(3.236.122.9) 您好!臺灣時間:2021/05/09 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭雅茵
研究生(外文):Ya-Yin Hsiao
論文名稱:全域光學同調顯微術於上皮細胞與組織之逆散射量測與分析
論文名稱(外文):Measuring and Analyzing Backscattering Intensity of Epithelial Cells and Tissues by Full-Field Optical Coherence Microscopy
指導教授:宋孔彬
指導教授(外文):Kung-Bin Sung
口試委員:郭文娟曾雪峰
口試日期:2013-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:87
中文關鍵詞:全域光學同調顯微術(FF-OCM)逆散射光強散射係數上皮細胞(SG cellsCA9-22 cells)
外文關鍵詞:Full-Field Optical Coherence Microscopy (FF-OCM)backscattering lightscattering coefficientoral epithelial cells (SG cellsCA9-22 cells)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
人類癌症的產生常源自上皮層,目前已有許多文獻探討並指出上皮細胞的癌病變過程,會伴隨內部結構與折射率之變化,即直接影響逆散射光的變化;組織方面,上皮層與基質層的界線會漸模糊難辨,且有許多研究團隊量測並萃取組織的散射係數(scattering coefficient: μs)來做為診斷癌變之參考依據。因此,建立一套能夠量取逆散射光的技術,於生醫工程的發展與應用上實為一備具潛能的利器。此研究主要希望能建立一套光學實驗系統及方法,來對正常及癌變的口腔上皮細胞與口腔、食道組織作逆散射光強之量測與收集,進而將之分析並尋找出區別與診斷之依據。
目前採用之光學系統為「全域光學同調顯微術(Full-field Optical Coherence Microscopy, FF-OCM)」,主要根據低同調干涉理論來擷取樣本三維切面之逆散射影像。已完成系統響應之量測與改善、強反射面與小球仿體之逆散射影像還原、不同濃度小球仿體其隨深度衰減之比例分析,及多種溶液之平均折射率量測…等。現在正著手進行口腔正常細胞(SG cells)與癌細胞(CA9-22 cells)的逆散射光強分析,以及利用醋酸溶液輔助觀察分析之實驗。組織方面,冷凍切片已能利用系統觀察其內部型態與構造,唯背景干擾及切片本身散射光強之擷取,將尋找更佳之改善方法;塊狀組織目前可還原深度剖面之散射分布情形,然上皮層與基質層之確認尚在努力中,並初步對逆散射光強隨深度分布與衰減情形進行分析與探討。
結果已能定量確認CA9-22 cells添加0.4%醋酸溶液後,其逆散射光強會遠大於SG cells,且散射來源大部分來自細胞核,可作為診斷之參考資訊;組織方面衰減程度的分析,因量測樣本數目尚少僅處測試階段,期未來能更進一步針對組織之診斷有所發現與貢獻。

Human cancer is often generated from epithelium. Recently, many researches indicate that carcinoma in epithelial cells are accompanied with changes of structure and refractive index. It may also affect the backscattering intensity of cells directly. And when it comes to cancerous tissue, the boundary between epithelium and basal layer is gradually blurred. Many research teams has aimed for measuring and extracting the scattering coefficient(μs) in order to find out and diagnose the existence of carcinoma. Therefore, establishing the technique able to derive the backscattering light is a promising tool in the development and application of biomedical engineering. The goal of the thesis is to build the optical system and some methods that could collect the backscattering light from normal or cancerous cells and tissues. We want to find out how to distinguish and diagnose healthy cells/tissues and cancerous ones.
The optical setup in this thesis is “Full-Field Optical Coherence Microscopy, FF-OCM.” It is based on the low coherence interferometry for extracting the 3D backscattering images of the sample. Presently, the measurement and improvement of the system response, the backscattering images reconstruction of the strong reflective planes and polystyrene bead phantom, the analysis of backscattering intensity decayed with the depth of the polystyrene phantoms in different ratios, and the refractive index measurements of many solutions have been finished. And analyzing the backscattering intensity of normal(SG cells) and cancerous(CA9-22 cells) oral epithelial cells before/after addition of acetic acid is still proceeding. On the tissue experiment side, frozen tissue sections are being looked for more perfect way for reconstruction of the backscattering images; The longitudinal backscattering distribution of bulk tissues have been rebuilt. However, the changes of the backscattering intensity along the depth of tissue are preliminary being analyzed.
The results show that the backscattering intensity of CA9-22 cells would be much stronger than SG cells after addition of 0.4% acetic acid. Most of the backscattering light is from the nuclei of cells. It could be used as the diagnostic reference. The analysis of tissues is still in the testing process because of too small amount of the data. In the future, it is hoped that we can find out the way to diagnose normal and cancerous tissues.

