跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/17 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊竣宇
研究生(外文):Chun-Yu Yang
論文名稱:以電化學法慢速剝離高品質低層數石墨烯奈米片應用於摻鉺光纖雷射之被動鎖模
論文名稱(外文):Fabrication of high-quality few-layer graphene nano-sheet by ultraslow electrochemical exfoliation for application in passive mode-locking of Erbium-doped fiber lasers
指導教授:林恭如
口試委員:李晁逵鄭木海賴暎杰黃升龍
口試日期:2013-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:66
中文關鍵詞:電化學剝離石墨烯鎖模摻鉺光纖雷射
外文關鍵詞:Electrochemical ExfoliationGrapheneMode-lockingErbium-doped Fiber Laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功地利用慢速電化學剝離的方法得到不需要進行後退火製成的高品質低層數石墨烯奈米片。當電解電壓從6伏特調減到3伏特,電解石墨烯之拉曼散射訊號中的D峰與G峰比值隨之減小,指出使用靠近電解閥值的電壓進行電解有效抑制了電解過程中產生的結構缺陷。另一方面,2D峰與G峰的比值也同時增大兩倍,證實利用靠近閥值的電壓進行電解能減低電解石墨烯之層數。由電解石墨烯的XPS分析也確認了在低電壓電解時陽極氧化是被抑制的。經過同樣的離心萃取條件後,電解石墨烯的平均直徑從7微米縮小到0.5微米隨著電解電壓由6伏特降低到3伏特。利用3伏特電解得到的低層數石墨烯奈米片接著被使用來進行摻鉺光纖的被動鎖模。再直接將電解製程後得到的溶液滴在光纖接頭上並進行乾燥以後,石墨烯奈米片就沾附在光纖的端面上,其數量密度為15每平方微米,石墨烯奈米片並被隨光纖一起置於總群延遲色散為-0.154平方匹秒的摻鉺光纖雷射中。被置入的石墨烯奈米片造成的線性穿透率及調變深度分別為92.5%及53%。被鎖模的摻鉺光纖則產生了脈衝寬度為454.5飛秒、波長寬度為5.6奈米的脈衝列,證實此脈衝是接近被動鎖模的轉換極限,而其輸出脈衝的重複頻率為26.7百萬赫,輸出平均功率為8.91毫瓦。利用不同電壓電解的石墨烯奈米片接著被使用作為飽和吸收體,而當電解電壓從3伏特增加到6伏特,調變深度也從53%降低到17%。在進行低增益摻鉺光纖的被動鎖模時,不同樣本的鎖模表現有明顯的差異,且與樣本調變深度有關。然而當幫浦雷射的電流從200毫安培提高到900毫安培,不同樣本的鎖模表現差異就減小了。我們利用Haus’ master equation進行數值模擬來描述摻鉺光纖中脈衝形成的過程,發現在加大增益之後,負的群延遲色散及自相位調變效應的交互作用會主導脈衝成型。在幫浦雷射的電流為900毫安培時,此摻鉺光纖雷射系統中自相位調變與群延遲色散造成的脈衝壓縮率大約為0.3。

High-quality few-layer graphene nano-sheet without the need of post annealing procedure is obtained with ultra-slow electrochemical exfoliation of graphite. A decreasing D/G Raman scattering band intensity ratio with reducing exfoliation bias from +6 to +3 volts implies suppression on the structural defect with controlling the exfoliation bias to the threshold. In contrast, the I(2D)/I(G) ratio is concurrently enlarged by twice to support the decrease in layer number of exfoliated graphene nano-sheets with exfoliation bias lowered to the threshold. The X-ray photoelectron spectroscopy also confirms the suppression of the anode oxidation in the few-layer graphene nano-sheets with low exfoliation bias. After extracting by centrifugation, the average diameter of the exfoliated graphene nano-sheets extracted from the acetone solution is ranged from 7 um to 0.5 um as the exfoliation bias decreasing from 6 to 3 volts. The few-layer graphene nano-sheets electrochemically exfoliated at 3 volt is then demonstrated to passively mode-lock the erbium-doped fiber lasers. By spreading and drying the aqueous solution, the graphene nano-sheets are directly imprinted onto the connector end-face of a single-mode fiber patchcord inside the erbium-doped fiber laser (EDFL) ring cavity with the total GDD of -0.154 ps2. The linear transmittance and modulation depth of the inserted graphene nano-sheets are respectively 92.5% and 53%. The mode-locked EDFL can deliver a pulse-train with a pulsewidth of 454.5 fs and a bandwidth of 5.6 nm, at a repetition rate of 26.7 MHz and an average output power of 8.91 mW. The