(3.238.130.97) 您好!臺灣時間:2021/05/18 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王筱姍
研究生(外文):Siao-Shan Wang
論文名稱:鄰近陽離子取代效應調控CaAlSiN3:Eu之活化劑格位
論文名稱(外文):Neighboring-cation Substitution-driven Remote-controlled Activator in CaAlSiN3:Eu Lattice
指導教授:劉如熹劉如熹引用關係
指導教授(外文):Ru-Shi Liu
口試委員:邱靜雯郭博成汪建民廖秋峰
口試委員(外文):Ching-Wen ChiuPo-Cheng KuoJian-Min WangCiou-Fong Liao
口試日期:2013-05-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:118
中文關鍵詞:發光二極體螢光粉螢光光譜熱穩定性鄰近陽離子取代
外文關鍵詞:Light-emitting diodephosphorphotoluminescencethermal stabilityNeighboring-cation substitution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:271
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紫外光-藍光發光二極體激發之高效率紅色螢光粉為生活中重要照明來源,尤其須具極佳本質特性,例如化學與熱穩定性佳。相較於氧化物螢光粉,氮化物螢光粉之放光通常較紅位移且熱/化學穩定性較佳,乃因其共價性較大,例如:Sr2Si5N8:Eu2+ 與 CaAlSiN3:Eu2+。
陽離子取代通常可用於調控其光學特性與熱穩定性之最適化,但相關之研究與機制尚未被清楚地瞭解,故本研究利用鄰近陽離子取代可系統性地調控CaAlSiN3:Eu2+系列之熱特性。當三價陽離子(如La3+)取代於其中之Ca2+格位時,其熱穩定性隨之變差。反之,以一價陽離子(如Li+)取代時,則熱穩定性提升。由螢光壽命之衰減光譜亦可得知陽離子取代之光譜特性變化。
鄰近陽離子取代與調控其中之Al3+/Si4+ 之組成作為電荷平衡,使活化劑離子Eu2+ 可選擇性地取代於特定Ca2+ 格位中。當三價陽離子取代時,其Eu2+離子位於鄰近Al3+/Si4+平均之陰離子團配位中,然而當一價陽離子取代時,其將位於Si-rich之配位環境中,故其放光光譜特性可受陽離子取代而調控。此機制可被廣泛應用於螢光材料,藉此有效地調控其光譜特性。


Red phosphors with high efficiency in general, and those with excellent intrinsic property in particular, excited by ultraviolet or blue light-emitting diodes are significant white light sources for our daily life. Nitride-based phosphors, such as Sr2Si5N8:Eu2+ and CaAlSiN3:Eu2+, are commonly more red-shifted in photoluminescence and have better thermal/chemical stability than oxides because of high covalency.
Cation substitutions are usually performed to optimize photoluminescence and thermal quenching behavior. However, the underlying mechanisms are unclear in most cases. Hence, we show that neighboring-cation substitution systematically controls temperature-dependent photoluminescence behavior in CaAlSiN3:Eu2+ lattice. The trivalent cation substitution at the Ca2+ site degrades the photoluminescence in high temperature environment, but the substituted cation turning monovalent achieves better thermal stability. The Neighboring-cation control of lifetime decay is also observed.
A remote control effect that guides Eu2+ activators in selective Ca2+ sites is proposed for neighboring-cation substitution while compositional Al3+/Si4+ ratio adjusts to the valance of Mn+ (n = 1-3) cation. In this effect, the Eu2+ activators are surrounded with anion clustering neighbored with M3+-dominant and Si4+/Al3+-equivalent coordination when M is trivalent (e.g La3+), but shift to the site where surrounded anion clustering neighbor with M+-dominant and Si-rich coordination when M is monovalent (e.g Li+). This mechanism can efficiently tune optical properties especially thermal stability and could be general to luminescent materials, which are sensitive to local valence variation in local environments.


