( 您好!臺灣時間:2021/05/13 11:01
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Chih-Hsien Su
論文名稱:嗜熱性真菌 Myceliophthora heterothallica 之化學成分及其生物活性研究
論文名稱(外文):Studies on the Chemical Constituents and Their Biological Activities of the Thermophilic Fungus, Myceliophthora heterothallica
中文關鍵詞:嗜熱性真菌Myceliophthora heterothallica抗癌活性抗菌活性天然物純化
外文關鍵詞:Myceliophthora heterothallicathermophilic fungusnatural product purificationanti-bacteria activityanti-cancer activity
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在於尋找真菌Myceliophthora heterothallica中具有生物活性
heterothallica 的培養溫度為45℃,初步的活性測試顯示此真菌的乙酸乙酯萃取物有良好的抗癌和抗菌活性,為了瞭解Myceliophthora heterothallica 具有生物活性的化合物為何,在研究中以大量培養的方式以取得較為大量的萃取物,之後再以不同的純化方式進行純化,並以質譜和核磁共振的方式解出化合物的結構。

研究中得到了十二個化合物,其中包含了十一個已知化合物及一個先前未被發表的化合物。而除了分離和純化之外,這些純化後的化合物進行了包括了抗癌活性和抗菌活性生物活性的測試, 實驗結果發現其中有一個化合物具有抗菌的活性是先前未被報導過的,之後這些化合物的其他生物活性或是作用機制或許可以在之後的研究中繼續探討。

The aim of this research is to search for bioactive secondary metabolites from the fungus Myceliophthora heterothallica in order to obtain compounds not previously reported in the literature. Myceliophthora heterothallica was cultured at 45 ℃. Preliminary bioactivity tests showed that the EtOAc crude extract showed good bioactivity on anti-cancer and anti-bacteria bioassays. In order to identify the bioactive compounds of Myceliophthora heterothallica, the fungi was large-scale cultured to obtain large amounts of fungi extract. After extraction, various purification methods (gel filtration, SiO2 open column, HPLC) were applied to purify the bioactive compounds and the purified compounds were identified by NMR and mass spectroscopy.
There were twelve compounds obtained in this study, including eleven known and one compound never reported previously. In addition to purification of compounds, anti-bacteria and anti-cancer bioactivity was tested. A known compound was shown to exhibit previously unreported anti-bacterial activity which warrants further research into its mechanism and biochemistry.

摘要 II
Abstract III
致謝 V
Contents VI
Content of Figures IX
Content of Tables XIV
Chapter 1 1
1.1 Thermophilic Fungi 1
1.2 Myceliophthora heterothallica 2
1.3 Literature Review of Myceliophthora 4
Waol A and B: 4
Estatin A and B: 5
Myceliothermophins A–E: 5
1.4 Objective 7
Chapter 2 9
2.1 Materials 9
2.1.1 Fungi Strains 9
2.1.2 Medium for Myceliophthora heterothallica 9
2.1.3 Instruments 10
2.2 Methods 11
2.2.1 Flow Chart 11
2.2.2 Bioactivity Screening 11
2.2.3 Extraction, Isolation and Purification 12
2.2.4 Bacteria Culture 14
2.2.5 ITS region sequence identification for fungi 14
Chapter 3 16
Bioactivity-guided Compound Purification 16
Chapter 4 20
Structure Elucidation and Their Bioactivities 20
4.1 Cyclo(Ile-Pro) (1) 20
4.2 Cyclo(Val-Pro) (2) 24
4.3 Cyclo(Tyr-Pro) (3) 28
4.4 Cyclo(Phe-Pro) (4) 32
4.5 Cyclo(Phe-Leu) (5) 36
4.6 Bisdethiobis(methylthio)gliotoxin (6) 40
4.7 Phenylacetic acid (7) 44
4.8 4-Hydroxy-benzaldehyde (8) 47
4.9 Demethylmacrosporine (9) 49
4.10 Chaetochromin (10) 52
4.11 UCS1025B (11) 56
4.12 Compound 12 (12) 63
4.13 Pure compound Biological Activities 68
4.13.1 Anti-bacteria activity 68
4.13.2 Anti-cancer activity 69
Chapter 5 71
Discussion 71
Reference 75

