(3.238.173.209) 您好!臺灣時間:2021/05/16 21:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭綉蓉
研究生(外文):Hsiu-Jung Cheng
論文名稱:設計與合成細菌轉醣酶抑制劑之研究
論文名稱(外文):Design and Synthesis of Bacterial Transglycosylase Inhibitors
指導教授:方俊民方俊民引用關係
口試委員:吳世雄鄭偉杰林俊宏
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:synthesisbacterialtransglycosylaseinhibitor
外文關鍵詞:合成細菌轉醣酶抑制劑
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  抗生素是人們對抗致病型細菌的利器,然而因抗生素長期的濫用及過度依賴,使得許多因突變而具抗藥性的菌種相繼出現,抗藥性的問題漸漸成為醫療上的難題,也使人類健康受到莫大的威脅,因此科學家希望能開發新穎的抗生素以對抗細菌,讓人類能繼續與細菌抗衡。細菌擁有哺乳類動物細胞所沒有的細胞壁,其對細菌的存活相當重要。而轉醣酶是形成細菌細胞壁所特有的酵素,不存在於哺乳類動物中,且其暴露於細菌細胞膜的表面,藥物不需要進入細胞質,這也使得藥物更易抵達活性區對酵素進行抑制,因此科學家認為以轉醣酶為新的研究目標開發新型的抗生素,相當具有潛力。
  我們所設計之轉醣酶抑制劑,其設計概念主要是模擬以lipid II為單體,在轉醣化過程中所形成的過渡態之電荷及結構,並搭配moenomycin作為結構修飾的參考,設計出新穎具有潛力的轉醣酶抑制劑。我們利用moenomycin脂質區的特徵基團作為基礎骨架,以短鏈之phosphoglycerate衍生物來模擬lipid II的雙磷酸脂質鏈,接著以適當長度的連接鏈,連接模擬lipid II多醣部分骨架之芳香環結構。
  合成出一系列潛在的轉醣酶抑制劑之後,我們將這些化合物進行轉醣酶活性分析及最低抑菌濃度檢測。在這幾個phosphoglycerate衍生物中,具有活性之化合物其結構為苯環上帶有適當的取代基;化合物44和47在500 μM下對轉醣酶皆具有抑制性,化合物44對於金黃色葡萄球菌的最低抑菌濃度為50 μM。
  我們推測苯環上所延伸之適當取代基,在距離上剛好能與支鏈帶amide基團的天門冬醯胺殘基(Asn275)有作用力,使得此類化合物對轉醣酶具有抑制性。後續我們將以化合物44和47為基礎,嘗試在苯環上修飾能產生氫鍵作用力的取代基(如OH基),以發展出更具有抑制效果的轉醣酶抑制劑。


  Using antibiotics has a great impact on the treatment of bacterial infections. However, the emergence of multi-drug resistant bacteria requires new antibacterial targets and drugs. Bacteria are surrounded by the netlike polymer peptidoglycan, which is responsible for a defined cell shape and allows bacteria to live in a variable internal osmotic environment. Among the several enzymes involved in cell-wall biosynthesis, transglycosylase (TGase) is considered a promising antibiotic target due to its essential function and ready accessibility. TGase is located on the external surface of bacterial membrane so that inhibitors are easy to reach.
  We has designed and synthesized some potential transglycosylase inhibitors with the aryl moiety bearing different substituents to mimic the saccharide part of lipid II, the natural substrate of TGase. On the other hand, a long chain phosphoglycerate, which is a characteristic portion of moenomycin, a natural TGase inhibitor, was used to mimic the long chain pyrophosphate part of lipid II. These kinds of inhibitors are expected to block the process of transglycosylation by mimicking the transition state of lipid II polymerization.
  Some potential transglycosylase (TGase) inhibitors were synthesized and subjected to the HPLC-based TGase fluorescence assay and MIC assay. Among these derivatives of phosphoglycerate with the aryl moiety bearing different substituents, compounds 44 and 47 showed the best inhibition against TGase at 500 μM, and compound 44 has the best MIC value of 50 μM against Staphylococcus aureus.
  We suggested that the appropriate substituent on the benzene ring could interact with the amide side chain of Asn275 in the active site of TGase to show a good inhibition. Based on the structures of 44 and 47, further introduction of hydrogen-bonding groups (e.g. OH) on the aryl moiety might improve the inhibitory activity to act as efficient TGase inhibitors.


