(3.236.222.124) 您好!臺灣時間:2021/05/13 20:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張安瑜
研究生(外文):An-Yu Chang
論文名稱:氣候及生物因子對尼泊爾埋葬蟲與紅胸埋葬蟲海拔分布的影響
論文名稱(外文):Effects of climate and biotic interactions on the elevational range of two burying beetle species (Nicrophorus nepalensis and Calosilpha chyaneocephala)
指導教授:李培芬李培芬引用關係
指導教授(外文):Pei-Fen Lee
口試委員:袁孝維陳一菁謝志豪
口試委員(外文):Hsiao-Wei YuanI-Ching ChenChih-hao Hsieh
口試日期:2013-06-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生態學與演化生物學研究所
學門:生命科學學門
學類:生態學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:55
中文關鍵詞:海拔分布生活史特徵尼泊爾埋葬蟲紅胸埋葬蟲生物因子非生物因子
外文關鍵詞:elevation range limitlife history traitcarrion beetlehabitat generalisthabitat specialist
相關次數:
  • 被引用被引用:0
  • 點閱點閱:487
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
Darwin與McArthur提出的經典理論認為,物種分布的限制因子會受到外在環境所影響,山區物種的分布下界主要受到種間競爭的交互作用(competitive interaction)所限制,分布上界則主要受到非生物因子的限制。本研究以尼泊爾埋葬蟲(Nicrophorus nepalensis)與紅胸埋葬蟲(Calosilpha chyaneocephala),兩種擁有不同棲位寬度的屍食性埋葬蟲科(Silphidae)甲蟲為目標物種,探討非生物因子以及生物因子對物種海拔分布的重要性。本研究地點位於臺灣中部橫貫公路,時間為 2011 到 2013 年的七月到九月,沿海拔梯度設置腐肉陷阱,記錄埋葬蟲於陷阱中的出現機率及繁殖成功率。結果顯示紅胸埋葬蟲出現機率與繁殖成功率沿每日最高溫有相同趨勢,顯示非生物因子為紅胸埋葬蟲海拔分布上界與下界的限制因子。尼泊爾埋葬蟲的出現機率與繁殖成功率在每日最低溫上卻有不一致的趨勢,且繁殖成功率顯著低於出現機率。結果顯示單獨氣候因子無法解釋尼泊爾埋葬蟲於海拔分布的邊界。藉由室內實驗,證實尼泊爾埋葬蟲在海拔上界受非生物因子的限制,而下界則受蒼蠅競爭的限制。不同於過去研究,本研究發現物種的棲位寬度能更完整的解釋物種在海拔分布限制因子的種類:對廣棲性物種(habitat generalist)而言,限制其海拔分布上界與下界皆為氣候因子;對狹棲性物種(habitat specialist)而言,其海拔分布上界是受氣候因子的限制,但下界的限制因子則是生物因子。了解生物在海拔分布的限制因子,不僅能了解物種現今的分布模式,也有助於我們預測生物面對環境變遷的反應。

Darwin(1859) and McArthur’s (1972) classic hypothesis for the elevation range limit stated that competitive interaction drives the lower elevation range limits of montane species, and physiological stress prevents low-elevation species from expanding to high elevation. However, factors that limit species’ elevation range are still poorly understood. We tested McArthur’s hypothesis of elevation range limits in two carrion beetles with distinct life history traits: Nicrophorus nepalensis, a habitat specialist, and Calosilpha cyaneocephal, a habitat generalist. We found that physiological constrains drive the lower and higher elevation range limit of C. cyaneocephal, whereas competition with maggots was found responsible for the lower limit of elevational range of N. nepalensis. Contracting to McArthur’s classic hypothesis, our findings show that different life history traits between species may explain the different constrains in lower elevation range limit: habitat specialists may be more susceptible to biotic factor than habitat generalists. Our study of elevation range limit can help us understand species distribution pattern and better predict the species responses to climate change.

