跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/09 17:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林子堯
研究生(外文):Tzu-Yao Lin
論文名稱:Satorra-Bentler量尺化檢定統計量於模型錯誤界定之適用性
論文名稱(外文):Applicability of Satorra-Bentler Scaled Test Statistic under Model Misspecification
指導教授:翁儷禎翁儷禎引用關係
口試委員:鄭中平謝雨生
口試日期:2011-12-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:心理學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:182
中文關鍵詞:結構方程模型Satorra-Bentler量尺化檢定統計量模型錯誤界定違反常態分配
外文關鍵詞:structural equation modelingSatorra-Bentler scaled test statisticmodel misspecificationnon-normality
相關次數:
  • 被引用被引用:0
  • 點閱點閱:701
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Satorra-Bentler量尺化檢定統計量(Satorra-Bentler scaled test statistic, TSB, Satorra & Bentler, 1994)為檢定結構方程模式於資料違反常態之統計量。學者發現當模型錯誤界定時,TSB的平均數與決策力會因偏離常態程度提高而下降,可能不適用於高峰度等嚴重偏離常態情況(Curran, West, & Finch, 1996; Foss, Joreskog, & Olsson, 2011)。基於在何種偏離常態假設時不宜使用TSB依然未解,本模擬研究檢視模型錯誤界定下TSB可能適用之變項偏態與峰度範圍,操弄的因子包括三種不同大小的模型、模型錯誤界定的程度 (定義為root mean square error of approximation [RMSEA] 的數值大小 = .025, .05, .08, .1) 、樣本數與模型參數數目的比值 (5, 10, 15, 20, 50) 、變項的偏態 (0~3) 與峰度 (-1~21) 。結果顯示隨著RMSEA提高,TSB過度校正的偏誤會加劇。當RMSEA為.025時,偏離常態的對於TSB的影響較不明顯,該結果亦支持Satorra與Bentler (1994) 認為TSB校正應適用於輕微模型界定錯誤的觀點。當RMSEA數值更高時,除少數情境外,變項偏態小於1且峰度介於-1和4會使得TSB的相對平均偏誤絕對值均小於20%,而偏態介於0到2峰度介於-1至7則使得TSB的實證決策力偏誤絕對值小於.1。本研究提供TSB於模型錯誤界定情境下可能適用之變項偏態與峰度範圍參考,以便協助實證研究者使用Satorra-Bentler量尺化檢定統計量。

As the violation of normality impacts statistical inferences in structural equation modeling, Satorra and Bentler (1988, 1994) proposed the Satorra-Bentler scaled test statistic (TSB) to adjust the normal theory test statistic for non-normal data. Scholars found this test statistic tended to decrease as non-normality increased with model misspecification, and indicated it should not be used with extreme kurtosis (Curran, West, & Finch, 1996; Foldnes, Olsson, & Foss, 2012; Foss, Joreskog, & Olsson, 2011). However, when non-normality would be problematic for TSB usage remains unknown. The present simulation study investigated the applicable distributional situation of skewness and kurtosis for TSB. The manipulated conditions included modelling model sizes, degrees of model misspecification (defined by root mean square error of approximation [RMSEA] = .025, .05, .08, .1), sample size to number of parameters ratios (5, 10, 15, 20, 50), marginal skewness (0~3) and marginal kurtosis (-1~21) of indicators. The results suggested that over-correction of TSB was severer as RMSEA increased. When RMSEA = .025, the effect of non-normality was minor, and it supported the proposition by Satorra and Bentler (1994) that the correction was applicable for minimal model misspecification. For higher RMSEAs, the skewness being 0 or 1 and kurtosis between -1 and 4 yielded the absolute values of relative bias of mean lower than 20% in most cases. For the empirical power loss of TSB to be less than .1 as caused by non-normality, the skewness would need to range from 0 to 2 with kurtosis between -1 and 7. This study provided the references for possible performance of Satorra-Bentler scaled test statistic at various distributional situations to assist researchers’ use of this test statistic in structural equation modeling.


1. Introduction 1
2. Method 9
3. Results 17
4. Discussion 33
5. References 41
6. Appendices 49
A Histograms of Manipulated Distribution at Sample Size = 1000,000 49
B Average Mean and Standard Error of Skewness over Idicators 50
C Average Mean and Standard Error of Kurtosis over Idicators 74
D Mean and Standard Error of TSB 98
E Rates of Non-convergence 130
F Rates of Heywood Case 142
G Rates of Improper Correlation Estimate 154
H Relative Bias of Mean of TSB 155
I Empirical Power of TSB 167
J Graphs for Relative Bias of Mean of TSB 178
K Graphs for Relative Bias of TSB at N = 1,000,000 182