time-bandwidth product of 0.32 is close to the transform limit. The graphene nano-sheets exfoliated under different biases are next employed as saturable absorbers, and the modulation depth is decreased from 53% to 17% with the exfoliation bias increased from 3 to 6 volts. As being used to passively mode-lock the EDFLs at low gain condition, the different samples show clearly distinct mode-locking performances which is related to the modulation depth. However, such divergence is attenuated when the currents of the pumping laser diodes increased from 200 to 900 mA. The numerical simulation by using Haus’ mater equation is employed to describe the EDFL pulse formation, and the interaction between the anomalous GDD and the SPM effects is investigated to become the dominating mechanism with the increasing gain. The compression ratio with the cooperation of SPM and GDD effects is about 0.3 under the pumping currents of two laser diodes of 900 mA.

口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Historical Review of Graphene Synthesis 1
1.2 Graphene Related Materials Using In Mode-Locked Fiber Laser. 2
1.3 Motivation 3
1.4 Organization of the Thesis 3
1.5 References 4
Chapter 2 Structural Properties of Few-layer Graphene Nano-sheet Obtained by Ultraslow Electrochemical Exfoliation of Graphite Foil at Threshold Bias 8
2.1 Introduction 8
2.2 Experiment 9
2.3 Results and Discussion 10
2.3.1 I-V Curve 10
2.3.2 SEM 11
2.3.3 Raman Scattering Spectra 11
2.3.4 XPS 12
2.3.5 Illustration of Electrolyzing Graphene under Different Bias 13
2.4 Summary 14
2.5 References 14
Chapter 3 Mode-locking the Erbium-doped Fiber Lasers with Few-layer Graphene Nano-sheets Electrochemically Exfoliated from Garphite near Threshold Bias 21
3.1 Introduction 21
3.2 Experiment 23
3.3 Results and Discussion 24
3.3.1 Raman Spectra of graphene, electrochemically exfoliated graphene nano-sheets, and graphite 24
3.3.2 Nonlinear Transmission 25
3.3.3 Gain Curve of EDFA 26
3.3.4 Performance of Mode-locked EDFL 26
3.3.5 Kelly Sidebands Analysis 28
3.4 Summary 28
3.5 References 29
Chapter 4 Compressed Pulsewidth of Graphene Nano-sheet Based Passively Mode-locked Erbium-doped Fiber Lasers with Anomalous Dispersion 40
4.1 Introduction 40
4.2 Experiment 41
4.3 Results and Discussion 42
4.3.1 Nonlinear Transmission of Graphene Nano-sheets Exfoliated under Different Bias 42
4.3.2 Output Power of the Laser with Different Saturable Absorber under Tuned Pumping Conditions 43
4.3.3 Mode-locking Performance of Different Saturble Absorbers under Tuned Pumping Conditions 44
4.3.4 Haus’ Mater Equation for Passively Mode-locked Lasers 46
4.3.5 Analytic Solution of the Haus’ Master Equation 47
4.3.6 Numerical Simulation by Haus’ Master Equation and Revised Analytic Solution 49
4.4 Summary 50
4.5 References 50
Chapter 5 Conclusion 62
作者簡介 65
Publication List 66



[1.1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666-669 (2004).
[1.2] Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets,” ACS Nano 4, 1227-1233 (2010).
