYing-Chih LinI-Jui Hsu
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:148
中文關鍵詞:胺基-吡烯丙基異構化流變行為氫化
外文關鍵詞:palladiumamino-pyridineallylisomerizationdynamic behaviorfluxional behaviorhydrogenation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:77
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究合成了一系列含α-胺基-吡啶雙牙配位基之烯丙基有機鈀錯合物 [Pd(η3-C3H4R3)(Pyridine-CHR1NHR2)](BF4) (R1 = 氫、甲基;R2 = 2,6-二異丙基苯基、2,6-二甲基苯基、苯基、三級丁基、異丙基;R3 = 氫、甲基、苯基)。產物運用二維核磁共振技術及X光結晶學加以鑑定。這些錯合物 (R1 = 氫) 具有含掌性中心的胺基以及有取代基的烯丙基,因此在核磁共振光譜中可以觀察到四種主要的非鏡像異構物,而各種異構物的比例主要是由胺基和烯丙基上的取代基的立體效應所主導。
在二維NOESY光譜中觀察到四種異構物,彼此會進行快速的異構化轉換。分子流變行為不僅發生在烯丙基部份,也同時發生胺基-吡啶雙牙配位基上,烯丙基基團旋轉以及胺基反轉的能量屏障則是進一步以選擇性NOESY光譜分析和變溫核磁共振實驗加以求得。另外,我們也嘗試將這些有機鈀錯合物應用在不飽和化合物的氫化反應上,並且觀察到不錯的反應活性,然而透過汞毒化、過濾實驗以及穿透式電子顯微鏡影像,顯示催化的活性物質是平均直徑為523奈米的金屬奈米粒子,這可能是由於胺基-吡啶雙牙配位基的弱α-予體能力無法保護零價的鈀物種,因而進一步聚集在一起。

A series of cationic allylpalladium(II) complexes with the α-amino-pyridine ligands in the formula of [Pd(η3-C3H4R3)(Pyridine-CHR1NHR2)](BF4) (R1 = H, Me; R2 = 2,6-iPr2C6H3, 2,6-Me2C6H3, Ph, tBu, iPr; R3 = H, Me, Ph) had been synthesized and characterized by 2D NMR and X-ray crystallographic techniques. These complexes (R1 = H) that contained chiral amino group and substituted allyl group afforded four major diastereomers in NMR spectra. The distribution of isomers might be primarily contributed from the steric effect of amino moiety and substituent on allyl group.
Rapid isomerization among the isomers was observed in 2D NOESY spectra. The fluxional behavior in solution took place in both allylic moiety and amino-pyridine ligands. The energy barriers of allyl pseudo-rotation and amine inversion were further determined by selective NOESY spectra analysis and variable-temperature NMR experiments. These organopalladium species were also applied to catalyze the hydrogenation of unsaturated substrates and showed comparable activity. However, the mercury poison, filtration experiments and TEM images revealed the active species was metal nanoparticles with average diameter 523 nm. These results might be arisen from the α-amino-pyridine ligands couldn''t protect the Pd(0) species from aggregation because of weak σ-donating ability.

