(3.238.173.209) 您好!臺灣時間:2021/05/12 12:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林芳伃
研究生(外文):Fang-Yu Lin
論文名稱:CMOS-MEMS電容式微機電系統超音波換能器製作與開發
論文名稱(外文):Development of CMOS-MEMS Capacitive Micromachined Ultrasonic Transducers
指導教授:田維誠
指導教授(外文):Wei-Cheng Tian
口試委員:呂良鴻劉建宏李昇憲
口試委員(外文):Liang-Hung LuJian-Hong LiuSheng-Shian Li
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:62
中文關鍵詞:CMOS-MEMS超音波電容式微機電系統換能器零偏壓
外文關鍵詞:CMOS-MEMSCapacitive Micromachined Ultrasonic Transducers (CMUTs)Zero-bias
相關次數:
  • 被引用被引用:0
  • 點閱點閱:958
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用TSMC 0.35μm 2P4M CMOS-MEMS製程開發電容式超音波換能器(Capacitance Micromachined Ultrasonic Transducer ,簡稱CMUT),由於元件不耐高壓、介電層的充電效應,以及種種降低元件可靠度的因素,過去CMUT只能當作很好的超音波接收器,但發射超音波訊號並非易事。本研究藉由增厚絕緣層和由脈衝發射接收器(Pulser) 取代傳統上DC加上AC的CMUT發射驅動模式,使元件得以有效的發射的超音波訊號。此外,我們發現可以利用介電層易累積電荷的現象,改採Pulser來致動元件,使得致動元件時滯留的電荷能提供足夠的靜電作用力。在此操作狀況下,元件並不需要加偏壓,即可有良好的元件的靈敏度以及換能器效能。量測的結果證實,我們所開發出來的CMOS-MEMS CMUT其中心頻率大概7~8MHz,比例頻寬(Fractional Bandwidth)大約75%~85%,靈敏度為2.894mV/kPa,由商用Pulser PR5900(Panametrics Inc., Waltham, MA, USA)致動,其發射聲場大約為760kPa。此外我們也利用本團隊研發之CMUT進行超音波的應用實驗,像是非破換性檢測和線仿體掃描,都獲得不錯的應用成果。與目前其他團隊所開發出來的CMOS-MEMS CMUT比較,此元件除了具有較大的發射聲場具有較好的靈敏度,也有較佳的比例頻寬。而不需加偏壓的操作模式,也開啟了CMUT在超音波應用上另一個世代。

In this study, a zero-bias CMOS-based Capacitive Micromachined Ultrasonic Transducers (CMUTs) with high sensitivity is developed. The device is implemented with the TSMC 0.35μm CMOS-MEMS process. Driven by a commercial pulser, it is speculated that charges were injected into the charge traps in the CMUT and these temporarily stored charges provided a built-in electric field comparable to that created by an external DC bias. Therefore, our CMUTs can achieve great sensitivity without an external DC bias. When driven by a commercial pulser, the CMUTs generated ultrasound signals with a center frequency of 7-8 MHz, fractional bandwidth of 75-85%, and the acoustic filed of 760kPa. The sensitivity at receive was 2.9mV/kPa. It is successfully demonstrated that our developed CMUT-based system was able to image a coin. Compared with other CMOS-based CMUTs, our device generally has good sensitivity and wide bandwidth. To our knowledge, it is the first zero-bias CMUT device using commercial CMOS process reported in the literature. It is believed that several applications can be explored with our developed CMUTs.

誌謝 i
中文摘要 ii
Abstract iii
Chpater 1 緒論 1
1.1 CMUT 簡介 1
1.1.1 寬頻 1
1.1.2 線寬小 1
1.1.3 電路整合性 2
1.2 CMUT半導體製程 3
1.2.1 CMUT製作方式 3
1.2.1.1. Surface micro-machining 3
1.2.1.2. Bulk micro-machining 4
1.2.1.3. CMOS-MEMS Monolithic integration 5
1.2.2 文獻回顧 7
1.3 CMUT 潛在問題 10
1.3.1 Charging of CMUT 10
1.3.2 介電層崩潰 11
1.4 研究動機 12
Chpater 2 電容式超音波微機電系統換能器 13
2.1 CMUT原理 13
2.2 CMUT設計 14
2.2.1 元件設計與FEM軟體模擬 15
2.2.1.1. 絕緣設計 15
2.2.1.2. 高密度陣列單元設計 16
2.2.1.3. 寬頻探討 17
2.2.2 後製程 19
2.2.2.1. 濕式蝕刻 19
2.2.2.2. 封蝕刻孔 23
2.2.2.3. 開PAD 24
Chpater 3 超音波探頭特性量測與分析 27
3.1 超音波探頭發射能力測試 27
3.1.1 聲場量測 27
3.1.2 DIP 現象的探討與分析 29
3.1.3 表面薄膜震盪位移觀測 30
3.2 超音波探頭接收能力測試 33
3.2.1 元件與電路併版之量測 33
3.2.2 CMUT v.s CMUS 36
3.2.3 CMUT v.s Hydrophone 36
3.3 超音波Pulse-ehco 能力測試 37
Chpater 4 Zero-bias超音波探頭pulse -echo特性量測 41
4.1 契機 41
4.2 零偏壓pulse-echo實驗結果 41
4.3 零偏壓Pulse-echo現象與討論 45
Chpater 5 超音波探頭應用 48
5.1 非破壞性檢測(Nondestructive evaluation) 48
5.2 線仿體掃描 52
Chpater 6 結論與未來展望 55
6.1 特性整理與比較 55
6.2 未來工作 56
6.2.1 CMUT + CMUS 56
6.2.2 Charging 現象討論 58
6.2.3 CMOS-MEMS 0.18μm 1P6M開發 59
參考文獻 61