[1.3] H. R. Thomas, C. Vall’es, R. J. Young, I. A. Kinloch, N. R. Wilson, and J. P. Rourke, “Identifying the fluorescence of graphene oxide,” J. Mater. Chem. C 1, 338-342 (2013).
[1.4] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De et al., “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite,” Nat Nanotechnol., 2008, 3, 563-568.
[1.5] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes,” Nature 457, 706-710 (2009).
[1.6] B. Luo, H. Liu, L. Jiang, L. Jiang, D. Geng, B. Wu, W. Hu, Y. Liu, and G. Yu, “Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition,” J. Mater. Chem. C 1, 2990-2995 (2013).
[1.7] Y. Liu, Q. Chang, and L. Huang, “Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires.” J. Mater. Chem. C 1, 2970-2974 (2013).
[1.8] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. Khlobystov, and L. J. Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation,” ACS Nano 5, 2332-2339 (2011).
[1.9] J. Wang, K. K. Manga, O. Bao, and K. P. Loh, “High-Yield Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte,” J. Am. Chem. Soc. 133, 8888-8891 (2011).
[1.10] H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite during Potential Cycling in Sulfuric Acid Solution,” J. Power Sources 185, 740-746 (2008).
[1.11] H. Kim, M. Jung, S. Myung, D. Jung, S. S. Lee, K. Kong, J. Lim, J.-H. Lee, C. Y. Park, and K.-S. An, “Soft lithography of graphene sheets via surface energy modification,” J. Mater. Chem. C 1, 1076-1079 (2013).
[1.12] L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics,” ACS Nano 4, 2865-2873 (2010).
[1.13] G.-R. Lin and Y.-C. Lin, “Directly Exfoliated and Imprinted Graphite Nano-Particle Saturable Absorber for Passive Mode-Locking Erbium-Doped Fber Laser,” Laser Phys. Lett. 8, 880-886 (2011).
[1.14] Y.-H. Lin and G.-R. Lin, “Free-Standing Nano-Scale Graphite Saturable Absorber for Passively Mode-Locked Erbium Doped Fber Ring Laser,” Laser Phys. Lett. 9, 398-404 (2012).
[1.15] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611-622 (2010).
[1.16] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9, 4359–4363 (2009).
[1.17] M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[1.18] X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express 19, 9950–9955 (2011).
[1.19] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[1.20] H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[1.21] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[1.22] A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[1.23] P. L. Huang, S. C. Lin, C. Y. Yeh, H.-H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460-2465 (2012).
[1.24] G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[1.25] Y. C. Meng, S. M. Zhang, X. L. Li, H. F. Li, J. Du, and Y. P. Hao, “Passive harmonically mode-locked fiber laser with low pumping power based on a graphene saturable absorber,” Laser Phys. Lett. 9, 537–541 (2012).
[1.26] J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011)
[1.27] G.-R. Lin, C.-K. Lee, and J.-J. Kang, “Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser,” Opt. Express 16, 9213-9221 (2008).
[1.28] G.-R. Lin and I.-H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser,” IEEE Photon. Technol. Lett. 18, 1010-1012 (2006).
[2.1] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. Khlobystov, and L. J. Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation,” ACS Nano 5, 2332-2339 (2011).
[2.2] H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources 185, 740-746 (2008).
[2.3] J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids,” ACS Nano 3, 2367-2375 (2009).
[2.4] G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B 103, 4292-4297 (1999).
[2.5] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97, 187401 (2006).
[2.6] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films,” Nano Lett. 6, 2667-2673 (2006).
[2.7] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys. 9, 1276-1291 (2007).
[2.8] Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C 115, 1422-1427 (2011).
[2.9] A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B 82, 241406 (2010).
[2.10] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8, 36-41 (2008).
[2.11] H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem. 22, 10452-10456 (2012).
[3.1] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363, 603–605 (1993)
[3.2] K.-N. Cheng, Y.-H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys. 23, 045105 (2013).