Chapter 1. Introduction of Allylpalladium Complexes with the N-donor Ligands (1)
1-1. Bidentate Nitrogen Ligands and Methylpalladium Complexes with the α-Amino-Pyridine Ligands(1)
1-2. The Dynamic Behavior in Solution of Allylpalladium Complexes (4)
1-3. Isomer distribution and Catalytic Application of Allylpalladium Complexes with the N-donor Ligands (8)
1-4. Goal of this Thesis (12)
Chapter 2. Synthesis and Characterization of Allylpalladium Complexes with the α-Amino-Pyridine Ligands (13)
2-1. Synthesis of α-Amino-Pyridine Ligands (13)
2-2. Synthesis of Allylpalladium Complexes (15)
2-3. Characterization of Allylpalladium Complexes (16)
2-4. The Dynamic Behavior in Solution of the Allylpalladium Complexes and Selective NOESY Spectra Analysis (29))
2-5. Variable-Temperature 1H NMR Spectroscopy Analysis of the Allylpalladium Complexes (47)
2-6. X-ray Single-Crystal Analysis (56)
Chapter 3. Catalytic Applications of Allylpalladium Complexes with the α-Amino-Pyridine Ligands (64)
3-1. Introduction of Hydrogenation (64)
3-2. Hydrogenation Catalyzed by Allylpalladium Complexes (65)
Chapter 4. Conclusion (72)
Chapter 5. Experimental Section (74)
5-1. General Procedure (74)
5-2. Physical Measurement (74)
5-3. Synthesis and Spectral Characterization (75)
5-4. X-ray Crystallographic Analysis (125)
5-5. General Procedure for Selective NOESY Spectra Analysis (125)
5-6. General Procedure for VT-NMR Isomerization Kinetics (126)
5-7. General Procedure for Hydrogenation (127)
5-8. General Procedure for Transmission Electron Microscopy Analysis (127)
References (128)
Appendix (134)

1. (a) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem. Int. Ed. Engl. 1999, 38, 428-447. (b) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137-1138. (c) Togni, A.; Venanzi, L. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 497-526. (d) Markies, B. A.; Verkerk, K. A. N.; Rietveld, M. H. P.; Boersma, J.; Kooijman, H.; Spek, A. L.; Vankoten, G. J. Chem. Soc. Chem. Commun. 1993, 1317-1319. (e) Schuster, G. B. Adv. Phys. Org. Chem. 1986, 22, 311-361.
2. (a) Togni, Antonio.; Venanzi, L. M. Angew. Chem. Int. Ed. Engl. 1994, 33, 497-526. (b) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159-2231.
3. (a) Lin, Y. -C., Ph.D. Thesis, “Investigation of Ethylene/Norbornene Copolymerization Using Cationic Methylpalladium(II) Catalysts with Amino-Pyridine Ligands”, National Taiwan University, Taipei, Taiwan, 2006. (b) Yu, K. -S., Ph.D. Thesis, “Heterotopic Bidentate Ligands and Their Roles in Catalysis-Mechanistic Approach to Reactions of Ethylene-Norbornene Copolymerization and Hydrogenation”, National Taiwan University, Taipei, Taiwan, 2012.
4. (a) Jolly, P. W. Angew. Chem. Int. Ed. Engl. 1985, 24, 283-295. (b) Mandal, S. K.; Gowda, G. A. N.; Krishnamurthy, S. S.; Nethaji, M. Dalton trans. 2003, 1016-1027. (c) Trost, B. M.; Vranken, D. L. V. Chem. Rev. 1996, 96, 395-422.
5. Wang, C. -C., Master Thesis, “Synthesis and Catalysis of Thioethers-Functionalized N-Heterocyclic Carbene Palladium Complexes”, National Taiwan University, Taipei, Taiwan, 2012.
6. (a) Takao, Y.; Takeda, T.; Watanabe, J.; Setsune, J. Organometallics 1999, 18, 2936-2938. (b) Torre, F. G. T.; Hoz, A.; Jalon, F. A.; Manzano, B. R.; Rodriguez, A. M.; Elguero, J.; Martinez-Ripoll, M. Inorg. Chem. 2000, 39, 1152-1162. (c) Carrion, M. C.; Diaz, A.; Guerrero, A.; Jalon, F. A.; Manzano, B. R.; Rodriguez, A.; Paul, R. L.; Jeffery, J. C. J. Organomet. Chem. 2002, 650, 210-222. (d) Albinati, A. R.; Kunz, W.; Ammann, C. J.; Pregosin, P. S. Organometallics 1991, 10, 1800-1806.
