(3.236.118.225) 您好!臺灣時間:2021/05/16 10:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余明真
研究生(外文):Ming-Chen Yu
論文名稱:鐵營養對於大鼠肌肉和肝臟tRNA硫醇鹼基修飾之影響
論文名稱(外文):Effects of Iron Status on tRNA Thio-modification in Muscle and Liver of Rat
指導教授:蕭寧馨蕭寧馨引用關係
指導教授(外文):Ning-Shin shaw
口試委員:劉奕方龔瑞林謝淑貞謝淑玲
口試日期:2013-07-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生化科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:tRNA硫醇修飾mcm5s2U高效能液相層析法 (HPLC)
外文關鍵詞:tRNAthio-modificationHPLCmcm5s2Uiron depletion-repletion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:509
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Transfer RNA (tRNA) 含豐富的鹼基修飾,目前已知達 100 多種,常見的修飾位置在 tRNA 第 34 號位置 (wobble) 和第 37 號位置,真核生物 tRNAGlu(UUC)、tRNAGln(UUG)、tRNALys(UUU) 和 tRNAArg(UCU) 上的 34 號 Uridine 鹼基 (U34) 常被修飾為 5-methyl-2- thiouridine (xm5s2U, x=為任何取代型式) 的衍生物,主要功能是使 tRNA 反密碼子與 mRNA 密碼子正確辨識與結合,缺乏修飾的核苷酸會導致轉譯效能降低且增加轉譯錯誤,進而影響基因表現。前人以鐵螯合劑 DFO 模擬大鼠肌肉細胞 (L6) 內缺鐵情況,缺鐵會減少細胞質 tRNA 硫鹼基修飾作用,但目前對大鼠肌肉和肝臟 tRNA 總鹼基修飾情形仍未完全了解。因此本研究利用高效能液相層析法 (HPLC) 分析大鼠肝臟和肌肉 tRNA 總鹼基修飾和 mcm5s2U 硫鹼基修飾情形,並進一步以 Northern blot 方法探討鐵營養影響大鼠細胞質含硫修飾 tRNAGlu(UUC)、tRNALys(UUU) 和 tRNAArg(UCU) 的修飾程度與表現量,以動物實驗進行分析,利用大鼠血紅素 (Hb) 再生法,大鼠經耗鐵期三周後,補充不同濃度硫酸亞鐵兩週,結束後根據 Hb 濃度高低將動物分成五組 4-5 g/dL、6-7 g/dL、8-9 g/dL、10-11 g/dL、≥ 12 g/dL。從 HPLC 分析結果得知,肌肉以 Hb 濃度低下 (4-5 g/dL) 組別之總 tRNA 硫醇鹼基 mcm5s2U 含量較 Hb 濃度高者 (≥ 12 g/dL) 減少將近 60%,此修飾隨著 Hb 濃度降低有減少之趨勢;其他類型的修飾鹼基則沒有顯著影響;對肝臟組織皆沒有顯著影響。在肌肉細胞質中 tRNAGlu(UUC)、tRNALys(UUU) 和 tRNAArg(UCU) 表現量,以 Hb 濃度最低 (4-5 g/dL) 比最高 (≥ 12 g/dL) 分別顯著減少 65%、45%、52%。在肌肉細胞質中 tRNALys、tRNAArg 和tRNAGlu 硫醇修飾量,以 Hb 濃度最低 (4-5 g/dL) 比最高組 (≥ 12 g/dL) 分別顯著減少 20%、24%、26%;對肝臟組織皆沒有顯著影響。本研究初步證實動物缺鐵性貧血時,會導致大鼠肌肉組織細胞質 tRNA 表現量及硫醇修飾化程度降低,以及總 tRNA 之硫鹼基 mcm5s2U 含量,且隨著鐵營養狀況良好時 tRNA 硫醇鹼基的修飾會隨之上升,而在其他常見的修飾鹼基則沒有受此影響而改變,表示鐵營養對肌肉組織 tRNA 硫醇鹼基 mcm5s2U 和細胞質中 tRNA 硫醇修飾作用具有組織專一性影響。

Transfer RNA (tRNA) are the most highly modified RNAs. To date, more than 100 species of tRNA modification have been reported. The majority of these modifications in tRNA have been found at the anticodon first (wobble) position 34, and at position 37 3’-adjacent to the anticodon. In eukaryotes, the wobble base of the tRNAs for Glu, Gln and Lys are universally modified to 5-methyl-2-thiouridine derivatives (xm5s2U), such as 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) in cytoplasmic tRNAs. The 2-thio modification xm5s2U plays a critical role in protein synthesis, efficient codon recognition and preventing misreading. Lack of xm5s2U modification in the mutant mitochondrial tRNALys from myoclonus epilepsy associated with ragged red fibers (MERRF), results in a marked defect in whole mitochondrial translation. In yeast, the mitochondrial cysteine desulfurase NFS1 is involved in the 2-thio modification of both mitochondrial and cytoplasmic tRNAs. In a rat model, the homologous protein IscS is reduced.