謝誌 I
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 IX
表目錄 XI
流程目錄 XII
簡稱用語對照表 XIII

第一章 緒論
1.1 細菌細胞壁之生合 1
1.2 革蘭氏陽性菌與革蘭氏陰性菌 3
1.3 抗生素的發現與發展 4
1.4 青黴素結合蛋白與轉醣酶的構造與功能 6
1.5 轉醣化機制 8
1.6 轉醣酶活性分析方法 10
1.6.1 放射標誌分析法 10
1.6.2 高效能液相層析分析法 11
1.6.3 表面電漿共振分析法 13
1.6.4 螢光異向性分析 14
1.7 轉醣酶抑制劑的研究與發展 14

第二章 結果與討論 22
2.1 轉醣酶抑制劑的設計概念 22
2.2 潛在轉醣酶抑制劑之合成方法 25
2.2.1 含脂質鏈之phosphoglycerate衍生物的合成 25
2.2.2 含Benzylamino基團化合物之合 27
2.2.3 耦合反應 29
2.3 各潛在轉醣酶抑制劑之活性分析 32
2.3.1 轉醣酶活性檢測 33
2.3.2 最低抑菌濃度檢測 37
2.4 結論 40

第三章 實驗部分 42
3.1 General Part 42
3.2 General procedures of HPLC-based TGase fluorescence assay 43
3.3 General procedures of MIC assay 44
3.4 Synthetic procedures and characterization of compounds 44