7. (a) Gogoll, A.; Grennberg, H.; Axen, A. Organometallics 1997, 16, 1167-1178. (b) Elguero, J.; ruchier, A.; Hoz, F. A.; Jalon, F. A.; Manzano, B. R.; Otero, A.; Torre, F. G. Chem. Ber. 1996, 129, 589-594. (c) Delis, J. G. P.; Groeen, J. H.; Vrieze, K.; Leeuwen, P. W. N. M.; Veldman, N.; Spek, A. L. Organometallics 1997, 16, 551-562. (d) Faller, J. W.; Stokes-Huby, H. L.; Albrizzio, M. A. Helv. Chim. Acta 2001, 84, 3031-3042.
8. (a) Crociani, B.; Bianca, F. D.; Giovenco, A.; Boschi, T. Inorg. Chim. Acta 1987, 127, 169-182. (b) Crociani, B.; Antonaroli, S.; Paci, M.; Bianca, F. D.; Canovese, L. Organometallics 1997, 16, 384-391. (c) Carrion, M. C.; Diaz, A.; Guerrero, A.; Jalon, F. A.; Manzano, B. R.; Rodriguez, A.; Paul, R. L.; Jeffery, J. C. J. Organomet. Chem. 2002, 650, 210-222. (d) Hansson, S.; Norrby, P-O.; Sjogren, M. P. T.; Akermark, B.; Cucciolito, M. E.; Giordano, F.; Vitagliano, A. Organometallics 1993, 12, 4940-4948. (e) Haaren, R. J.; Goubitz, K.; Fraanje, J.; Strijdonck, G. P. F. V.; Oevering, H.; Coussens, B.; Reek, J. N. H.; Kamer, P. C. J.; Leeuwen, P. W. N. M. Inorg. Chem. 2001, 40, 3363-3372.
9. Cucciolito, M.; Giordano, E. F.; Vitagliano, A.; Hansson, S.; Norrby, P-O.; Sjogren, M. P. T.; Akermar, B. Organometallics 1993, 12, 4940-4948.
10. Montoya, V.; Pons, J.; Garcia-Anton, J.; Solans, X.; Font-Bardia, M.; Ros, J. Organometallics 2007, 26, 3183-3190.
11. Crociani, B.; Antonaroli, S.; Paci, M.; Bianca, F. D.; Canovese, L. Organometallics 1997, 16, 384-391.
12. Yeh, C. -L., Master Thesis, “The Synthesis, Structures and Nucleophilic Addition Reaction of (α-Imino-Amino)(η3-Allyl)Palladium(II) Complexes”, National Taiwan University, Taipei, Taiwan, 2001.
13. Breutel, C.; Pregosin, P. S.; Salzmann, R.; Togni, A. J. Am. Chem. Soc. 1994, 116, 4067-4068.
14. (a) Adam, R. D.; Chodosh, D. F.; Faller, J. W.; Rosan, A. M. J. Am. Chem. Soc. 1979, 101, 2570-2575. (b) Faller, J. W.; Chao, K. -H. J. Am. Chem. Soc. 1983, 105, 3893-3898. (c) Sprinz, J.; Kiefer, M.; Helmchen, G.; Reggelin, M.; Huttner, G.; Walter, O.; Zsolnai, L. Tetrahedron Lett. 1994, 35, 15231526. (d) Cho, C. -W.; Son, J. -H.; Ahn, K. H. Tetrahedron: Asym. 2006, 17, 2240-2241.
15. Mandal, S. K.; Gowda, G. A. N.; Krishnamurthy, S. S.; Zheng, C.; Li, S. -J.; Hosmane, N. S. J. Organomet. Chem. 2003, 676, 22-37.
16. Bichler, B.; Veiros, L. F.; Oztopcu, O.; Puchberger, M.; Mereiter, K.; Matsubara, K.; Kirchner, K. A. Organometallics 2011, 30, 5928-5942.