In this study, we investigate the effects of iron deficiency anemia on the expression and thio-modification of tRNA in both liver and skeletal muscle. Male weanling Wistar rats were rendered to different degree of iron deficiency anemia in 5 wks using a dietary iron depletion-and-repletion method. At the end of study, rats were divided into 5 groups by their final hemoglobin levels: 4-5 g/dL, 6-7 g/dL, 8-9 g/dL, 10-11 g/dL, and ≥ 12 g/dL. Small molecule RNAs were extracted from liver and gastrocnemius muscles. Total tRNAs for Glu, Lys, Arg were measured with DIG-labeled probe and Northern blotting. Thio-modified tRNAs for these amino acids were measured similarly but with APM (N-acryloylamino) phenylmercuric chloride)-Northern blotting. Furthermore, nucleosides prepared from total tRNAs were analyzed by HPLC, and mcm5s2U were quantified using 8BrG as an internal standard. In the cytosol of the muscle, the expression of total tRNAs for Lys, Glu and Lys were related to hemoglobin levels in a dose-response fashion, and they were significantly reduced by 50% in the anemic rats (by one-way ANOVA and Duncan’s multiple range test at p < 0.05). The level of thio-modified tRNA for Lys were reduced by 20% in rats of Hb < 5 g/dL, while that for Arg and Glu were reduced by 20% in rats of Hb < 10 g/dL. The level of mcm5s2U also decreases with decreasing hemoglobin level in a dose-dependent fashion,

Our results confirms that iron deficiency anemia has a tissue-specific effects on thio-modified tRNA, that total and thio-modification of tRNAs for Lys, Arg and Glu, are significantly reduced in the muscle but not in the liver.


總目錄
中文摘要 i
英文摘要 ii
縮寫名詞表 iii
總目錄 iv
前言 1
第一章 文獻回顧 3
第一節 tRNA 特性、結構與功能 3
第二節 真核生物tRNA硫醇修飾作用與重要性 5
一、 tRNA鹼基修飾之種類與功能 5
二、 tRNA wobble 位置硫醇鹼基修飾 6
三、 粒線體 tRNA 之 wobble 位置硫醇鹼基修飾異常 7
第三節 鐵硫蛋白與 tRNA 硫醇修飾之間關係 9
一、 鐵硫複合體的生合成機制 9
二、 參與 tRNA 硫醇修飾與鐵硫蛋白生合成之蛋白 10
第四節 Ubiquitin – like 系統與 tRNA 硫醇修飾之關係 12
一、 Ubiquitin 與 Ubiquitin - like 蛋白介紹 12
二、 Ubiquitin – like 系統蛋白質對 tRNA 硫醇修飾 13
第五節 營養素對 tRNA 修飾之影響 16
第二章 tRNA硫醇修飾之分析 18
第一節 tRNA 定性與定量分析方法 18
一、 實驗目的 18
二、 實驗材料 19
三、 實驗方法 22
1. 小片段 RNA 分子之萃取與分離 22
2. 非放射性北方墨點法分析 24
3. 統計分析 28
四、 結果與討論 29
1. 大鼠肌肉和肝臟小片段 RNA 電泳分析 29
2. APM - Northern blot 半乾式轉印條件之確認 30
3. tRNA 劑量對大鼠肌肉和肝臟小片段 RNA偵測之影響 32
4. Stripping 次數對 tRNA 表現量之影響 32
5. 非放射性北方點墨法分析 tRNA 表現量與硫醇修飾之實驗限制 32
34
第二節. 建立 HPLC 分析 tRNA 核苷酸鹼基修飾 37
一、 實驗材料 37
二、 實驗方法 39
1. 水解磷酸根 39
2. 高效能液相層析HPLC分析 39
三、 結果 41
1. HPLC 分析 tRNA 劑量之確認 41
2. 不同生物種類和組織的 tRNA 鹼基修飾 HPLC 圖譜 41
四、 討論 47
1. 建立 HPLC 分析 tRNA 總鹼基修飾之方法限制 47
2. 不同生物種類之間 tRNA 鹼基修飾差異 47
第三章 鐵營養對大鼠 tRNA 硫醇鹼基修飾之影響 50
第一節. 研究設計 50
第二節. 實驗動物 52
一、 實驗動物與飼養環境 52