口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 導論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 癌變診斷之簡介 3
1.4 研究目標 4
第二章 理論介紹與生醫應用 6
2.1 光學同調斷層掃描術簡介 6
2.1.1 麥克森干涉儀 7
2.1.2 低同調干涉理論 10
2.1.3 軸向解析度分析 14
2.1.4 時域光學同調斷層掃描術(Time-domain OCT) 15
2.1.5 頻域光學同調斷層掃描術(Spectral-domain OCT) 16
2.1.6 單點光學同調斷層掃描術 17
2.1.7 全域光學同調斷層掃描術 18
2.1.8 單點及全域光學同調斷層掃描術之比較 22
2.2 光學同調斷層掃描之生醫診斷 24
2.2.1 光學散射係數 24
2.2.2 折射率 26
2.2.3 細胞核尺寸 27
2.2.4 醋酸對光散射強度之增益 30
第三章 系統架構及校正方法 33
3.1 全域光學同調顯微術(FF-OCM)架構介紹 33
3.1.1 全域光學同調顯微術架構 33
3.1.2 系統解析度、動態範圍及掃瞄速率 37
3.1.3 系統架設與光路校正方法 41
3.1.4 干涉訊號的調整及最佳化 43
3.1.5 全域光場的均勻化 44
3.1.6 平均折射率之量測與驗證 45
第四章 逆散射影像與強度分析 48
4.1 全域光學同調顯微術之影像 48
4.1.1 強反射面之實驗 48
4.1.2 聚苯乙烯球仿體之實驗 49
4.1.3 上皮細胞之實驗 50
4.1.4 切片組織之實驗 51
4.2 上皮細胞及組織之逆散射強度分析 55
4.2.1 樣本基質:水膠 設計 55
4.2.2 SG cell 加醋酸前後之散射強度分析 57
4.2.3 CA9-22 cell 加醋酸前後之散射強度分析 62
4.2.4 SG cells及CA9-22 cells散射強度之分析比較 64
4.2.5 口腔上皮組織加醋酸前後之散射強度分析 66
第五章 FF-OCM逆散射強度隨深度之分析 68
5.1 不同散射濃度之仿體樣本備製 68
5.2 光散射強度隨深度之分析方法 69
5.3 濃度與散射強度隨深度分析之結果 72
5.4 組織 75
第六章 結論與未來展望 79
參考文獻 81


1.Y. Liu, X. Li, Y. L. Kim, and V. Backman, "Elastic backscattering spectroscopic microscopy," Optics Letters 30, 2445-2447 (2005).
2.V. Backman, M. Wallace, L. Perelman, J. Arendt, R. Gurjar, M. Muller, Q. Zhang, G. Zonios, E. Kline, and T. McGillican, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).
3.T. T. Wu, and J. Y. Qu, "Assessment of the relative contribution of cellular components to the acetowhitening effect in cell cultures and suspensions using elastic light-scattering spectroscopy," Applied Optics 46, 4834-4842 (2007).
4.J. W. Su, W. C. Hsu, C. Y. Chou, C. H. Chang, and K. B. Sung, "Digital holographic microtomography for high‐resolution refractive index mapping of live cells," Journal of Biophotonics (2012).
5.K. Barwari, D. M. de Bruin, E. C. Cauberg, D. J. Faber, T. G. van Leeuwen, H. Wijkstra, J. de la Rosette, and M. P. Laguna, "Advanced diagnostics in renal mass using optical coherence tomography: a preliminary report," Journal of Endourology 25, 311-315 (2011).
6.Y. Yang, T. Wang, N. C. Biswal, X. Wang, M. Sanders, M. Brewer, and Q. Zhu, "Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue," J. Biomed. Opt. 16, 090504-090504-090503 (2011).
7.D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "OPTICAL COHERENCE TOMOGRAPHY," Science 254, 1178-1181 (1991).
8.E. A. Swanson, J. Izatt, M. R. Hee, D. Huang, C. Lin, J. Schuman, C. Puliafito, and J. G. Fujimoto, "In vivo retinal imaging by optical coherence tomography," Optics Letters 18, 1864-1866 (1993).
9.M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457 (2002).
10.J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nature biotechnology 21, 1361-1367 (2003).
11.K. Wiesauer, M. Pircher, E. Gotzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grutzner, C. Hitzenberger, and D. Stifter, "En-face scanning optical coherence tomography with ultra-high resolution for material investigation," Optics express 13, 1015-1024 (2005).