參考文獻 62

附錄:化合物之NMR光譜 68


1.(a) Bouhss, A.; Trunkfield, A. E.; Bugg, T. D. H.; Mengin-Lecreulx, D. FEMS Microbiol. Rev. 2008, 32, 208–233. The biosynthesis of peptidoglycan lipid-linked intermediates. (b) van Heijenoort, J. Microbiol. Mol. Biol. Rev. 2007, 71 620–635. Lipid intermediates in the biosynthesis of bacterial peptidoglycan. (c) van Heijenoort, J. Nat. Prod. Rep. 2001, 18, 503–519. Recent advances in the formation of the bacterial peptidoglycan monomer unit.
2.Welzel, P. Chem. Rev. 2005, 105, 4610–4660. Syntheses around the transglycosylation step in peptidoglycan biosynthesis.
3.Schwartz, B.; Markwalder, J. A.; Seitz, S. P.; Wang, Y.; Stein, R. L. Biochemistry 2002, 41, 12552–12561. A kinetic characterization of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay.
4.(a) Patrick, G. L., An Introduction to Medicinal Chemistry. 3rd ed.; Oxford: 2005. (b) Bauman, R. W.; 編譯: 李振登, 2008, 微生物學(精華版).
5.張容華,細菌轉醣化之研究:設計及合成轉醣酶抑制劑,國立台灣大學化學所碩士論文,2011.
6.王仁聰,合成肽聚醣轉醣酶之Lipid II受質與發展過渡態模擬抑制劑,國立台灣大學化學所博士論文,2010.
7.Dzidic, S.; Suskovic, J.; Kos, B. Food. Technol. Biotech. 2008, 46, 11–12. Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects.
8.Bugg, T. D. H.; Wright, G. D.; Dutkamalen, S.; Arthur, M.; Courvalin, P.; Walsh, C. T. Biochemistry 1991, 30, 10408–10415. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA.
9.Walsh, C. T.; Fisher, S. L.; Park, I. S.; Prahalad, M.; Wu, Z. Chem. Biol. 1996, 3, 21–28. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story.
10.Goldman, R. C.; Gange, D. Curr. Med. Chem. 2000, 7, 801–820. Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis.
11.Yuan, Y.; Barrett, D.; Zhang, Y.; Kahne, D.; Sliz, P.; Walker, S. Proc. Natl. Acad. Sci. USA 2007, 104, 5348–5353. Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis.
12.Haenni, M.; Majcherczyk, P. A.; Barblan, J.-L.; Moreillon, P. Antimicrob. Agents Chemother. 2006, 50, 4062–4069. Mutational analysis of class A and class B penicillin-binding proteins in Streptococcus gordonii.
13.Barrett, D.; Wang, T. S. A.; Yuan, Y.; Zhang, Y.; Kahne, D.; Walker, S. J. Biol. Chem. 2007, 282, 31964–31971. Analysis of glycan polymers produced by peptidoglycan glycosyltransferases.
14.Lovering, A. L.; de Castro, L. H.; Lim, D.; Strynadka, N. C. J. Science 2007, 315, 1402–1405. Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis.
15.Lovering, A. L.; Gretes, M.; Strynadka, N. C. J. Curr. Opin. Struc. Biology 2008, 18, 534–543. Structural details of the glycosyltransferase step of peptidoglycan assembly.
16.Cheng, T. J. R.; Sung, M. T.; Liao, H. Y.; Chang, Y. F.; Chen, C. W.; Huang, C. Y.; Chou, L. Y.; Wu, Y. D.; Chen, Y.; Cheng, Y. S. E.; Wong, C. H.; Ma, C.; Cheng, W. C. Proc. Natl. Acad. Sci. USA 2008, 105, 431–436. Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics.
17.Sung, M. T.; Lai, Y. T.; Huang, C. Y.; Chou, L. Y.; Shih, H. W.; Cheng, W. C.; Wong, C. H.; Ma, C. Proc. Natl. Acad. Sci. USA 2009, 106, 8824–8829. Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli.
18.Huang, C.Y.; Shih, H. W.; Lin, L. Y.; Tien, Y. W.; Cheng, T. J. R.; Cheng, W. C.; Wong, C. H.; Ma, C. Proc. Natl. Acad. Sci. USA 2012, 109, 6496–6501. Crystal structure of Staphylococcus aureus transglycosylase in complex with a lipid II analog and elucidation of peptidoglycan synthesis mechanism.
19.Perlstein, D. L.; Zhang, Y.; Wang, T. S.; Kahne, D. E.; Walker, S. J. Am. Chem. Soc. 2007, 129, 12674–12675. The direction of glycan chain elongation by peptidoglycan glycosyltransferases.
20.Zhang, Y.; Fechter, E. J.; Wang, T. S. A.; Barrett, D.; Walker, S.; Kahne, D. E. J. Am. Chem. Soc. 2007, 129, 3080–3081. Synthesis of heptaprenyl-lipid IV to analyze peptidoglycan glycosyltransferases.
21.Hara, H.; Suzuki, H. FEBS Lett. 1984, 168, 155–160. A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli.
22.Van Heijenoort, Y.; Gomez, M.; Derrien, M.; Ayala, J.; van Heijenoort, J. J. Bacteriol. 1992, 174, 3549–3557. Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3.
23.Branstrom, A. A.; Midha, S.; Goldman, R. C. FEMS Microbiol. Lett. 2000, 191, 187–190. In situ assay for identifying inhibitors of bacterial transglycosylase.
24.Schwartz, B.; Markwalder, J. A.; Wang, Y. J. Am. Chem. Soc. 2001, 123, 11638–11643. Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli.
25.Schwartz, B.; Markwalder, J. A.; Seitz, S. P.; Wang, Y.; Stein, R. L. Biochemistry 2002, 41, 12552–12561. A kinetic characterization of the glycosyltransferase activity of Escherichia coli PBP1b and development of a continuous fluorescence assay.