二、 飼養流程與動物分組 52
三、 實驗飼料 53
四、 尾巴採血與犧牲收樣 55
五、 檢驗項目與分析方法 55
第三節. 結果 58
一、 大鼠鐵營養狀況 58
1. 缺鐵期與再生期大鼠之生長狀況 58
2. 缺鐵期與再生期大鼠之鐵營養指標 59
二、 鐵營養狀況對大鼠 tRNA 硫醇鹼基修飾情形之影響 60
1. 鐵營養狀況對大鼠 tRNA 表現量之影響 60
2. 鐵營養狀況對大鼠 tRNA 硫醇鹼基修飾情形之影響 60
3. 肌肉細胞質中非硫醇鹼基 tRNA 之表現量 60
4. 血紅素濃度與 tRNA 硫醇修飾量之相關性 61
三、 HPLC 分析鐵營養指標對大鼠 tRNA 總鹼基修飾之影響 61
1. 鐵營養指標對大鼠 tRNA 硫醇鹼基 mcm5s2U 修飾量之影響 61
2. 血紅素濃度與 tRNA 硫醇鹼基 mcm5s2U 修飾量之相關性 62
第四章 討論 81
第一節. tRNA 研究里程 81
一、 營養素對 tRNA 表現量和修飾之影響 82
第二節. 細胞內硫代謝對 tRNA 硫醇鹼基 mcm5s2U 表現量和其機制之影響 84
一、 tRNA 硫醇修飾作用與非鐵硫複合體調控機制 84
二、 tRNA 硫醇修飾作用與鐵硫蛋白調控機制 85
第三節. 鐵營養對 tRNA 修飾之專一性影響與肌肉生理生化代謝之關係 88
第五章 結論 89
第六章 參考文獻 90
附錄一 動物實驗申請案審查同意書 96
附錄二 缺鐵飼料鐵濃度分析報告 97
附錄三 補鐵飼料鐵濃度分析報告 101


[1] Rich A, RajBhandary U. Transfer RNA: molecular structure, sequence, and properties. Annual review of biochemistry. 1976;45:805-60.
[2] Quigley GJ, Rich A. Structural domains of transfer RNA molecules. Science. 1976;194:796-806.
[3] Varani G, McClain WH. The G‧ U wobble base pair. EMBO reports. 2000;1:18-23.
[4] Motorin Y, Helm M. tRNA stabilization by modified nucleotides. Biochemistry. 2010;49:4934-44.
[5] Gustilo EM, Vendeix FA, Agris PF. tRNA''s modifications bring order to gene expression. Current opinion in microbiology. 2008;11:134-40.
[6] Pamela F. Crain, McCloskey JA. The RNA modification database. Nucleic acids research. 1997;25:126-7.
[7] Nakai Y, Nakai M, Hayashi H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. The Journal of biological chemistry. 2008;283:27469-76.
[8] Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, et al. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proceedings of the National Academy of Sciences. 1985;82:4905-9.
[9] Agris PF, Vendeix FA, Graham WD. tRNA’s wobble decoding of the genome: 40 years of modification. Journal of molecular biology. 2007;366:1-13.
[10] Bjork GR, Durand J, Hagervall TG, Lundgren HK, Nilsson K, Chen P, et al. Transfer RNA modification: influence on translational frameshifting and metabolism. FEBS letters. 1999;452:47-51.
[11] Phizicky EM, Hopper AK. tRNA biology charges to the front. Genes & development. 2010;24:1832-60.
[12] Crain PF, McCloskey JA. The RNA modification database. Nucleic acids research. 1996;24:98-9.
[13] Ashraf SS, Sochacka E, Cain R, Guenther R, Malkiewicz A, Agris PF. Single atom modification (O--> S) of tRNA confers ribosome binding. Rna. 1999;5:188-94.
[14] Bjork GR, Huang B, Persson OP, Bystrom AS. A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. Rna. 2007;13:1245-55.
[15] Yasukawa T, Suzuki T, Ohta S, Watanabe K. Wobble modification defect suppresses translational activity of tRNAs with MERRF and MELAS mutations. Mitochondrion. 2002;2:129-41.