第一章 緒論 1
1.1 發光之原理與定義 2
1.1.1 發光之定義與現象 2
1.1.2 發光特性 2
1.1.3 發光之類型 3
1.2 色彩簡介 5
1.2.1 視覺敏感度 5
1.2.2 色溫(Color Temperature) 7
1.2.3 CIE色度座標 9
1.2.4 演色性 12
1.3 發光二極體 14
1.3.1 LED原理 14
1.3.2 白光發光二極體(white light-emitting diode; WLED) 16
1.3.3 白光發光二極體之應用 19
1.4 螢光材料組成及螢光粉發光原理 23
1.4.1 材料組成 23
1.4.2 主體晶格之選擇 23
1.4.3 活化劑之選擇 25
1.4.4 螢光粉發光原理 26
1.4.4.1 法蘭克-康頓原理(Frank-Condon principle) 26
1.4.4.2 選擇率(selection rule) 28
1.4.4.3 螢光與磷光之發光機制 29
1.4.4.4 稀土元素於螢光粉之發光機制 30
1.5 影響螢光粉發光效率之因素 33
1.5.1 電子雲膨脹效應 33
1.5.2 結晶場分裂效應 34
1.5.3 斯托克位移(Stokes shift) 35
1.5.4 濃度淬滅效應 37
1.5.5 熱淬熄效應與熱游離效應 37
1.6 氮化物螢光粉簡介及其歷史回顧 42
1.6.1 SiN氮化物螢光粉 (nitridosilicates) 43
1.6.2 SiAlN氮化物螢光粉 (nitridoaluminosilicates) 45
1.7 研究動機與目的 51
第二章 樣品合成與儀器分析 52
2.1 化學藥品 52
2.2 樣品製備 53
2.2.1 固態反應法 53
2.2.2 氣壓加壓燒結法(Gas Pressure Sintering; GPS) 54
2.2.3 實驗流程 55
2.3樣品鑑定 57
2.3.1 粉末X光繞射儀與結構精算 57
2.3.2光激發光譜儀 61
2.3.3熱淬熄量測 62
2.3.4固態核磁共振儀 64
2.3.5螢光生命週期儀 66
2.3.6 X光吸收光譜 68
2.3.7 儀器總結 70
第三章 結果與討論 71
3.1 CaAlSiN3之特性分析 71
3.1.1 CaAlSiN3之晶體結構 72
3.1.2 CaAlSiN3之XRD鑑定分析 73
3.1.3 CaAlSiN3之光譜分析 74
3.1.4 CaAlSiN3之熱淬滅光譜分析 75
3.2陽離子取代之特性分析 78
3.2.1 XRD結構鑑定與分析 79
3.2.1.1 (Ca1-xLax)(Al1+xSi1-x)N3:Eu之XRD結構鑑定 79
3.2.1.2 (Ca1-xLix)(Al1-xSi1+x)N3:Eu之XRD結構鑑定 84
3.2.2 (Ca1-xLax)(Al1+xSi1-x)N3:Eu 之EXAFS鑑定 90
3.2.3光譜探討與機制 92
3.2.4 固態核磁共振光譜分析 97
3.2.5 熱淬熄光譜分析 102
3.2.6螢光生命週期分析 105
第四章 結論 111
參考資料 113


1. Navigant Consulting
http://www.mem.com.tw/article_content.asp?sn=1209260005
2.徐敘瑢,發光學與發光材料,化學工業出版社,2004。
3. Website, http://effieboo.wordpress.com/2010/0...etic-spectrum
4. http://www.design.happybus.tw
5. Xie, R. J.; Li, Y. Q.; Hirosaki, N.; Yamamoto, H. “Nitride Phosphors and Solid-State Lighting” CRC Press:2011
6. Schubert, E. F. “Light-emitting diodes” (2nd Edition), 2006.
7. LED色溫 ee.ofweek.com
8. http://www.exo.net/~pauld/workshops/Stars/Stars.htm
9.http://upload.wikimedia.org/wikipedia/commons/d/d7/Planckian-locus.png
10.色彩管理基礎-簡介CIE
http://www.isf.com.tw/tech_article/CIE1931_introduction.html
11. http://www.riiz.com.tw/tw/brands.php
12. http://www.chinaelectric.com.tw/word.htm
13. 劉如熹,發光二極體用氧氮螢光粉介紹;全華科技圖書股份有限公司:台北,民95。
14. http://image.big5.made0in-china.com
15. http://www.fuji.com.tw/shownews.asp?RecordNo=176
16. www.zlighting.net
hting.cnledw.com
www.esonic.com.tw
www.compotech.com.tw
www.leader-park.com.tw
17. Jackson, M. “Research Report: LED Lighting” Woodside Capital Partners International, 2012.
18. http://www.displaysearch.com.tw/
19. Ropp, R. C. “Luminescence and the Solid State” Ed. Elsevier: 2004; Vol. 21.
20. Friedrich, J.; Haarer, D. “Photochemical Hole Burning: A Spectroscopic Study of Relaxation Processes in Polymers and Glasses“ Angew. Chem. Int. Ed. 1984, 23, 113.