Bandalos, D. L. (2006). The use of Monte Carol studies in structural equation modeling research. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 385-426). Greenwich, CT: Information Age.
Bentler, P. M., & Chou, C.-P. (1987). Practical Issues in structural modeling. Sociological Methods Research, 16, 78-117. doi: 10.1177/0049124187016001004
Bentler, P. M., & Dudgeon, P. (1996). Covariance structure analysis: Statistical practice, theory, and directions. Annual Review of Psychology, 47, 563-592. doi: 10.1146/annurev.psych.47.1.563
Bentler, P. M., & Yuan, K. H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34, 181-197. doi: 10.1207/S15327906Mb340203
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley & Sons.
Boomsma, A. (1983). On the robustness of LISREL (Maximum Likelihood Estimation) against small sample size and non-normality (Unpublished doctoral dissertation). University of Groningen, Netherlands.
Boomsma, A. (1987). The robustness of maximum likelihood estimation in structural equation models. In R. E. P. Cuttance (Ed.), Structural modeling by example: Application in educational, sociological and behavioral research (pp. 160-188). New York: Cambridge University Press.
Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. Du Toit, & D. Sorbom (Eds.), Structural equation models: Present and future (pp. 139-168). Chicago: Scientific Software International.
Box, G. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems, 1. Effect of inequality of variance in the one-way classification. Annals of Mathematical Statistics, 25, 290-302. doi: 10.1214/aoms/1177728786
Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1-24.
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83. doi: 10.1111/j.2044-8317.1984.tb00789.x
Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21, 230-258. doi: 10.1177/0049124192021002005
Chou, C. P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 347-357. doi: 10.1111/j.2044-8317.1991.tb00966.x
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2 ed.). Hillsdale, NJ: Lawrence Erlbaum.
Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J., & Chen, F. (2002). The noncentral chi-square distribution in misspecified structural tquation models: Finite sample results from a Monte Carlo simulation. Multivariate Behavioral Research, 37, 1 - 36. doi: 10.1207/S15327906MBR3701_01
Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. (2003). Finite sampling properties of the point estimates and confidence intervals of the RMSEA. Sociological Methods Research, 32, 208-252. doi: 10.1177/0049124103256130
Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16-29. doi: 10.1037/1082-989X.1.1.16
DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23, 225-241. doi: 10.1177/073428290502300303
Finney, S. J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling. A second course (pp. 269–314). Greenwich, CT: Information Age.
Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521-532. doi: 10.1007/BF02293811
Foldnes, N., Olsson, U. H., & Foss, T. (2012). The effect of kurtosis on the power of two test statistics in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 65, 1-18. doi: 10.1111/j.2044-8317.2010.02010.x
Foss, T., Joreskog, K. G., & Olsson, U. H. (2011). Testing structural equation models: The effect of kurtosis. Computational Statistics & Data Analysis, 55, 2263-2275. doi: 10.1016/j.csda.2011.01.012
Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 356-410. doi: 10.1207/S15328007SEM0703_2
Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Modeling: A Multidisciplinary Journal, 13, 465 - 486. doi: 10.1207/s15328007sem1303_7
Herzog, W., & Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling: A Multidisciplinary Journal, 16, 1 - 27. doi: 10.1080/10705510701301602
Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling an overview and a meta-analysis. Sociological Methods and Research, 26, 329-367. doi: 10.1177/0049124198026003003
Hox, J. J. (1998). An introduction to structural equation modeling. Family Science Review, 11, 354-373.
Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 158–176). Thousand Oaks, CA: Sage.
Hu, L.-T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-362. doi: 10.1037/0033-2909.112.2.351
Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6-23. doi: 10.1037/a0014694
Kline, R. B. (2011). Principles and practice of structural equation modeling (3 ed.). New York: Guilford Press.
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156-166. doi: 10.1037/0033-2909.105.1.156
Mulaik, S. (2009). Linear causal modeling with structural equations. Boca Raton, FL: CRC Press.
Nevitt, J., & Hancock, G. R. (2000). Improving the root mean square error of approximation for nonnormal conditions in structural equation modeling. Journal of Experimental Education, 68, 251-268. doi: 10.1080/00220970009600095
Nevitt, J., & Hancock, G. R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439 - 478. doi: 10.1207/S15327906MBR3903_3
Olsson, U. H., Foss, T., & Breivik, E. (2004). Two equivalent discrepancy functions for maximum likelihood estimation: Do their test statistics follow a non-central chi-square distribution under model misspecification? Sociological Methods and Research, 32, 453-500. doi: 10.1207/s15328007sem1201_3
Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 557-595. doi: 10.1207/s15328007sem0704_3
Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: Design and implementation. Structural Equation Modeling: A Multidisciplinary Journal, 8, 287 - 312. doi: 10.1207/S15328007SEM0802_7
Raykov, T., & Widaman, K. F. (1995). Issues in applied structural equation modeling research. Structural Equation Modeling: A Multidisciplinary Journal, 2, 289-318. doi: 10.1080/10705519509540017
Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28, 1626-1646. doi: 10.1177/014616702237645
Saris, W. E., & Satorra, A. (1993). Power evaluations in structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 181-204). Newbury Park, CA: SAGE Publications.
Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. Paper presented at the Business and Economic Statistics Section of the American Statistical Association, Alexandria, VA.
Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. v. Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Thousand Oaks, CA: Sage.
Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83-90. doi: 10.1007/BF02294150
Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24, 148-169. doi: 10.1016/j.jom.2005.05.001
Steiger, J. H., & Lind, J. M. (1980). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA.
Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential Chi-square statistics. Psychometrika, 50, 253-263. doi: 10.1007/BF02294104
Tadikamalla, P. R. (1980). On simulating nonnormal distributions. Psychometrika, 45, 273-279. doi: 10.1007/BF02294081
Tanaka, J. S. (1987). "How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146. doi: 10.2307/1130296
Ullman, J. B., & Bentler, P. M. (2003). Structural equation modeling. In J. A. Schinka, W. F. Velicer, & I. B. Weiner (Eds.), Handbook of psychology (Vol. 2, pp. 607-634). Hoboken, NJ: John Wiley & Sons, Inc.
Vale, D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465-471. doi: 10.1007/BF02293687
West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56-75). Thousand Oaks, CA: Sage.
Yuan, K.-H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767-774. doi: 10.1080/01621459.1997.10474029
Yuan, K.-H., & Bentler, P. M. (1998). Normal theory based test statistics in structural equation modelling. British Journal of Mathematical and Statistical Psychology, 51, 289-309. doi: 10.1111/j.2044-8317.1998.tb00682.x


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top