[16] Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K. Wobble modification defect in tRNA disturbs codon–anticodon interaction in a mitochondrial disease. The EMBO journal. 2001;20:4794-802.
[17] Suzuki T, Nagao A, Suzuki T. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley interdisciplinary reviews RNA. 2011;2:376-86.
[18] Sheftel A, Stehling O, Lill R. Iron–sulfur proteins in health and disease. Trends in Endocrinology & Metabolism. 2010;21:302-14.
[19] Roy A, Solodovnikova N, Nicholson T, Antholine W, Walden WE. A novel eukaryotic factor for cytosolic Fe–S cluster assembly. The EMBO journal. 2003;22:4826-35.
[20] Lill R, Muhlenhoff U. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu Rev Biochem. 2008;77:669-700.
[21] Chernyakov I, Whipple JM, Kotelawala L, Grayhack EJ, Phizicky EM. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5′–3′ exonucleases Rat1 and Xrn1. Genes & development. 2008;22:1369-80.
[22] Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, Watanabe K, et al. Yeast Nfs1p is involved in thio-modification of both mitochondrial and cytoplasmic tRNAs. The Journal of biological chemistry. 2004;279:12363-8.
[23] Nilsson K, Lundgren HK, Hagervall TG, Bjork GR. The Cysteine Desulfurase IscS Is Required for Synthesis of All Five Thiolated Nucleosides Present in tRNA from Salmonella enterica Serovar Typhimurium. Journal of Bacteriology. 2002;184:6830-5.
[24] Tong WH, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell metabolism. 2006;3:199-210.
[25] Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK. IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry. 2000;39:7856-62.
[26] Stehling O, Netz DJ, Niggemeyer B, Rosser R, Eisenstein RS, Puccio H, et al. Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Molecular and cellular biology. 2008;28:5517-28.
[27] Nakai Y, Nakai M, Lill R, Suzuki T, Hayashi H. Thio modification of yeast cytosolic tRNA is an iron-sulfur protein-dependent pathway. Molecular and cellular biology. 2007;27:2841-7.
[28] 許義申. 鐵螯合劑處理對於肌肉細胞 tRNA 硫醇鹼基修飾作用之影響. 輔仁大學營養科學系碩士論文. 2012.
[29] Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Annual review of biochemistry. 1992;61:761-807.
[30] Hershko A, Ciechanover A. The ubiquitin system. Annual review of biochemistry. 1998;67:425-79.
[31] Scheffner M, Nuber U, Huibregtse JM. Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature. 1995;373:81-3.
[32] van der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annual review of biochemistry. 2012;81:323-57.
[33] Schlieker CD, Van der Veen AG, Damon JR, Spooner E, Ploegh HL. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:18255-60.
[34] Goehring AS, Rivers DM, Sprague GF, Jr. Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Molecular biology of the cell. 2003;14:4329-41.
[35] Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, et al. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature. 2009;458:228-32.
[36] Petroski MD, Salvesen GS, Wolf DA. Urm1 couples sulfur transfer to ubiquitin-like protein function in oxidative stress. Proceedings of the National Academy of Sciences. 2011;108:1749-50.
[37] van der Veen A. Urm1 in tRNA thiolation and protein modification. 2011.
[38] Noma A, Sakaguchi Y, Suzuki T. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res. 2009;37:1335-52.
[39] Chowdhury MM, Dosche C, Lohmannsroben H-G, Leimkuhler S. Dual Role of the Molybdenum Cofactor Biosynthesis Protein MOCS3 in tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Humans. Journal of Biological Chemistry. 2012;287:17297-307.
[40] Schmitz J, Chowdhury MM, Hanzelmann P, Nimtz M, Lee E-Y, Schindelin H, et al. The Sulfurtransferase Activity of Uba4 Presents a Link between Ubiquitin-like Protein Conjugation and Activation of Sulfur Carrier Proteins†. Biochemistry. 2008;47:6479-89.
[41] Dewez M, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermand D. The conserved Wobble uridine tRNA thiolase Ctu1–Ctu2 is required to maintain genome integrity. Proceedings of the National Academy of Sciences. 2008;105:5459-64.
[42] Huang B, Lu J, Bystrom AS. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. Rna. 2008;14:2183-94.
[43] Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, et al. Trm9-catalyzed tRNA modifications link translation to the DNA damage response. Molecular cell. 2007;28:860-70.