21. Nakazawa, E., Fundamentals of luminescence. “Phosphor Handbook” CRC Press:2006.
22. Dieke, G. H.; Crosswhite, H. M.; Crosswhite, H. “Spectra and energy levels of rare earth ions in crystals” Interscience Publishers: New York, 1968.
23. Baginskiy, I.; Liu, R. S. unpublished data.
24. Xie, R. J.; Hirosaki, N. “Silicon-based oxynitride and nitride phosphors for white LEDs - A review” Sci. Technol. Adv. Mater. 2007, 8, 588.
25. Chen, W. T.; Sheu, H. S.; Liu, R. S.; Attfield, J. P. J. Am. Chem. Soc. 2012, 134, 8022.
26. Eeckhout, K. V. d.; Smet, P. F.; Poelman, D. “Luminescent Afterglow Behavior in the M2Si5N8: Eu Family (M = Ca, Sr, Ba)” Materials 2011, 4, 980.
27. Uheda, K.; Hirosaki, N.; Yamamoto, Y.; Naito, A.; Nakajima, T.; Yamamoto, H. “Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes” Electrochem. Solid State Lett. 2006, 9, H22.
28. Li, J.; Watanabe, T.; Wada, H.; Setoyama, T.; Yoshimura, M. “Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates” Chem. Mater. 2007, 19, 3592.
29. Piao, X.; Machida, K.; Horikawa, T.; Hanzawa, H.; Shimomura, Y.; Kijima, N. “Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties” Chem. Mater. 2007, 19, 4592.
30. Li, Y. Q.; Hirosaki, N.; Xie, R. J.; Takeda, T.; Mitomo, M. “Yellow-Orange-Emitting CaAlSiN3:Ce3+ Phosphor: Structure, Photoluminescence, and Application in White LEDs” Chem. Mater. 2008, 20, 6704.
31. Watanabe, H.; Wada, H.; Seki, K.; Itou, M.; Kijima, N. “Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors” J. Electrochem. Soc. 2008, 155, F31.
32. Lee, S.; Sohn, K. S. “Effect of inhomogeneous broadening on time-resolved photoluminescence in CaAlSiN3:Eu2+” Opt. Lett. 2010, 35, 1004.
33. Jung, Y. W.; Lee, B.; Singh, S. P.; Shon, K. S. “Particle-swarm-optimization-assisted rate equation modeling of the two-peak emission behavior of non-stoichiometric CaAlxSi(7-3x)/4N3:Eu2+ phosphors” Opt. Exp. 2010, 17, 17805.
34. Li, Y. Q. “Synthesis, Crystal and Local Electronic Structures, and Photoluminescence Properties of Red-Emitting CaAlzSiN2+z:Eu2+ with Orthorhombic Structure” J. Appl. Ceram. Technol. 2010, 7, 787.
35. Li, J.; Watanabe, T.; Sakamoto, N.; Wada, H.; Setoyama, T.; Yoshimura, M. “Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures” Chem. Mater. 2008, 20, 2095.
36. Zhijun, Z.; Kate, O. M. T.; Delsing, A. C. A.; Stevens, M. J. H.; Zhao, J.; Notten, P. H. L.; Dorenbos, P.; Hintzen, H. T. “Photoluminescence properties of Yb2+ in CaAlSiN3 as a novel red-emitting phosphor for white LEDs” J. Mater. Chem. 2012, 22, 23871.
37. Han, B. Y.; Singh, S. P.; Sohn, K. S. “Photoluminescent and Structural Properties of MgAlSiN3:Eu2+ Phosphors” J. Electrochem. Soc. 2011, 158, J32.
38. Watanabe, H.; Kijima, N. “Crystal structure and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors” J. Alloys Compd. 2009, 475, 434.
39. Watanabe, H.; Yamane, H.; Kijima, N. “Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3” J. Solid State Chem. 2008, 181, 1848.
40. Zhijun, Z.; Kate, O. M. T.; Delsing, A.; Kolk, E. V. D.; Notten, P. H. L.; Dorenbos, P.; Zhaom J,; Hintzen, H. T. “Photoluminescence properties and energy level locations of RE3+ (RE = Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors” J. Mater. Chem. 2012, 22, 9813.