1.Maheshwari, R., G. Bharadwaj, and M.K. Bhat, Thermophilic fungi: Their physiology and enzymes. Microbiology and Molecular Biology Reviews, 2000. 64(3): p. 461-488.
2.Rajasekaran, A.K. and R. Maheshwari, Thermophilic Fungi - an Assessment of Their Potential for Growth in Soil. Journal of Biosciences, 1993. 18(3): p. 345-354.
3.Ben-Zioni, A., C. Itai, and Y. Vaadia, Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol, 1967. 42(3): p. 361-5.
4.Burke, R.M. and D.H. Jennings, Effect of Sodium-Chloride on Growth-Characteristics of the Marine Yeast Debaryomyces-Hansenii in Batch and Continuous Culture under Carbon and Potassium Limitation. Mycological Research, 1990. 94: p. 378-388.
5.Freeling, M. and D.C. Bennett, Maize Adh1. Annual Review of Genetics, 1985. 19: p. 297-323.
6.Bai, Z.H., L.M. Harvey, and B. McNeil, Oxidative stress in submerged cultures of fungi. Critical Reviews in Biotechnology, 2003. 23(4): p. 267-302.
7.Chappell, J. and K. Hahlbrock, Transcription of Plant Defense Genes in Response to Uv-Light or Fungal Elicitor. Nature, 1984. 311(5981): p. 76-78.
8.Lejohn, H.B. and C.E. Braithwaite, Heat and Nutritional Shock-Induced Proteins of the Fungus Achyla Are Different and under Independent Transcriptional Control. Canadian Journal of Biochemistry and Cell Biology, 1984. 62(9): p. 837-846.
9.Chen, K.-Y., Taxonomical study of thermophilic and thermotolerant fungi in Taiwan, in Institute of Botany, 1992, National Taiwan University.
10.Cooney, D.G., Thermophilic fungi: an account of their biology, activities and classification, Freeman & Co. San francisco and London, 1964.
11.van den Brink, J., et al., Phylogeny of the industrial relevant, thermophilic genera Myceliophthora and Corynascus. Fungal Diversity, 2012. 52(1): p. 197-207.
12.van den Brink, J., et al., Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol, 2013. 79(4): p. 1316-24.
13.J, C., Sur quelques maladies du blanc de champignons. Cr Hebd Seanc Acad Sci Paris, 1892. 114: p. 849–851.
14.Sigler, L., et al., New records from India and redescripton of Corynascus thermophilus and its anamorph Myceliophthora fergusii. Mycotaxon, 1998. 68: p. 185-192.
15.Snider, B.B., X.L. Gao, and M. Nakadai, Synthetic studies on Tan-2483A and FD-211 (waol A). Abstracts of Papers of the American Chemical Society, 2002. 224: p. U254-U254.
16.Gao, X.L., M. Nakadai, and B.B. Snider, Synthesis of (-)-TAN-2483A. Revision of the structures and syntheses of (+/-)-FD-211 (Waol A) and (+/-)-FD-212 (Waol B). Organic Letters, 2003. 5(4): p. 451-454.
17.Nozawa, O., et al., Waol B, a new trihydrofuran derivative with cytocidal activity, isolated from Myceliophthora lutea. J Antibiot (Tokyo), 2000. 53(11): p. 1296-300.
18.Yaginuma, S., et al., Isolation and Characterization of New Thiol Protease Inhibitors Estatin-a and Estatin-B. Journal of Antibiotics, 1989. 42(9): p. 1362-1369.
19.Yang, Y.L., et al., Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora thermophila: Elucidation of the relationship between cytotoxicity and stereoconfiguration. Chemistry-a European Journal, 2007. 13(24): p. 6985-6991.
20.Berka, R.M., et al., Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol, 2011. 29(10): p. 922-7.
21.Henry, T., P.C. Iwen, and S.H. Hinrichs, Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. Journal of Clinical Microbiology, 2000. 38(4): p. 1510-1515.
22.Stark, T. and T. Hofmann, Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). Journal of Agricultural and Food Chemistry, 2005. 53(18): p. 7222-7231.
23.Furtado, N.A.J.C., et al., Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. Journal of the Brazilian Chemical Society, 2005. 16(6B): p. 1448-1453.
24.Milne, P.J., et al., The biological activity of selected cyclic dipeptides. Journal of Pharmacy and Pharmacology, 1998. 50(12): p. 1331-1337.
25.Strom, K., et al., Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 2002. 68(9): p. 4322-4327.
26.Furukawa, T., et al., Cyclic dipeptides exhibit potency for scavenging radicals. Bioorganic & Medicinal Chemistry, 2012. 20(6): p. 2002-2009.