[44] Kalhor HR, Clarke S. Novel Methyltransferase for Modified Uridine Residues at the Wobble Position of tRNA. Molecular and cellular biology. 2003;23:9283-92.
[45] Huang B, Johansson MJ, Bystrom AS. An early step in wobble uridine tRNA modification requires the Elongator complex. Rna. 2005;11:424-36.
[46] Fu D, Brophy JA, Chan CT, Atmore KA, Begley U, Paules RS, et al. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival. Molecular and cellular biology. 2010;30:2449-59.
[47] Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic acids research. 2011;39:D195-D201.
[48] Hamdane D, Argentini M, Cornu D, Golinelli-Pimpaneau Ba, Fontecave M. FAD/Folate-Dependent tRNA Methyltransferase: Flavin as a New Methyl-Transfer Agent. Journal of the American Chemical Society. 2012;134:19739-45.
[49] Yamagami R, Yamashita K, Nishimasu H, Tomikawa C, Ochi A, Iwashita C, et al. The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFO). Journal of Biological Chemistry. 2012;287:42480-94.
[50] Davanloo P, Sprinzl M, Watanabe K, Albani M, Kersten H. Role of ribothymidine in the thermal stability of transfer RNA as monitored by proton magnetic resonance. Nucleic acids research. 1979;6:1571-81.
[51] Rhodes D, Piper P, Clark B. Location of a platinum binding site in the structure of yeast phenylalanine transfer RNA. Journal of molecular biology. 1974;89:469-75.
[52] Buck M, Griffiths E. Iron mediated methylthiolation of tRNA as a regulator of operon expression in Escherichia coli. Nucleic acids research. 1982;10:2609-24.
[53] Buck M, Griffiths E. Regulation of aromatic amino acid transport by tRNA: role of 2-methyIthio-N6-(Δ2-isopentenyl)-adenosine. Nucleic acids research. 1981;9:401-14.
[54] Haile DJ, Rouault TA, Tang CK, Chin J, Harford JB, Klausner RD. Reciprocal control of RNA-binding and aconitase activity in the regulation of the iron-responsive element binding protein: role of the iron-sulfur cluster. Proceedings of the National Academy of Sciences. 1992;89:7536-40.
[55] Ackrell B, Maguire J, Dallman P, Kearney E. Effect of iron deficiency on succinate-and NADH-ubiquinone oxidoreductases in skeletal muscle mitochondria. Journal of Biological Chemistry. 1984;259:10053-9.
[56] Liew Y-F, Shaw N-S. Mitochondrial cysteine desulfurase iron-sulfur cluster S and aconitase are post-transcriptionally regulated by dietary iron in skeletal muscle of rats. The Journal of nutrition. 2005;135:2151-8.
[57] Tong W-H, Rouault TA. Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis. Cell metabolism. 2006;3:199-210.
[58] 徐韻欣. 膳食鐵營養狀況對於大鼠肌肉硫醇鹼基修飾tRNA的表現與其修飾作用之影響. 輔仁大學營養科學系碩士論文. 2010.
[59] Shigi N, Suzuki T, Tamakoshi M, Oshima T, Watanabe K. Conserved bases in the TΨC loop of tRNA are determinants for thermophile-specific 2-thiouridylation at position 54. Journal of Biological Chemistry. 2002;277:39128-35.
[60] Wohlgamuth-Benedum JM, Rubio MAT, Paris Z, Long S, Poliak P, Lukeš J, et al. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. Journal of Biological Chemistry. 2009;284:23947-53.
[61] Gehrke CW, Kuo KC. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography. Journal of Chromatography A. 1989;471:3-36.
[62] Jackman JE, Alfonzo JD. Transfer RNA modifications: nature''s combinatorial chemistry playground. Wiley Interdisciplinary Reviews: RNA. 2013;4:35-48.
[63] Chen P, Jager G, Zheng B. Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC plant biology. 2010;10:201.
[64] Reeves PG, Nielsen FH, Fahey GC. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. The Journal of nutrition. 1993;123:1939-51.
[65] Hoagland MB, Stephenson ML, Scott JF, Hecht LI, Zamecnik PC. A soluble ribonucleic acid intermediate in protein synthesis. Journal of Biological Chemistry. 1958;231:241-57.
[66] Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, et al. Structure of a ribonucleic acid. Science. 1965;147:1462-5.
[67] Crick F. Codon—anticodon pairing: the wobble hypothesis. Journal of molecular biology. 1966;19:548-55.
[68] Smith J, Dunn D. The occurrence of methylated guanines in ribonucleic acids from several sources. Biochemical Journal. 1959;72:294.