41. Hirosaki, N.; Sakuma, K.; Ueda, K.; Yamamoto, H. US 2007/0159091, 2007.
42. http://www.fujidempa.co.jp/
43. Nakazawa, E., Measurements of powder characteristics. “Phosphor Handbook” CRC Press:2006.
44. Larson, C. Von Dreele, R. B. Generalized Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748, 1994.
45. Connolly, J. R. “Introduction to X-ray powder diffraction” Spring, 2007.
46. Bowen, D. K.; Tanner, B. K. “High Resolution X-ray Diffractometry and Topography” Taylor & Francis, 1998.
47. http://www.horiba.com/us/en/ (Instrument manual)
48. 陳振中 ”固態核磁共振光譜學簡介” 科儀新知 2006, 28, 42.
49. Park, S. H.; Yoon, H. S.; Boo, H. M.; Jang, H. G.; Lee, K. H.; Im, W. B. “Efficiency and thermal stability enhancements of Sr2SiO4:Eu2+ phosphor via Bi3+ codoping for solid-state white lighting” Jpn. J. Appl. Phys. 2012, 51, 022602.
50. http://www.chemicalghosts.org/?page_id=376
51. Li, J.; Watanabe, T.; Sakamoto, N.; Wada, H.; Setoyama, T.; Yoshimura, M. “Synthesis of a multinary nitride, Eu-doped CaAlSiN3, from alloy at low temperatures” Chem. Mater. 2008, 20, 2095.
52. Mikami, M.; Uheda, K.; Kijima, N. “First-principles study of nitridoaluminosilicate CaAlSiN3” phys. stat. sol. 2006, 203, 2705.
53. Kim, J. S.; Park, Y. H.; Choi, J. C.; Park, H. L. “Temperature-dependent emission spectrum of Ba3MgSi2O8:Eu2+, Mn2+ phosphor for white-light-emitting diode” Electrochem. Solid-state Lett. 2005, 8, H65.
54. Ganguly, P.; Shah, N.; Phadke, M.; Ramaswamy, V.; Mulla, I. S. “Deviation from vegard law-changes in the c-axis parameter in La2-xSrxCuO4-d in relation to the insulator-superconductor-metal transition” Phys. Rev. B 1993, 47, 991.
55. Andronesi, O. C.; Pfeifer, J. R.; Momani, L.; Ozdirekcan, S.; Rijkers, D. T. S.; Angerstein, B.; Luca, S.; Koert, U.; Killian, J. A.; Baldus, M. “Probing membrane protein orientation and structure using fast magic-angle-spinning solid-state NMR” J. Bio. NMR 2004, 30, 253.
56. Abrahams, I.; Bush, A. J.; Hawkes, G. E.; Nunes, T. “Structure and oxide ion conductivity mechanism in Bi2Al4O9 by combined X-ray and high-resolution neutron powder diffraction and Al-27 solid state NMR” J. Solid State Chem. 1999, 147, 631.
57. Henderson, B.; Imbush, G. F. “Optical Spectroscopy of Inorganic Solids” Clarendon Press: Oxford, 1989.
58. Fitzgerald, J. J. “Solid-State NMR Spectroscopy of Inorganic Materials” American Chemical Society: Washington, D.C., 1999.
59. Duer, M. J. “Solid-State NMR Spectroscopy Principle and Applications” Blackwell Science Ltd, 2002.
60. Han, J. Y.; Im, W. B.; Lee, G. Y.; Jeon, D. Y. “Near UV-pumped yellow-emitting Eu2+-doped Na3K(Si1-xAlx)8O16±δ phosphor for white-emitting LEDs” J. Mater. Chem. 2012, 22, 8793.
61. Li, G.; Geng, D.; Shang, M.; Peng, C.; Cheng, Z.; Lin, “Tunable luminescence of Ce3+/Mn2+-coactivated Ca2Gd8(SiO4)6O2 through energy transfer and modulation of excitation: potential single-phase white/yellow-emitting phosphors” J. Mater. Chem. 2011, 21, 13334.
62. Layne, C. B.; Lowdermilk, W. H.; Weber, M. J. “Multiphonon relaxation of rare-earth ions in oxide glasses” Phys. Rev. B 1977, 1, 10.
63. Liu, Y.; Zhang, X.; Hao, Z.; Wang, X.; Zhang, J. “Generation of broadband emission by incorporating N3- into Ca3Sc2Si3O12:Ce3+ garnet for high rendering white LEDs” J. Mater. Chem. 2011, 21, 6354.
64. Park, W. B.; Singh, S. P.; Yoon, C.; Sohn, K. S. “Eu2+ luminescence from 5 different crystallographic sites in a novel red phosphor, Ca15Si20O10N30:Eu2+” J. Mater. Chem. 2012, 22, 14068.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top