|
Bandalos, D. L. (2006). The use of Monte Carol studies in structural equation modeling research. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 385-426). Greenwich, CT: Information Age. Bentler, P. M., & Chou, C.-P. (1987). Practical Issues in structural modeling. Sociological Methods Research, 16, 78-117. doi: 10.1177/0049124187016001004 Bentler, P. M., & Dudgeon, P. (1996). Covariance structure analysis: Statistical practice, theory, and directions. Annual Review of Psychology, 47, 563-592. doi: 10.1146/annurev.psych.47.1.563 Bentler, P. M., & Yuan, K. H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34, 181-197. doi: 10.1207/S15327906Mb340203 Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley & Sons. Boomsma, A. (1983). On the robustness of LISREL (Maximum Likelihood Estimation) against small sample size and non-normality (Unpublished doctoral dissertation). University of Groningen, Netherlands. Boomsma, A. (1987). The robustness of maximum likelihood estimation in structural equation models. In R. E. P. Cuttance (Ed.), Structural modeling by example: Application in educational, sociological and behavioral research (pp. 160-188). New York: Cambridge University Press. Boomsma, A., & Hoogland, J. J. (2001). The robustness of LISREL modeling revisited. In R. Cudeck, S. Du Toit, & D. Sorbom (Eds.), Structural equation models: Present and future (pp. 139-168). Chicago: Scientific Software International. Box, G. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems, 1. Effect of inequality of variance in the one-way classification. Annals of Mathematical Statistics, 25, 290-302. doi: 10.1214/aoms/1177728786 Browne, M. W. (1974). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, 8, 1-24. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83. doi: 10.1111/j.2044-8317.1984.tb00789.x Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21, 230-258. doi: 10.1177/0049124192021002005 Chou, C. P., Bentler, P. M., & Satorra, A. (1991). Scaled test statistics and robust standard errors for non-normal data in covariance structure analysis: A Monte Carlo study. British Journal of Mathematical and Statistical Psychology, 44, 347-357. doi: 10.1111/j.2044-8317.1991.tb00966.x Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2 ed.). Hillsdale, NJ: Lawrence Erlbaum. Curran, P. J., Bollen, K. A., Paxton, P., Kirby, J., & Chen, F. (2002). The noncentral chi-square distribution in misspecified structural tquation models: Finite sample results from a Monte Carlo simulation. Multivariate Behavioral Research, 37, 1 - 36. doi: 10.1207/S15327906MBR3701_01 Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. (2003). Finite sampling properties of the point estimates and confidence intervals of the RMSEA. Sociological Methods Research, 32, 208-252. doi: 10.1177/0049124103256130 Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16-29. doi: 10.1037/1082-989X.1.1.16 DiStefano, C., & Hess, B. (2005). Using confirmatory factor analysis for construct validation: An empirical review. Journal of Psychoeducational Assessment, 23, 225-241. doi: 10.1177/073428290502300303 Finney, S. J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling. A second course (pp. 269–314). Greenwich, CT: Information Age. Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43, 521-532. doi: 10.1007/BF02293811 Foldnes, N., Olsson, U. H., & Foss, T. (2012). The effect of kurtosis on the power of two test statistics in covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 65, 1-18. doi: 10.1111/j.2044-8317.2010.02010.x Foss, T., Joreskog, K. G., & Olsson, U. H. (2011). Testing structural equation models: The effect of kurtosis. Computational Statistics & Data Analysis, 55, 2263-2275. doi: 10.1016/j.csda.2011.01.012 Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 356-410. doi: 10.1207/S15328007SEM0703_2 Fox, J. (2006). Structural equation modeling with the sem package in R. Structural Equation Modeling: A Multidisciplinary Journal, 13, 465 - 486. doi: 10.1207/s15328007sem1303_7 Herzog, W., & Boomsma, A. (2009). Small-sample robust estimators of noncentrality-based and incremental model fit. Structural Equation Modeling: A Multidisciplinary Journal, 16, 1 - 27. doi: 10.1080/10705510701301602 Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling an overview and a meta-analysis. Sociological Methods and Research, 26, 329-367. doi: 10.1177/0049124198026003003 Hox, J. J. (1998). An introduction to structural equation modeling. Family Science Review, 11, 354-373. Hoyle, R. H., & Panter, A. T. (1995). Writing about structural equation models. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 158–176). Thousand Oaks, CA: Sage. Hu, L.-T., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted? Psychological Bulletin, 112, 351-362. doi: 10.1037/0033-2909.112.2.351 Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6-23. doi: 10.1037/a0014694 Kline, R. B. (2011). Principles and practice of structural equation modeling (3 ed.). New York: Guilford Press. Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156-166. doi: 10.1037/0033-2909.105.1.156 Mulaik, S. (2009). Linear causal modeling with structural equations. Boca Raton, FL: CRC Press. Nevitt, J., & Hancock, G. R. (2000). Improving the root mean square error of approximation for nonnormal conditions in structural equation modeling. Journal of Experimental Education, 68, 251-268. doi: 10.1080/00220970009600095 Nevitt, J., & Hancock, G. R. (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439 - 478. doi: 10.1207/S15327906MBR3903_3 Olsson, U. H., Foss, T., & Breivik, E. (2004). Two equivalent discrepancy functions for maximum likelihood estimation: Do their test statistics follow a non-central chi-square distribution under model misspecification? Sociological Methods and Research, 32, 453-500. doi: 10.1207/s15328007sem1201_3 Olsson, U. H., Foss, T., Troye, S. V., & Howell, R. D. (2000). The performance of ML, GLS, and WLS estimation in structural equation modeling under conditions of misspecification and nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 557-595. doi: 10.1207/s15328007sem0704_3 Paxton, P., Curran, P. J., Bollen, K. A., Kirby, J., & Chen, F. (2001). Monte Carlo experiments: Design and implementation. Structural Equation Modeling: A Multidisciplinary Journal, 8, 287 - 312. doi: 10.1207/S15328007SEM0802_7 Raykov, T., & Widaman, K. F. (1995). Issues in applied structural equation modeling research. Structural Equation Modeling: A Multidisciplinary Journal, 2, 289-318. doi: 10.1080/10705519509540017 Russell, D. W. (2002). In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28, 1626-1646. doi: 10.1177/014616702237645 Saris, W. E., & Satorra, A. (1993). Power evaluations in structural equation models. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 181-204). Newbury Park, CA: SAGE Publications. Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. Paper presented at the Business and Economic Statistics Section of the American Statistical Association, Alexandria, VA. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. v. Eye & C. C. Clogg (Eds.), Latent variables analysis: Applications for developmental research (pp. 399-419). Thousand Oaks, CA: Sage. Satorra, A., & Saris, W. E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83-90. doi: 10.1007/BF02294150 Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24, 148-169. doi: 10.1016/j.jom.2005.05.001 Steiger, J. H., & Lind, J. M. (1980). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA. Steiger, J. H., Shapiro, A., & Browne, M. W. (1985). On the multivariate asymptotic distribution of sequential Chi-square statistics. Psychometrika, 50, 253-263. doi: 10.1007/BF02294104 Tadikamalla, P. R. (1980). On simulating nonnormal distributions. Psychometrika, 45, 273-279. doi: 10.1007/BF02294081 Tanaka, J. S. (1987). "How big is big enough?": Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146. doi: 10.2307/1130296 Ullman, J. B., & Bentler, P. M. (2003). Structural equation modeling. In J. A. Schinka, W. F. Velicer, & I. B. Weiner (Eds.), Handbook of psychology (Vol. 2, pp. 607-634). Hoboken, NJ: John Wiley & Sons, Inc. Vale, D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48, 465-471. doi: 10.1007/BF02293687 West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 56-75). Thousand Oaks, CA: Sage. Yuan, K.-H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767-774. doi: 10.1080/01621459.1997.10474029 Yuan, K.-H., & Bentler, P. M. (1998). Normal theory based test statistics in structural equation modelling. British Journal of Mathematical and Statistical Psychology, 51, 289-309. doi: 10.1111/j.2044-8317.1998.tb00682.x
|