17. Jalon, F. A.; Manzano, B. R.; Moreno-Lara, B. Eur. J. Inorg. Chem. 2005, 1, 100-109.
18. Ficks, A.; Sibbald, C.; John, M.; Dechert, S.; Meyer, F. Organometallics 2010, 29, 1117-1126.
19. (a) Powell, J.; Robinson, S. D.; Shaw, B. L. Chem. Commun. 1965, 5, 78-79. (b) Kumar, P. G. A.; Dotta, P.; Hermatschweiler, R.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics 2005, 24, 1306-1314. (c) Faller, J. W.; Wilt, J. C. Organometallics 2005, 24, 5076-5083. (d) Filipuzzi, S.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organometallics 2006, 25, 5955-5964. (e) Mikhael, I.; Goux-Henry, C.; Sinou, D. Tetrahedron Asym. 2006, 17, 1853-1858. (f) Wassenaar, J.; van Zutphen, S.; Mora, G.; Floch, P. L.; Siegler, M. A.; Spek, A. L.; Reek, J. N. H. Organometallics 2009, 28, 2724-2734.
20. (a) Pal, S. J. Chem. Sci. 2010, 122, 471-480. (b) Abergel, D.; Palmer, A. G. Chem. Phys. Chem. 2004, 5, 787-793. (c) Bain, A. D.; Cramer J. A. J. Phys. Chem. 1993, 97, 2884-2887. (d) Shokhirev, N. V.; Shokhireva, T. K.; Polam, J. R.; Watson, C. T.; Raffii, K.; Simonis, U.; Walker, F. A. J. Phys. Chem. A 1997, 101, 2778-2786. (e) Cronin, L.; Higgitt, C. L.; Perutz, R. N. Organometallics 2000, 19, 672-683.
21. (a) Gutowsky, H. S.; Holm, C. H. J. Chem. Phys. 1956, 25, 1228-1234. (b) Sandstro, J., Dynamic NMR Spectroscopy, Academic Press, New York, 1982.
22. (a) Bastero, A.; Ruiz, A.; Claver, C.; Milani, B.; Zangrando, E. Organometallics 2002, 21, 5820-5829. (b) Canovese, L.; Visentin, F.; Chessa, G.; Uguagliati, P.; Bandoli, G. Organometallics 2000, 19, 1461-1463.
23. (a) Moreno, A.; Pregosin, P. S. Organometallics 2009, 28, 6489-6506. (b) Barbara, P.; Paul S.; Pregosin, S. P.; Salzmann, S. Organometallics 1995, 14, 5160-5170. (c) Barbara, P.; Paul S.; Pregosin, S. P.; Salzmann, S. Organometallics 1995, 14, 5160-5170. (d) Mechria, A.; Rzaiguib, M.; Bouachira, F. Tetrahedron Letters 2000, 41, 719-7202.
24. (a) Nishimura, S., Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis, Wiley-VCH, Weinheim 2001. (b) de Vries, J. G.; Elsevier, C. J., Handbook of Homogeneous Hydrogenation, Wiley-VCH, Weinheim 2007.
25. (a) Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301-10310. (b) Hagen, C. M., Widegren, J. A.; Maitlis, P. M.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 4423-4432.
26. (a) Xie, J. -H.; Zhu, S. -F.; Zhou, Q. -L. Chem. Rev. 2011, 111, 1713-1760. (b) Wang, D. -S.; Chen, Q. -A.; Lu S. -M.; Zhou, Y. -G. Chem. Rev. 2012, 112, 2557-2590. (c) Dub, P. A.; Takao, I. ACS Catal. 2012, 2, 1718−1741. (d) Rode, C. V.; Vaidya, M. J.; Chaudhari, R. V. Organic Process Research & Development 1999, 3, 465-470.
27. (a) Whitesides, G. M.; Hackett, M.; Brainard, R. L.; Lavalleye, J. P. P. M.; Sowinski, A. F.; Izumi, A. N.; Moore, S. S.; Brown, D. W.; Staudt, E. M. Organometallics 1985, 4, 1819-1830. (b) Widegren, J. A.; Bennett, M. A.; Finke, R. G. J. Am. Chem. Soc. 2003, 125, 10301-10310. (c) Hagen, C. M.; Widegren, J. A.; Maitlis, P. M.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 4423-4432.