12.R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. Hitzenberger, M. Sticker, and A. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Optics Letters 25, 820-822 (2000).
13.J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "< i> In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography," Optics Letters 22, 1439-1441 (1997).
14.C. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, and A. Fercher, "Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography," Optics express 9, 780-790 (2001).
15.K. Wiesauer, M. Pircher, E. Goetzinger, C. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, "Transversal ultrahigh-resolution polarizationsensitive optical coherence tomography for strain mapping in materials," Optics express 14, 5945-5953 (2006).
16.T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, "Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology," Optics express 16, 12227-12238 (2008).
17.W. J. Choi, L.-Q. Pi, G. Min, W.-S. Lee, and B. H. Lee, "Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography," J. Biomed. Opt. 17, 0360101-0360106 (2012).
18.J. Xiao, B. Wang, G. Lu, Z. Zhu, and Y. Huang, "Imaging of oocyte development using ultrahigh-resolution full-field optical coherence tomography," Applied Optics 51, 3650-3654 (2012).
19.A. Dubois, "Extended full-field optical coherence microscopy," in International Topical Meeting on Optical Sensing and Artificial Vision(2012).
20.G. Min, J. W. Kim, W. J. Choi, and B. H. Lee, "Numerical correction of distorted images in full-field optical coherence tomography," Measurement Science and Technology 23, 035403 (2012).
21.W.-J. Choi, J.-H. Na, S.-Y. Ryu, B.-H. Lee, and D.-S. Ko, "Realization of 3-D topographic and tomograpic images with ultrahigh-resolution full-field optical coherence tomography," Journal of the Optical Society of Korea 11, 18-25 (2007).
22.T. Anna, V. Srivastava, D. S. Mehta, and C. Shakher, "High-resolution full-field optical coherence microscopy using a Mirau interferometer for the quantitative imaging of biological cells," Applied Optics 50, 6343-6351 (2011).
23.A. Latrive, and A. C. Boccara, "In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe," Biomedical Optics Express 2, 2897 (2011).
24."National Cancer Institute Visuals Online," http://visualsonline.cancer.gov/.
25.K. E. Sloan, B. K. Eustace, J. K. Stewart, C. Zehetmeier, C. Torella, M. Simeone, J. E. Roy, C. Unger, D. N. Louis, and L. L. Ilag, "CD155/PVR plays a key role in cell motility during tumor cell invasion and migration," BMC cancer 4, 73 (2004).
26.A. Wax, C. Yang, M. G. Muller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Research 63, 3556-3559 (2003).
27.R. N. Graf, F. E. Robles, X. Chen, and A. Wax, "Detecting precancerous lesions in the hamster cheek pouch using spectroscopic white-light optical coherence tomography to assess nuclear morphology via spectral oscillations," J. Biomed. Opt. 14, 064030-064030-064038 (2009).
28.W. J. Choi, D. I. Jeon, S.-G. Ahn, J.-H. Yoon, S. Kim, and B. H. Lee, "Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution," Optics express 18, 23285-23295 (2010).
29.R. A. McLaughlin, L. Scolaro, P. Robbins, C. Saunders, S. L. Jacques, and D. D. Sampson, "Mapping tissue optical attenuation to identify cancer using optical coherence tomography," in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2009(Springer, 2009), pp. 657-664.
30.R. Drezek, T. Collier, R. Lotan, M. Follen, and R. Richards-Kortum, "Contrast agents for confocal microscopy: how simple chemicals affect confocal images of normal and cancer cells in suspension," J. Biomed. Opt. 7, 398-403 (2002).
31.R. A. Drezek, T. Collier, C. K. Brookner, A. Malpica, R. Lotan, R. R. Richards-Kortum, and M. Follen, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," American Journal of Obstetrics and Gynecology 182, 1135-1139 (2000).
32.E. Hecht, Optics (Addison-Wesley Longman, Incorporated, 2002).
33.M. E. Brezinski, Optical Coherence Tomography: Principles and Applications (Elsevier Science, 2006).
34.A. Dubois, L. Vabre, A.-C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Applied Optics 41, 805-812 (2002).
35.A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Applied Optics 43, 2874-2883 (2004).
36.A. Dubois, and A.-C. Boccara, "Full-field optical coherence tomography," in Optical Coherence Tomography(Springer, 2008), pp. 565-591.
37.H. M. Subhash, "Full-Field and Single-Shot Full-Field Optical Coherence Tomography: A Novel Technique for Biomedical Imaging Applications," Advances in Optical Technologies 2012 (2012).
38.A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography-principles and applications," Reports on progress in physics 66, 239 (2003).
