參考文獻
1.Nelson, J., “The Physics of Solar Cells”, Imperial College Press, ISBN: 186094-340-3, 2003
2.Yang, P., “The Chemistry of Nanostructured Materials”, World Scientific, ISBN: 9789612384058, 2003
3.Fujishima, A., Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature 37 (1972) 238.
4.http://www.globalwarmingart.com/wiki/File:Solar_Spectrum_png
5.黃建昇,“結晶矽太陽電池發展近況”, 工業材料雜誌 2003, 203 期, 150.6.http://cdnet.stpi.org.tw/techroom/market/energy/energy022.htm, 國 家 實 驗 研 究 院科技政策研究與資訊中心 (Science & Technology Policy Research and Information Center,STPI).
7.https://en.wikipedia.org/
8.Grama, S. “A Survey of Thin-Film Solar Photovoltaic Industry & Technologies.” Massachusetts Institute of Technology, 2008.
9.Poortmans, J., and Arkhipov, V. “ Thin Film Solar Cells: Fabrication, Characterization and Applications. ” Wiley, 2006.
10.Gratzel, M., ”Photoelectrochemical cells”, Nature 414, 2001, 338-344.
11.Lenzmann, F. O.; Kroon, J. M. 2007. ”Recent Advances in Dye-Sensitized Solar Cells.” Advances in OptoElectronics 2007: 1
12.Ruhle, S.; Shalom, M.; Zaban, A. ”Quantum-Dot-Sensitized Solar Cells.” ChemPhysChem 2010, 11, 2290–2304.
13.Gonzalez-Pedro, V.; Xu, X.; Mora-Sero, I.; Bisquert, J. “Modeling High-Efficiency Quantum Dot Sensitized Solar Cells.” ACS Nano 2010, 4, 5783–5790.
14.Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q. “Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities.” ACS Nano 2011, 5, 3172–3181.
15.Willis, S. M.; Cheng, C.; Assender, H. E.; Watt, A. A. R. “The Transitional Heterojunction Behavior of PbS/ZnO Colloidal Quantum Dot Solar Cells.” Nano Lett. 2012, 1522-1526.
16.Chidichimo, G.; Filippelli, L. “Organic Solar Cells: Problems and Perspectives.” International Journal of Photoenergy 2010, 2010, 1–11.
17.Li, G.; Zhu, R.; Yang, Y. ” Polymer Solar Cells.” Nature 2012, 6, 153–161.
18.Liao, J.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. “Oriented Hierarchical Single Crystalline Anatase TiO2 Nanowire Arrays on Ti-Foil Substrate for Efficient Flexible Dye-Sensitized Solar Cells.“ Energy Environ. Sci. 2012, 5, 5750.
19.Liu, B.; Aydil, E. S. “Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells.” J. Am. Chem. Soc. 2009, 131, 3985–3990.
20.Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. “Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications.“ Nano Lett. 2008, 8, 3781–3786.
21.Yan, J.; Zhou, F. “TiO2 Nanotubes: Structure Optimization for Solar Cells.” J. Mater. Chem. 2011, 21, 9406–9418.
22.Liao, J.-Y.; Lei, B.-X.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. “Oriented Hierarchical Single Crystalline Anatase TiO2 Nanowire Arrays on Ti-Foil Substrate for Efficient Flexible Dye-Sensitized Solar Cells.” Energy Environ. Sci. 2012, 5, 5750.
23.Ye, M.; Xin, X.; Lin, C.; Lin, Z. “High Efficiency Dye-Sensitized Solar Cells Based on Hierarchically Structured Nanotubes.” Nano Lett. 2011, 11, 3214–3220.
24.Zhuge, F.; Qiu, J.; Li, X.; Gao, X.; Gan, X.; Yu, W. “Toward Hierarchical TiO2 Nanotube Arrays for Efficient Dye-Sensitized Solar Cells.” Adv. Mater. 2011, 23, 1330–1334.
25.Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-H.; Decoppet, J.-D.; Tsai, J.-H.; Gratzel, C.; Wu, C.-G.; et al. “Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells.” ACS Nano 2009, 3, 3103–3109.
26.Gratzel, M. ”Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells.” Inorg. Chem. 2005, 44, 6841–6851.
27.Smith, Y. R.; Subramanian, V. R. “Heterostructural Composites of TiO2 Mesh−TiO2 Nanoparticles Photosensitized with CdS: a New Flexible Photoanode for Solar Cells.” J. Phys. Chem. C 2011, 115, 8376–8385.
28.Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. “Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell.” Nano Lett. 2011, 11, 666–671.
29.Qian, J.; Liu, P.; Xiao, Y.; Jiang, Y.; Cao, Y.; Ai, X.; Yang, H. “TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells.” Adv. Mater. 2009, 21, 3663–3667.
30.Xu, G.; Ji, S.; Miao, C.; Liu, G.; Ye, C. “Effect of ZnS and CdS Coating on the Photovoltaic Properties of CuInS2-Sensitized Photoelectrodes.” J. Mater. Chem. 2012, 22, 4890–4896.
31.Acharya, K. P.; Hewa-Kasakarage, N. N.; Alabi, T. R.; Nemitz, I.; Khon, E.; Ullrich, B.; Anzenbacher, P.; Zamkov, M. “Synthesis of PbS/TiO2 Colloidal Heterostructures for Photovoltaic Applications.” J. Phys. Chem. C 2010, 114, 12496–12504.