28. Marion, N.; Navarro, O.; Mei, J.; Stevens, E. D.; Scott, N. M.; Nolan, S. P. J. Am. Chem. Soc. 2006, 128, 4101-4111.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張五岳,2012,〈未來四年兩岸政治互信深化與政治議題談判的評析〉,《中國評論》,第173期。
2. 邱震海,2007,〈「一中」定義須清晰化─解析十七大政治報告的兩岸和平協議〉。《明報月刊》,42(11)。
3. 張五岳,2012,〈未來四年兩岸政治互信深化與政治議題談判的評析〉,《中國評論》,第173期。
4. 邵宗海,2012,〈兩岸和平協議的緣來與癥結〉,《中國評論》,第172期。
5. 邵宗海,2012,〈兩岸和平協議的緣來與癥結〉,《中國評論》,第172期。
6. 邱震海,2007,〈「一中」定義須清晰化─解析十七大政治報告的兩岸和平協議〉。《明報月刊》,42(11)。
7. 林炎能,2010,〈從賽局理論觀點探討臺海兩岸建構和平協議之可行性〉,《憲兵半年刊》,71:128-145。
8. 林炎能,2010,〈從賽局理論觀點探討臺海兩岸建構和平協議之可行性〉,《憲兵半年刊》,71:128-145。
9. 左權,2010 ,〈兩岸簽署和平協議的法學思考〉,《一國兩制研究》,5:103-109。
10. 左權,2010 ,〈兩岸簽署和平協議的法學思考〉,《一國兩制研究》,5:103-109。
11. 王崑義,2009,〈兩岸和平協議:理論、問題與思考〉,《全球政治評論》,26:45-29。
12. 王崑義,2009,〈兩岸和平協議:理論、問題與思考〉,《全球政治評論》,26:45-29。
13. 王建民,2012年4月號,〈台灣主體意識』對島內政治與兩岸關係的影響日益嚴峻〉,《中國評論》,第172期。
14. 王建民,2012年4月號,〈台灣主體意識』對島內政治與兩岸關係的影響日益嚴峻〉,《中國評論》,第172期。
15. 陳佳慧,2008,〈建構和平協議的可能性與挑戰〉。《嘉義大學通識學報》,第6期。
 
1. 應用德爾菲法建構國內棒球場分級制度之研究
2. 含硫醚、亞-氮雜環碳烯配位基之有機銠、銀錯合物之配位化學與催化
3. 鈀錯合物催化芳香鹵化物與炔類化合物之五員環化反應:合成醋菲烯衍生物
4. 含多芽苯並三唑苯酚氧配位基之鋅、鈷、鎳、銅與鈀錯合物之合成、結構鑑定以及應用於二氧化碳和環氧環己烷共聚合反應的催化研究
5. W02B12.15基因突變導致的油滴減少是與AMPK活性上升有關
6. 秀麗隱桿線蟲W02B12.15基因為小鼠cisd1同源基因且與氧氣消耗和粒線體融合有關
7. (a) 含短氟聯吡啶及其鈀和鉑錯合物之研究(b) 含氟鏈鈀錯合物嵌入ZrP運用在Sonogashira和Heck反應
8. 一種基於時空編碼正交變化展頻因子/正交分頻多工水下音訊類型(II)傳輸訊號之HHT時頻特徵分析
9. 環烯烴共聚物分子結構對其混摻及奈米複合物薄膜之型態與光學物性影響研究
10. 鈀錯合物催化聯芳溴化物與硫乙酸鹽之耦合反應:合成雜芳烴化合物
11. 製備喹啉類型二級氧化膦基結合鈀金屬應用於催化耦合反應
12. 低功耗低供應電壓敏感度之高精度時域智慧型溫度感測器
13. 含硫醚-氮雜環碳烯配位基之有機鈀錯合物之合成、異構及催化
14. 結合智慧型手機與雲端之可攜式心律變異度分析系統
15. 一種多輸入多輸出之正交變化展頻因子-哥德序列/正交分頻多工水下多媒體通訊技術效能分析
 
系統版面圖檔 系統版面圖檔