39.A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Optics Communications 117, 43-48 (1995).
40.C. Holmer, K. S. Lehmann, J. Wanken, C. Reissfelder, A. Roggan, G. Mueller, H. J. Buhr, and J.-P. Ritz, "Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction," J. Biomed. Opt. 12, 014025-014025-014028 (2007).
41.L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Optics Letters 27, 530-532 (2002).
42.A. Dubois, "Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets," JOSA A 18, 1972-1979 (2001).
43.A. M. Zysk, S. G. Adie, J. J. Armstrong, M. S. Leigh, A. Paduch, D. D. Sampson, F. T. Nguyen, and S. A. Boppart, "Needle-based refractive index measurement using low-coherence interferometry," Optics Letters 32, 385-387 (2007).
44.A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and substructure measured using angle-resolved low-coherence interferometry," Biophysical journal 82, 2256-2264 (2002).
45.T. T. Wu, T.-H. Cheung, S. F. Yim, Y. F. Wong, and J. Y. Qu, "Study of acetowhitening method to distinguish normal and cancerous tissue at cellular level," in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series(2005), pp. 119-126.
46.K. Grieve, M. Paques, A. Dubois, J. Sahel, C. Boccara, and J.-F. Le Gargasson, "Ocular tissue imaging using ultrahigh-resolution, full-field optical coherence tomography," Investigative ophthalmology & visual science 45, 4126-4131 (2004).
47.J. Franklin, and Z. Y. Wang, "Refractive index matching: a general method for enhancing the optical clarity of a hydrogel matrix," Chemistry of materials 14, 4487-4489 (2002).
48.J. R. Tse, and A. J. Engler, "Preparation of hydrogel substrates with tunable mechanical properties," Current protocols in cell biology, 10.16. 11-10.16. 16 (2010).
49.B. Karamata, "Multiple scattering in wide-field optical coherence tomography," (ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, 2004).
50.B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, "Multiple scattering in optical coherence tomography. I. Investigation and modeling," JOSA A 22, 1369-1379 (2005).
51.B. Karamata, M. Leutenegger, M. Laubscher, S. Bourquin, T. Lasser, and P. Lambelet, "Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography," JOSA A 22, 1380-1388 (2005).
52.A. J. Welch, and M. J. Van Gemert, Optical-thermal response of laser-irradiated tissue (Springer, 2010).
53.L. V. Wang, and H.-i. Wu, Biomedical optics: principles and imaging (Wiley. com, 2012).
54.S. Prahl, "Mie Scattering Calculator," http://omlc.ogi.edu/calc/mie_calc.html.
55.X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Physics in medicine and biology 48, 4165 (2003).
56.Y. Zhu, N. G. Terry, J. T. Woosley, N. J. Shaheen, and A. Wax, "Design and validation of an angle-resolved low-coherence interferometry fiber probe for in vivo clinical measurements of depth-resolved nuclear morphology," J. Biomed. Opt. 16, 011003-011003-011010 (2011).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 劉秋松、黃亦潔、廖珮彤、林正介、李采娟、葉志清(2012).代謝症候群危險因子探討.長庚科技學刊,(16),1-14。 [Liu, C. S., Huang, Y.C., Liao, P. T., Lin, C. C., Li, T. C., & Yeh, C. C. (2012). The risk factors of metabolic syndrome. Journal of Chang Gung Institute of Technology, (16), 1-14.]