26.Liu, C. Y.; Guo, C. W.; Chang, Y. F.; Wang, J. T.; Shih, H. W.; Hsu, Y. F.; Chen, C. W.; Chen, S. K.; Wang, Y. C.; Cheng, T. J. R.; Ma, C.; Wong, C. H.; Fang, J. M.; Cheng, W. C. Org. Lett. 2010, 12, 1608–1611. Synthesis and evaluation of a new fluorescent transglycosylase substrate: lipid II-based molecule possessing a dansyl-C20 polyprenyl moiety.
27.Ye, X. Y.; Lo, M. C.; Brunner, L.; Walker, D.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2001, 123, 3155–3156. Better substrates for bacterial transglycosylases.
28.Stembera, K.; Vogel, S.; Buchynskyy, A.; Ayala, J. A.; Welzel, P. ChemBioChem 2002, 3, 559–565. A surface plasmon resonance analysis of the interaction between the antibiotic moenomycin A and penicillin-binding protein 1b.
29.(a) Anikin, A.; Buchynskyy, A.; Kempin, U.; Stembera, K.; Welzel, P.; Lantzsch, G. Angew. Chem. Int. Ed. Engl. 1999, 38, 3703–3707. Membrane anchoring and intervesicle transfer of a derivative of the antibiotic moenomycin A. (b) Kempin, U.; Henning, L.; Knoll, D.; Welzel, P.; Muller, D.; Markus, A.; van Heijenoort, J. Tetrahedron 1997, 53, 17669–17690. Moenomycin A: new chemistry that allows to attach the antibiotic to reporter groups, solid supports, and proteins.
30.Yuan, Y.; Fuse, S.; Ostash, B.; Sliz, P.; Kahne D.; Walker, S. ACS Chem. Biol. 2008, 3, 429–436. Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotics design.
31.Ostash, B.; Walker, S. Curr. Opin. Chem. Biol. 2005, 9, 459–466. Bacterial transglycosylase inhibitors.
32.Welzel, P.; Kunisch, F.; Kruggel, F.; Stein, H.; Scherkenbeck, J.; Hiltmann, A.; Duddeck, H.; Muller, D.; Maggio, J. E.; Fehlhaber, H.-W.; Seibert, G.; van Heijenoort, Y.; van Heijenoort, J. Tetrahedron 1987, 43, 585–598. Moenomycin A: minimum structural requirements for biological activity.
33.Kurz, M.; Guba, W.; Vertesy, L. Eur. J. Biochem. 1998, 252, 500–507. Three-dimensional structure of moenomycin A: A potent inhibitor of penicillin-binding protein 1b.
34.Fuse, S.; Tsukamoto, H.; Yuan, Y.; Andrew Wang, T.-S.; Zhang, Y.; Bolla, M.; Walker, S.; Sliz, P.; Kahne, D. ACS Chem. Biol. 2010, 5, 701–711. Functional and structural analysis of a key region of the cell wall inhibitor moenomycin.
35.Chen, L.; Walker, D.; Binyuan, S.; Hu, Y.; Walker, S.; Kahne, D. Proc. Natl. Acad. Sci. USA 2003, 100, 5658–5663. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate.
36.Sofia, M. J.; Allanson, N.; Hatzenbuhler, N. T.; Jain, R.; Kakarla, R.; Kogan, N.; Liang, R.; Liu, D. S.; Silva, D. J.; Wang, H. M.; Gange, D.; Anderson, J.; Chen, A.; Chi, F.; Dulina, R.; Huang, B. W.; Kamau, M.; Wang, C. W.; Baizman, E.; Branstrom, A.; Bristol, N.; Goldman, R.; Han, K. H.; Longley, C.; Midha, S.; Axelrod, H. R. J. Med. Chem. 1999, 42, 3193–3198. Discovery of novel disaccharide antibacterial angents using a combinatorial library approach.
37.Garneau, S.; Qiao, L.; Chen, L.; Walker, S.; Vederas, J. C. Bioorg. Med. Chem. 2004, 12, 6473–6494. Synthesis of mono- and disaccharide analogs of moenomycin and lipid II for inhibition of transglycosylase activity of penicillin-binding protein 1b.
38.Adachi, M.; Zhang, Y.; Leimkuhler, C.; Sun, B. Y.; LaTour, J. V.; Kahne, D. E. J. Am. Chem. Soc. 2006, 128, 14012–14013. Degradation and reconstruction of moenomycin A and derivatives: dissecting the function of the isoprenoid chain.
39.Cheng, T. J. R.; Wu, Y. T.; Yang, S. T.; Lo, K. H.; Chen, S. K.; Chen, Y. H.; Huang, W. I.; Yuan, C. H.; Guo, C. W.; Huang, L. Y.; Chen, K. T.; Shih, H. W.; Cheng, Y. S. E.; Cheng, W. C.; Wong, C. H. Bioorg. Med. Chem. 2010, 18, 8512–8529. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase.
40.Shih, H. W.; Chen, K. T.; Chen, S. K.; Huang, C. Y.; Cheng, T. J. R.; Ma, C.; Wong, C. H.; Cheng, W. C. Org. Biomol. Chem. 2010, 8, 2586–2593. Combinatorial approach toward synthesis of small molecule libraries as bacterial transglycosylase inhibitors.
41.Imai, Y. N.; Inoue, Y.; Nakanishi, I.; Kitaura, K. J. Comput. Chem. 2009, 30, 2267–2276. Amide–π interactions between formamide and benzene.
42.Hecker, S. J.; Minich, M. L.; Lackey, K. J. Org. Chem. 1990, 55, 4904–4911. Synthesis of compounds designed to inhibit bacterial cell wall transglycosylation.
43.Qiao, L.; Vederas, J. C. J. Org. Chem. 1993, 58, 3480–3482. Synthesis of a C-phosphonate disaccharide as a potential inhibitor of peptidoglycan polymerization by transglycosylase.
44.Khan, S. N.; Jung, Y. M.; Kim, B. J.; Cho, H.; Lee, J.; Kim, H. S. Bioorg. Med. Chem. Lett. 2008, 18, 2558–2561. Synthesis and antimicrobial activity of 7α-amino-23,24-bisnor-5α-cholan-22-ol derivatives.
45.Pandit, C. R.; Mani, N. S. Synthesis 2009, 23, 4032–4036. Expedient reductive amination of aldehyde bisulfite adducts.
46.中央研究院基因體中心,鄭婷仁博士實驗室未發表之結果.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top