[1]李百祺(2000),醫用超音波原理.
[2]Degertekin, F. L., Guldiken, R. O., & Karaman, M. (2006). Annular-ring CMUT arrays for forward-looking IVUS: transducer characterization and imaging.Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,53(2), pp.474-482.
[3]Caronti, A., Caliano, G., Carotenuto, R., Savoia, A., Pappalardo, M., Cianci, E., & Foglietti, V. (2006). Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Microelectronics journal, 37(8), pp.770-777.
[4]Cianci, E., Schina, A., Minotti, A., Quaresima, S., & Foglietti, V. (2006). Dual frequency PECVD silicon nitride for fabrication of CMUTs’ membranes. Sensors and Actuators A: Physical, 127(1), pp.80-87.
[5]Tanaka, H., Machida, S., Hashiba, K., & Kobayashi, T. (2009). Acoustic characteristics of CMUT with rectangular membranes caused by higher order modes. IEEE Ultrasonics Symposium (IUS), pp. 434-437.
[6]Doody, C. B., Cheng, X., Rich, C. A., Lemmerhirt, D. F., & White, R. D. (2011). Modeling and characterization of CMOS-fabricated capacitive micromachined ultrasound transducers. Microelectromechanical Systems, Journal of, 20(1), pp. 104-118.
[7]Tang, P. K., Wang, P. H., Li, M. L., & Lu, M. S. (2011). Design and characterization of the immersion-type capacitive ultrasonic sensors fabricated in a CMOS process. Journal of Micromechanics and Microengineering, 21(2), art. no.025013.
[8]Tien, Y. S., Ku, P. C., Lin, F. Y., Li, P. C., Lu, L. H., Kuo, P. L., & Tian, W. C. (2012). A low voltage CMOS-based capacitive micromachined ultrasonic sensors development. IEEE Sensors, pp.1-4.
[9] Kuhl, W., Schodder, G. R., & Schroder, F. K. (1954). Condenser transmitters and microphones with solid dielectric for airborne ultrasonics. Acustica, 4(5), pp. 519-532.
[10]Cantrell, J. H., Heyman, J. S., Yost, W. T., Torbett, M. A., & Breazeale, M. A. (1979). Broadband electrostatic acoustic transducer for ultrasonic measurements in liquids. Review of Scientific Instruments, 50(1), pp.31-33.
[11]Haller, M. I., & Khuri-Yakub, B. T. (1996). A surface micromachined electrostatic ultrasonic air transducer. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 43(1), pp. 1-6.
[12]Hochman, M., Zahorian, J., Satir, S., Gurun, G., Xu, T., Karaman, M., ... & Degertekin, F. L. (2010). CMUT-on-CMOS for forward-looking IVUS: Improved fabrication and real-time imaging. IEEE Ultrasonics Symposium (IUS), pp. 555-558.
[13]Lemmerhirt, D. F., Cheng, X., Kripfgans, O. D., Zhang, M., & Fowlkes, J. B. (2010). A fully-populated 32× 32 CMUT-in-CMOS array. IEEE Ultrasonics Symposium (IUS), pp. 559-562.
[14]Kupnik, M., & Khuri-yakub, B. T. (2013). U.S. Patent No. 20,130,088,118. Washington, DC: U.S. Patent and Trademark Office.
[15] 莊達人, & 電子工程. (2003). VLSI 製造技術. 高立出版.
[16] Verweij, J. F., & Klootwijk, J. H. (1996). Dielectric breakdown I: A review of oxide breakdown. Microelectronics journal, 27(7), pp. 611-622.
[17]Pey, K. L., & Tung, C. H. (2007). Physical characterization of breakdown in metal-oxide-semiconductor transistors.
[18]Ergun, A. S., Yaralioglu, G. G., & Khuri-Yakub, B. T. (2003). Capacitive micromachined ultrasonic transducers: Theory and technology. Journal of Aerospace Engineering, 16(2), pp.76-84.
[19] Tanaka, H., Machida, S., Hashiba, K., & Kobayashi, T. (2009). Acoustic characteristics of CMUT with rectangular membranes caused by higher order modes. IEEE Ultrasonics Symposium (IUS), pp. 434-437.
[20]De, S. K., & Aluru, N. R. (2004). Full-Lagrangian schemes for dynamic analysis of electrostatic MEMS. Microelectromechanical Systems, Journal of, 13(5), pp.737-758.
[21]Cai, M. (2011). A PolyMUMPs Capacitive Micromachined Ultrasonic Transducer(Doctoral dissertation, University of British Columbia).
[22]Zhang, P., Fitzpatrick, G., Moussa, W., & Zemp, R. J. (2010). CMUTs with improved electrical safety & minimal dielectric surface charging. IEEE Ultrasonics Symposium (IUS), pp.1881-1885.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