致謝 I
中文摘要 II
Abstract III
目錄 IV
表目錄 VI
圖目錄 VII
前言 1
材料與方法 5
研究物種 5
尼泊爾埋葬蟲 5
紅胸埋葬蟲 5
野外調查 6
分布調查 6
繁殖調查 7
室內研究 8
試驗昆蟲的採集 8
試驗昆蟲的飼養與繁殖 8
土壤微氣候調節試驗 9
資料分析 10
研究結果 14
微氣候因子沿海拔梯度的變化 14
海拔分布 14
對不同大小屍體的利用 15
沿海拔梯度在森林及開闊地的出現機率 15
沿海拔梯度在森林及開闊地的繁殖成功率 16
沿溫度梯度的出現機率與繁殖成功率 16
尼泊爾埋葬蟲到達屍體時間 17
微氣候因子對繁殖成功率的影響 17
尼泊爾埋葬蟲於不同均溫下的繁殖成功率 18
討論 19
繁殖成功率與海拔分布範圍 19
紅胸埋葬蟲海拔分布限制因子的探討 19
尼泊爾埋葬蟲海拔分部限制因子的探討 20
非生物因子、生物因子以及兩者間交互作用與分布範圍 21
物種的棲位寬度與海拔分布限制因子的關係 22
氣候因子對埋葬蟲繁殖成功率的影響 23
對其他生物因子的探討 24
結論 25
參考文獻 26


陳耕輝(2008)。紅胸埋葬蟲(Calosilpha cyaneocephala)之基礎生物學研究。國立嘉義大學生物資源研究所。
藍美琪(2010)。尼泊爾埋葬蟲(Nicrophorus nepalensis)(Coleoptera: Silphidae)野外個體活動時間、空間分布及親代對子代調節與親疏辨認之研究。國立台南大學環境生態研究所。
蘇筱涵(2010)。大黑埋葬蟲(Nicrophorus concolor Kraatz)(Coleoptera:Silphidae)的形態、發育、行為與異種資源競爭之研究。國立台南大學環境生態研究所。
Anderson, R.S. (1982). Resource partitioning in the carrion beetle (Coleoptera: Silphidae) fauna of southern Ontario: ecological and evolutionary considerations. Canadian Journal of Zoology 60, 1314-1325.
Angert, A., and Schemske, D. (2005). The evolution of species''distributions: reciprocal transplants across the elevation ranges of Mimulus cardinalis and M. lewisii. Evolution 59, 1671-1684.
Best, A.S., Johst, K., Munkemuller, T., and Travis, J.M.J. (2007). Which species will succesfully track climate change? The influence of intraspecific competition and density dependent dispersal on range shifting dynamics. Oikos 116, 1531-1539.
Bowman, J., Holloway, G.L., Malcolm, J.R., Middel, K.R., and Wilson, P.J. (2005). Northern range boundary dynamics of southern flying squirrels: evidence of an energetic bottleneck. Canadian Journal of Zoology 83, 1486-1494.
Bridle, J.R., and Vines, T.H. (2007). Limits to evolution at range margins: when and why does adaptation fail? Trends in Ecology & Evolution 22, 140-147.
Brouat, C., Chevallier, H., Meusnier, S., Noblecourt, T., and Rasplus, J.Y. (2004). Specialization and habitat: spatial and environmental effects on abundance and genetic diversity of forest generalist and specialist Carabus species. Molecular Ecology 13, 1815-1826.
Brown, J.H., Mehlman, D.W., and Stevens, G.C. (1995). Spatial Variation in Abundance. Ecology 76, 2028-2043.
Case, T.J., Holt, R.D., McPeek, M.A., and Keitt, T.H. (2005). The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108, 28-46.
Chesson, P.L. (1986). Environmental variation and the coexistence of species. Community ecology, 240-256.
Clavel, J., Julliard, R., and Devictor, V. (2010). Worldwide decline of specialist species: toward a global functional homogenization? Frontiers in Ecology and the Environment 9, 222-228.
Colles, A., Liow, L.H., and Prinzing, A. (2009). Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecology Letters 12, 849-863.
Crozier, L., and Dwyer, G. (2006). Combining population‐dynamic and ecophysiological models to predict climate‐induced insect range shifts. The American Naturalist 167, 853-866.
Dall, S.R.X., and Cuthill, I.C. (1997). The Information Costs of Generalism. Oikos 80, 197-202.
Darwin, C. (1859). On the origins of species by means of natural selection. London: Murray.
Davis, A.J., Lawton, J.H., Shorrocks, B., and Jenkinson, L.S. (1998). Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. Journal of Animal Ecology 67, 600-612.
Dekeirsschieter, J., Verheggen, F., Lognay, G., and Haubruge, E. (2011). Large carrion beetles (Coleoptera, Silphidae) in Western Europe: a review. Biotechnologie, Agronomie, Societe et Environnement, 15(3), 435-447
deRivera, C.E., Ruiz, G.M., Hines, A.H., and Jivoff, P. (2005). Biotic esistance to invasion: native predator limits abundance and distribution of an introduced crabB. Ecology 86, 3364-3376.
Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villeger, S., and Mouquet, N. (2010). Defining and measuring ecological specialization. Journal of Applied Ecology 47, 15-25.
Diamond, J.M. (1973). Distributional Ecology of New Guinea Birds Recent ecological and biogeographical theories can be tested on the bird communities of New Guinea. Science 179, 759-769.
Dunson, W.A., and Travis, J. (1991). The role of abiotic factors in community organization. American Naturalist, 1067-1091
Galbreath, K.E., Hafner, D.J., and Zamudio, K.R. (2009). When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American Pika, Ochotona princeps). Evolution 63, 2848-2863.