27.Kirby, G.W., et al., Biosynthesis of Bisdethiobis(Methylthio)Gliotoxin, a New Metabolite of Gliocladium-Deliquescens. Journal of the Chemical Society-Perkin Transactions 1, 1980(1): p. 119-121.
28.Okamoto, M., et al., Studies of Platelet-Activating-Factor (Paf) Antagonists from Microbial Products .1. Bisdethiobis(Methylthio)Gliotoxin and Its Derivatives. Chemical & Pharmaceutical Bulletin, 1986. 34(1): p. 340-344.
29.Nair, M.G. and B.A. Burke, A New Fatty-Acid Methyl-Ester and Other Biologically-Active Compounds from Aspergillus-Niger. Phytochemistry, 1988. 27(10): p. 3169-3173.
30.Andersen, R.J., M.S. Wolfe, and D.J. Faulkner, Autotoxic Antibiotic Production by a Marine Chromobacterium. Marine Biology, 1974. 27(4): p. 281-285.
32.Koyama, K., S. Natori, and Y. Iitaka, Absolute-Configurations of Chaetochromin-a and Related Bis(Naphtho-Gamma-Pyrone) Mold Metabolites. Chemical & Pharmaceutical Bulletin, 1987. 35(10): p. 4049-4055.
33.Ito, Y. and K. Ohtsubo, Teratogenicity of Oral Chaetochromin, a Polyphenolic Mycotoxin Produced by Chaetomium Spp to Mice Embryo. Bulletin of Environmental Contamination and Toxicology, 1987. 39(2): p. 299-303.
34.Kiyotaka Koyama, S.N., further characterizationof seven Bis(naphtho-gama-pyrone) congners of Ustilaginoidins, coloring matters of Claviceps virens(Ustilaginoidea virens). Chem. Pharm. Bull, 1988. 36(1): p. 146-152.
35.Ugaki, N., et al., New isochaetochromin, an inhibitor of triacylglycerol synthesis in mammalian cells, produced by Penicillium sp FKI-4942: I. Taxonomy, fermentation, isolation and biological properties. Journal of Antibiotics, 2012. 65(1): p. 15-19.
36.Agatsuma, T., et al., UCS1025A and B, new antitumor antibiotics from the fungus Acremonium species. Organic Letters, 2002. 4(25): p. 4387-4390.
37.Nakai, R., et al., UCS1025A, a novel antibiotic produced by Acremonium sp. Journal of Antibiotics, 2000. 53(3): p. 294-296.
38.Du, L.C. and L.L. Lou, PKS and NRPS release mechanisms. Natural Product Reports, 2010. 27(2): p. 255-278.
39.Koyama, K. and S. Natori, Biosynthesis of Chaetochromin-a, a Bis(Naphtho-Gamma-Pyrone), in Chaetomium Spp. Chemical & Pharmaceutical Bulletin, 1989. 37(8): p. 2022-2025.
40.He, H.Y., et al., Pyrrocidines A and B, new antibiotics produced by a filamentous fungus. Tetrahedron Letters, 2002. 43(9): p. 1633-1636.
41.Marfori, E.C., et al., Trichosetin, a novel tetramic acid antibiotic produced in dual culture of Trichoderma harzianum and Catharanthus roseus Callus. Zeitschrift Fur Naturforschung C-a Journal of Biosciences, 2002. 57(5-6): p. 465-470.
42.Marfori, E.C., et al., Phytotoxicity of the tetramic acid metabolite trichosetin. Phytochemistry, 2003. 62(5): p. 715-721.
43.Marfori, E.C., et al., Biosynthetic studies of the tetramic acid antibiotic trichosetin. Tetrahedron, 2002. 58(33): p. 6655-6658.
44.Hoye, T.R. and V. Dvornikovs, Comparative Diels-Alder reactivities within a family of valence bond isomers: A biomimetic total synthesis of (+/-)-UCS1025A. Journal of the American Chemical Society, 2006. 128(8): p. 2550-2551.
45.Faramarzi, M.A., et al., Studies on the microbial transformation of androst-1,4-dien-3, 17-dione with Acremonium strictum. Journal of Industrial Microbiology & Biotechnology, 2006. 33(9): p. 725-733.
46.PRASAD, C., Bioactive Cyclic Dipeptides. Peptides,, 1995. 16: p. 151- 164.
47.de Carvalho, M.P. and W.R. Abraham, Antimicrobial and Biofilm Inhibiting Diketopiperazines. Current Medicinal Chemistry, 2012. 19(21): p. 3564-3577.
48.Rhee, K.H., Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. International Journal of Antimicrobial Agents, 2004. 24(5): p. 423-427.
49.Rhee, K.H., In vitro activity of cyclic dipeptides against gram-positive and gram-negative anaerobic bacteria and radioprotective effect on lung cells. Journal of Microbiology and Biotechnology, 2006. 16(1): p. 158-162.
50.Koyama, K., et al., Cytotoxicity and antitumor activities of fungal bis(naphtho-gamma-pyrone) derivatives. J Pharmacobiodyn, 1988. 11(9): p. 630-5.

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