[3.3] K.-N. Cheng, Y.-H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic Order-Dependent Pulsewidth Shortening of a Passively Mode-Locked Fiber Laser With a Carbon Nanotube Saturable Absorber,” IEEE Photon. J. 4, 1542–1552 (2012).
[3.4] S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10, 137–146 (2004).
[3.5] H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, and Y. Achiba, “Diameter control of single-walled carbon nanotubes,” Carbon 38, 1691–1697 (2000).
[3.6] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008).
[3.7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666–669 (2004).
[3.8] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[3.9] P. L. Huang, S. C. Lin, C. Y. Yeh, H.-H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460-2465 (2012).
[3.10] G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[3.11] J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012).
[3.12] H. Zhang, Q. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).
[3.13] G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880-886 (2011).
[3.14] Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012).
[3.15] Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10, 055105 (2013).
[3.16] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano 5, 2332-2339 (2011).
[3.17] Y. T. Lin and G.-R. Lin “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31, 1382-1384 (2006).
[3.18] G.-R. Lin, H. H. Lu, and J. Y. Chang, “Wavelength tunability of a coupler and air-gap etalon controlled high-efficiency L-band mode-locked erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 18, 2233-2235 (2006).
[3.19] G.-R. Lin, C. L. Pan, and Y. T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol. 25, 3597-3601 (2007).
[3.20] G.-R. Lin and J. Y. Chang, “Femtosecond mode-locked erbium-doped fiber ring laser with intra-cavity loss controlled full L-band wavelength tunability,” Opt. Express 15, 97-103 (2007).
[3.21] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[3.22] L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies,” Nano Lett. 11, 3190–3196 (2011).
[3.23] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, and P. M. Ajayan, “Synthesis of S-doped graphene by liquid precursor,” Nanotechnology 23, 275605 (2012).
[3.24] R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones, “Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing,” Sci. Rep. 2, 586 (2012).
[3.25] Y. Wang, Z. Ni, T. Yu, Z. X. Shen, H. Wang, Y. Wu, W. Chen, and A. T. S. Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect,” J. Phys. Chem. C 112, 10637–10640 (2008).
[3.26] E. Watanabe, A. Conwill, D. Tsuya, and Y. Koide, “Low contact resistance metals for graphene based devices,” Diam. Relat. Mater. 24, 171–174 (2012).
[3.27] D. Kim, J. Y. Han, D. Lee, Y. Lee, and D. Y. Jeon, “Facile conversion of a cellulose acetate laminate film to graphene by alamination process and post-annealing,” J. Mater. Chem. 22, 20026-20031 (2012).
[3.28] F. X. Kartner, J. Aus der Au, and U. Keller, “Modelocking with slow and fast saturable absorbers - What''s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[3.29] M. L. Dennis and I. N. Duling, III, “Experimental Study of Sideband Generation in Femtosecond Fiber Lasers,”IEEE J. Quantum Electron. 30, 1469–1477 (1994).
[4.1] Y.-H. Lin, Y.-C. Chi, and G.R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10, 055105 (2013).
[4.2] G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012).
[4.3] K.-N. Cheng, Y.-H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4, 1542–1552 (2012).
[4.4] K.-N. Cheng, Y.-H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys. 23, 045105 (2013).
[4.5] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009).
[4.6] Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and H. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res. 4, 297–307 (2011).
[4.7] A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).
[4.8] G.-R. Lin, J.-Y. Chang, Y. S. Liao, and H. H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tenability,” Opt. Express 14, 9743–9749 (2006).
[4.9] H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F X Kartner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008).
[4.10] G.-R. Lin, I.-H. Chiu, and M. C. Wu, “1.2 ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60 ps backward dark-optical comb injection and soliton compression,” Opt. Express 13, 1008–1014 (2005).
[4.11] F. X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu, Chap.1 (2006).
[4.12] H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[4.13] G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol. 25, 3597–3601 (2007).
[4.14] Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31, 1382–1384 (2006).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