Gaston, K.J. (1990). Patterns in the geographical ranges of species. Biological Reviews 65, 105-129.
Geber, M.A., and Eckhart, V.M. (2005). Experimental studies of adaptation in Clarkia xantiana: II. Fitness variation across a subspecies border. Evolution 59, 521-531.
Geber, M.A. (2011). Ecological and evolutionary limits to species geographic ranges. The American Naturalist 178, S1-S5.
Gifford, M.E., and Kozak, K.H. (2012). Islands in the sky or squeezed at the top? Ecological causes of elevational range limits in montane salamanders. Ecography 35, 193-203.
Griffith, T.M., and Watson, M.A. (2006). Is evolution necessary for range expansion? Manipulating reproductive timing of a weedy annual transplanted beyond its range. The American Naturalist 167, 153-164.
Holt, R.D., and Keitt, T.H. (2005). Species’ borders: a unifying theme in ecology. Oikos 108, 3-6.
Holt, R.D., Keitt, T.H., Lewis, M.A., Maurer, B.A., and Taper, M.L. (2005). Theoretical models of species’ borders: single species approaches. Oikos 108, 18-27.
Hwang, W. (2006). Konkurrenz und Aasnutzung necrophager und necrophiler Kafer in Nord-und Sudtaiwan: mit einem Beitrag zur Biologie von Nicrophorus nepalensis Hope (Coleoptera: Silphidae). Unpublished Ph. D. Dissertation, Albert-Ludwigs-Universitat Freiburg.
Hwang, W., and Shiao, S.F. (2011). Dormancy and the influence of photoperiod and temperature on sexual maturity in Nicrophorus nepalensis (Coleoptera: Silphidae). Insect Science 18, 225-233.
Jankowski, J.E., Londono, G.A., Robinson, S.K., and Chappell, M.A. (2013). Exploring the role of physiology and biotic interactions in determining elevational ranges of tropical animals. Ecography 36, 001-012.
Jankowski, J.E., Robinson, S.K., and Levey, D.J. (2010). Squeezed at the top: Interspecific aggression may constrain elevational ranges in tropical birds. Ecology 91, 1877-1884.
Kenneth H. Kozak, and John J. Wiens (2010). Niche conservatism drives elevational diversity patterns in Appalachian salamanders. The American Naturalist 176, 40-54.
Lisa Crozier, and Greg Dwyer (2006). Combining population‐dynamic and ecophysiological models to predict climate‐induced insect range shifts. The American Naturalist 167, 853-866.
MacArthur, R.H. (1972). Geographical Ecology. New York: Haper and Row.
Mihuc, T.B. (1997). The functional trophic role of lotic primary consumers: generalist versus specialist strategies. Freshwater Biology 37, 455-462.
Normand, S., Treier, U.A., Randin, C., Vittoz, P., Guisan, A., and Svenning, J.C. (2009). Importance of abiotic stress as a range‐limit determinant for European plants: insights from species responses to climatic gradients. Global Ecology and Biogeography 18, 437-449.
Payne, R.B. (1965). Clutch size and numbers of eggs laid by Brown-headed Cowbirds. The Condor 67, 44-60.
Pellissier Scott, M., and Traniello, J.F. (1987). Behavioural cues trigger ovarian development in the burying beetle, Nicrophorus tomentosus. Journal of Insect Physiology 33, 693-696.
Pianka, E.R. (1970). Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology, 703-720.
Pulliam, H. R. (1996). Sources and sinks: empirical evidence and population consequences. Population dynamics in ecological space and time. University of Chicago Press, Chicago, Illinois, USA, 45-69.
Scott, M.P. (1998). The ecology and behavior of burying beetles. Annual Review of Entomology 43, 595-618.
Sagarin, R. D., and Gaines, S. D. (2002). The ‘abundant centre’ distribution: to what extent is it a biogeographical rule? Ecology letters, 5(1), 137-147.
Sexton JP, McIntyre PJ, Angert AL, Rice KJ. 2009. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40:415-36
Sikes, D. S. (2008). Carrion Beetles (Coleoptera: Silphidae). Encyclopedia of Entomology, Second Edition. Springer, London, 749-758.
Taniguchi, Y., and Nakano, S. (2000). Condition-specific competition: implications for the altitudinal distribution of stream fishes. Ecology 81, 2027-2039.
Trumbo, S.T., and Fiore, A.J. (1994). Interspecific competition and the evolution of communal breeding in burying beetles. American Midland Naturalist, 169-174.
Waltari, E., and Guralnick, R.P. (2009). Ecological niche modelling of montane mammals in the Great Basin, North America: examining past and present connectivity of species across basins and ranges. Journal of Biogeography 36, 148-161.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