2. 黃志芳、王聖棻、葉月嬌、李明和、陳尚志、辜美安(2012).臺灣南部中老年人代謝症候群盛行率及其相關因子.志為護理-慈濟護理雜誌,11(1),72-84。[Huang, C. F., Wang,S. F., Yeh, Y. C., Lee, M. H., Chen, S. C., & Koo, M. (2012). Prevalence and factors associated with metabolic syndrome in middle-aged adults and elderly in s
3. 顏郁晉、黃惠屏、薛夙君、李昭憲、許秀月、鍾蝶起、黃淑珠、楊燦(2007).屏東地區中老年人肥胖指標與代謝症候群之相關探討.中華職業醫學雜誌,14(3),149-160。 [Yen, Y. C., Huang, H. P., Hsueh, S. C., Lee, C. H., Hsu, H. Y., Chung, T. C., Huang, S. C., & Yang, T. (2007). The investigation of relationship between obesity indices
4. 黃志芳、王聖棻、葉月嬌、李明和、陳尚志、辜美安(2012).臺灣南部中老年人代謝症候群盛行率及其相關因子.志為護理-慈濟護理雜誌,11(1),72-84。[Huang, C. F., Wang,S. F., Yeh, Y. C., Lee, M. H., Chen, S. C., & Koo, M. (2012). Prevalence and factors associated with metabolic syndrome in middle-aged adults and elderly in s
5. 陳怡如、吳至行、張秦松、張尹凡、吳坤陵、張智仁(2005).不同減重程度對非糖尿病肥胖者代謝症候群的影響.臺灣家庭醫學雜誌,15(4),220-231。 [Chen, Y. J., Wu, C. H., Chang, C. S., Chang, Y. F., Wu, K. L., & Chang, C. J. (2005). Effects of different degrees of weight loss on metabolic syndrome in obese non-diabetics. T
6. 曾明月(2011).性別差異在健康行為與健康相關生活晶質之影響因素分析:以台灣社區老人為例.美和學報,31(1),73-87。 [Tseng, M.Y. (2011). A study of the impact of gender on healthy behavior and health related quality of life among the community-dwelling elderly in Taiwan. Journal of Meiho University, 31(1),
7. 曾明月(2011).性別差異在健康行為與健康相關生活晶質之影響因素分析:以台灣社區老人為例.美和學報,31(1),73-87。 [Tseng, M.Y. (2011). A study of the impact of gender on healthy behavior and health related quality of life among the community-dwelling elderly in Taiwan. Journal of Meiho University, 31(1),
8. 陳韻佳、童恒新、魏崢、張忠毅、劉介宇、曾麗華(2010).代謝症候群病患接受冠狀動脈繞道術後之生活品質及其相關因素.護理雜誌,57(4),40-49。doi: 10.6224/jn.57.4.40 [Chen, Y. C., Yung, H. H., Wei, J., Chang, C. Y., Liu, C. Y., & Tseng, L. H. (2010). Quality of life and related factors in metabolic syndrome patients who
9. 陳韻佳、童恒新、魏崢、張忠毅、劉介宇、曾麗華(2010).代謝症候群病患接受冠狀動脈繞道術後之生活品質及其相關因素.護理雜誌,57(4),40-49。doi: 10.6224/jn.57.4.40 [Chen, Y. C., Yung, H. H., Wei, J., Chang, C. Y., Liu, C. Y., & Tseng, L. H. (2010). Quality of life and related factors in metabolic syndrome patients who
10. 陳曉梅、張宏哲(2007).使用居家服務失能老人生活品質的現況及其影響因素之探討.長期照護雜誌,11(3),247-265。 [Chen, H. M., & Chang, H. J. (2007). Factors associated with quality of life in a group of dependent elders using home care services. The Journal of Long term care, 11(3), 247-265.]
11. 陳曉梅、張宏哲(2007).使用居家服務失能老人生活品質的現況及其影響因素之探討.長期照護雜誌,11(3),247-265。 [Chen, H. M., & Chang, H. J. (2007). Factors associated with quality of life in a group of dependent elders using home care services. The Journal of Long term care, 11(3), 247-265.]
12. 陳富莉、李蘭(1999).台灣地區成年人之吸菸與嚼食檳榔行為的組合及其相關因子探討.中華公共衛生雜誌,18(5),341-348。 [Chen, F. L., & Yen, L. L. (1999). Factors related to adults'' smoking and betel-nut chewing combination behavior in Taiwan. Chinese Journal of Public Health, 18(5), 341-348.]
13. 陳富莉、李蘭(1999).台灣地區成年人之吸菸與嚼食檳榔行為的組合及其相關因子探討.中華公共衛生雜誌,18(5),341-348。 [Chen, F. L., & Yen, L. L. (1999). Factors related to adults'' smoking and betel-nut chewing combination behavior in Taiwan. Chinese Journal of Public Health, 18(5), 341-348.]
14. 劉秋松、黃亦潔、廖珮彤、林正介、李采娟、葉志清(2012).代謝症候群危險因子探討.長庚科技學刊,(16),1-14。 [Liu, C. S., Huang, Y.C., Liao, P. T., Lin, C. C., Li, T. C., & Yeh, C. C. (2012). The risk factors of metabolic syndrome. Journal of Chang Gung Institute of Technology, (16), 1-14.]
15. 陳怡如、吳至行、張秦松、張尹凡、吳坤陵、張智仁(2005).不同減重程度對非糖尿病肥胖者代謝症候群的影響.臺灣家庭醫學雜誌,15(4),220-231。 [Chen, Y. J., Wu, C. H., Chang, C. S., Chang, Y. F., Wu, K. L., & Chang, C. J. (2005). Effects of different degrees of weight loss on metabolic syndrome in obese non-diabetics. T
 
系統版面圖檔 系統版面圖檔