32.De Geyter, B.; Justo, Y.; Moreels, I.; Lambert, K.; Smet, P. F.; Van Thourhout, D.; Houtepen, A. J.; Grodzinska, D.; de Mello Donega, C.; Meijerink, A.; et al. “The Different Nature of Band Edge Absorption and Emission in Colloidal PbSe/CdSe Core/Shell Quantum Dots.” ACS Nano 2011, 5, 58–66.
33.Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. “Hydrogen-Treated WO3 Nanoflakes Show Enhanced Photostability.” Energy Environ. Sci. 2012.
34.Li, L.; Duan, L.; Wen, F.; Li, C.; Wang, M.; Hagfeldt, A.; Sun, L. “Visible Light Driven Hydrogen Production From a Photo-Active Cathode Based on a Molecular Catalyst and Organic Dye-Sensitized P-Type Nanostructured NiO.” Chem. Commun. 2012, 48, 988.
35.Vojvodic, A.; Norskov, J. K. “Optimizing Perovskites for the Water-Splitting Reaction.” Science 2011, 334, 1355–1356.
36.Lee, J.; Mubeen, S.; Ji, X.; Stucky, G. D.; Moskovits, M. “Plasmonic Photoanodes for Solar Water Splitting with Visible Light.” Nano Lett. 2012, 1208.
37.Xi, L.; Tran, P. D.; Chiam, S. Y.; Bassi, P. S.; Mak, W. F.; Mulmudi, H. K.; Batabyal, S. K.; Barber, J.; Loo, J. S. C.; Wong, L. H. “Co3O4-Decorated Hematite Nanorods as an Effective Photoanode for Solar Water Oxidation.” J. Phys. Chem. C 2012, 116, 13884–13889.
38.Su, J.; Feng, X.; Sloppy, J. D.; Guo, L.; Grimes, C. A. “Vertically Aligned WO3 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis and Photoelectrochemical Properties.” Nano Lett. 2011, 11, 203–208.
39.Nowotny, J.; Bak, T.; Nowotny, M. K.; Sheppard, L. R. “Titanium Dioxide for Solar-Hydrogen I. Functional Properties.” International Journal of Hydrogen Energy 2007, 32, 2609–2629.
40.Thimsen, E.; Riha, S. C.; Baryshev, S. V.; Martinson, A. B. F.; Elam, J. W.; Pellin, M. J. Atomic Layer Deposition of the Quaternary Chalcogenide Cu 2ZnSnS4. Chem. Mater. 2012, 120809093129001.
41.Bag, S.; Gunawan, O.; Gokmen, T.; Zhu, Y.; Todorov, T. K.; Mitzi, D. B. “Low Band Gap Liquid-Processed CZTSe Solar Cell with 10.1% Efficiency.” Energy Environ. Sci. 2012, 5, 7060.
42.Wang, P.; Minegishi, T.; Ma, G.; Takanabe, K.; Satou, Y.; Maekawa, S.; Kobori, Y.; Kubota, J.; Domen, K. “Photoelectrochemical Conversion of Toluene to Methylcyclohexane as an Organic Hydride by Cu2ZnSnS4-Based Photoelectrode Assemblies.” J. Am. Chem. Soc. 2012, 134, 2469–2472.
43.Wang, L.; Wang, W.; Sun, S. “A Simple Template-Free Synthesis of Ultrathin Cu2ZnSnS4 Nanosheets for Highly Stable Photocatalytic H2 Evolution.” J. Mater. Chem. 2012, 22, 6553.
44.Hsu, W. C.; Bob, B.; Yang, W.; Chung, C. H.; Yang, Y. “Reaction Pathways for the Formation of Cu2ZnSn (Se, S)4 Absorber Materials From Liquid-Phase Hydrazine-Based Precursor Inks.” Energy Environ. Sci. 2012.
45.Zhou, Y.-L.; Zhou, W.-H.; Li, M.; Du, Y.-F.; Wu, S.-X. “Hierarchical Cu2ZnSnS4 Particles for a Low-Cost Solar Cell: Morphology Control and Growth Mechanism.” J. Phys. Chem. C 2011, 115, 19632–19639.
46.Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V. “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture.” J. Am. Chem. Soc. 2008, 130, 4007–4015.
47.Arai, T.; Tajima, S.; Sato, S.; Uemura, K.; Morikawa, T.; Kajino, T. “Selective CO2 Conversion to Formate in Water Using a CZTS Photocathode Modified with a Ruthenium Complex Polymer.” Chem. Commun. 2011, 47, 12664.
48.Zaban, A.; Greenshtein, M.; Bisquert, J. “Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements.” ChemPhysChem 2003, 4, 859–864.
49.Bisquert, J.; Vikhrenko, V. S. “Interpretation of the Time Constants Measured by Kinetic Techniques in Nanostructured Semiconductor Electrodes and Dye-Sensitized Solar Cells.” J. Am. Chem. Soc. 2004, 108, 2313–2322.
50.Fabregat-Santiago, F.; Garcia-Canadas, J.; Palomares, E.; Clifford, J. N.; Haque, S. A.; Durrant, J. R.; Garcia-Belmonte, G.; Bisquert, J. “The Origin of Slow Electron Recombination Processes in Dye-Sensitized Solar Cells with Alumina Barrier Coatings.” J. Appl. Phys. 2004, 96, 6903–6907.
51.Robert F. Pierret, Semiconductor Device Fundamentals, Addison-Wiley, 1996