[69] Laten HM, Cramer JH, Rownd RH. Thiolated nucleotides in yeast transfer RNA. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1983;741:1-6.
[70] Delk AS, Rabinowitz JC. Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Proceedings of the National Academy of Sciences. 1975;72:528-30.
[71] Pathak C, Jaiswal YK, Vinayak M. Hypomodification of transfer RNA in cancer with respect to queuosine. RNA biology. 2005;2:143-8.
[72] Morris RC, Elliott MS. Queuosine modification of tRNA: a case for convergent evolution. Molecular genetics and metabolism. 2001;74:147-59.
[73] Frey B, McCloskey J, Kersten W, Kersten H. New function of vitamin B12: cobamide-dependent reduction of epoxyqueuosine to queuosine in tRNAs of Escherichia coli and Salmonella typhimurium. Journal of bacteriology. 1988;170:2078-82.
[74] Rosenberg AH, Gefter ML. An iron-dependent modification of several transfer RNA species in Escherichia coli. Journal of molecular biology. 1969;46:581-4.
[75] Alexandrov A, Chernyakov I, Gu W, Hiley SL, Hughes TR, Grayhack EJ, et al. Rapid tRNA decay can result from lack of nonessential modifications. Molecular cell. 2006;21:87-96.
[76] Liu Y, Beer LL, Whitman WB. Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology. 2012;14:2632-44.
[77] Parcell S. Sulfur in human nutrition and applications in medicine. Alternative Medicine Review. 2002;7:22-44.
[78] Dahl J-U, Radon C, Buhning M, Nimtz M, Leichert LI, Denis Y, et al. The Sulfur Carrier Protein TusA Has a Pleiotropic Role in Escherichia coli That Also Affects Molybdenum Cofactor Biosynthesis. Journal of Biological Chemistry. 2013;288:5426-42.
[79] El Yacoubi B, Bailly M, de Crecy-Lagard V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annual review of genetics. 2012;46:69-95.
[80] Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jager G, et al. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Molecular microbiology. 2010;76:1082-94.
[81] Mazauric MH, Dirick L, Purushothaman SK, Bjork GR, Lapeyre B. Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. The Journal of biological chemistry. 2010;285:18505-15.
[82] Songe-Moller L, van den Born E, Leihne V, Vagbo CB, Kristoffersen T, Krokan HE, et al. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding. Molecular and cellular biology. 2010;30:1814-27.
[83] Kambampati R, Lauhon CT. MnmA and IscS are required for in vitro 2-thiouridine biosynthesis in Escherichia coli. Biochemistry. 2003;42:1109-17.
[84] Sasarman F, Antonicka H, Horvath R, Shoubridge EA. The 2-thiouridylase function of the human MTU1 (TRMU) enzyme is dispensable for mitochondrial translation. Human molecular genetics. 2011;20:4634-43.
[85] Wang X, Yan Q, Guan M-X. Deletion of the MTO2 gene related to tRNA modification causes a failure in mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. FEBS letters. 2007;581:4228-34.
[86] Wang X, Yan Q, Guan M-X. Mutation in MTO1 involved in tRNA modification impairs mitochondrial RNA metabolism in the yeast Saccharomyces cerevisiae. Mitochondrion. 2009;9:180-5.
[87] Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, et al. Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases. The Journal of biological chemistry. 2005;280:1613-24.
[88] Wang X, Yan Q, Guan MX. Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. Journal of molecular biology. 2010;395:1038-48.
[89] Dallman PR. Biochemical basis for the manifestations of iron deficiency. Annual review of nutrition. 1986;6:13-40.
[90] Finch C, Miller L, Inamdar A, Person R, Seiler K, Mackler B. Iron deficiency in the rat. Physiological and biochemical studies of muscle dysfunction. Journal of Clinical Investigation. 1976;58:447.
[91] Willis WT, Brooks GA, Henderson SA, Dallman PR. Effects of iron deficiency and training on mitochondrial enzymes in skeletal muscle. Journal of Applied Physiology. 1987;62:2442-6.
[92] Baldwin KM, Haddad F. Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. American journal of physical medicine & rehabilitation. 2002;81:S40-S51.
[93] Cartier L, Ohira Y, Chen M, Cuddihee R, Holloszy J. Perturbation of mitochondrial composition in muscle by iron deficiency. Implications regarding regulation of mitochondrial assembly. Journal of Biological Chemistry. 1986;261:13827-32.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top