|
[1.1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666-669 (2004). [1.2] Y. Zhu, M. D. Stoller, W. Cai, A. Velamakanni, R. D. Piner, D. Chen, and R. S. Ruoff, “Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets,” ACS Nano 4, 1227-1233 (2010). [1.3] H. R. Thomas, C. Vall’es, R. J. Young, I. A. Kinloch, N. R. Wilson, and J. P. Rourke, “Identifying the fluorescence of graphene oxide,” J. Mater. Chem. C 1, 338-342 (2013). [1.4] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De et al., “High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite,” Nat Nanotechnol., 2008, 3, 563-568. [1.5] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes,” Nature 457, 706-710 (2009). [1.6] B. Luo, H. Liu, L. Jiang, L. Jiang, D. Geng, B. Wu, W. Hu, Y. Liu, and G. Yu, “Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition,” J. Mater. Chem. C 1, 2990-2995 (2013). [1.7] Y. Liu, Q. Chang, and L. Huang, “Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires.” J. Mater. Chem. C 1, 2970-2974 (2013). [1.8] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. Khlobystov, and L. J. Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation,” ACS Nano 5, 2332-2339 (2011). [1.9] J. Wang, K. K. Manga, O. Bao, and K. P. Loh, “High-Yield Synthesis of Few-Layer Graphene Flakes through Electrochemical Expansion of Graphite in Propylene Carbonate Electrolyte,” J. Am. Chem. Soc. 133, 8888-8891 (2011). [1.10] H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical Oxidation of Highly Oriented Pyrolytic Graphite during Potential Cycling in Sulfuric Acid Solution,” J. Power Sources 185, 740-746 (2008). [1.11] H. Kim, M. Jung, S. Myung, D. Jung, S. S. Lee, K. Kong, J. Lim, J.-H. Lee, C. Y. Park, and K.-S. An, “Soft lithography of graphene sheets via surface energy modification,” J. Mater. Chem. C 1, 1076-1079 (2013). [1.12] L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, “Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics,” ACS Nano 4, 2865-2873 (2010). [1.13] G.-R. Lin and Y.-C. Lin, “Directly Exfoliated and Imprinted Graphite Nano-Particle Saturable Absorber for Passive Mode-Locking Erbium-Doped Fber Laser,” Laser Phys. Lett. 8, 880-886 (2011). [1.14] Y.-H. Lin and G.-R. Lin, “Free-Standing Nano-Scale Graphite Saturable Absorber for Passively Mode-Locked Erbium Doped Fber Ring Laser,” Laser Phys. Lett. 9, 398-404 (2012). [1.15] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611-622 (2010). [1.16] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9, 4359–4363 (2009). [1.17] M. Liu, X. B. Yin, E. Ulin-Avila, B. S. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011). [1.18] X. L. Li, J. L. Xu, Y. Z. Wu, J. L. He, and X. P. Hao, “Large energy laser pulses with high repetition rate by graphene Q-switched solid-state laser,” Opt. Express 19, 9950–9955 (2011). [1.19] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [1.20] H. Zhang, Q. L. Bao, D. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009). [1.21] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [1.22] A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011). [1.23] P. L. Huang, S. C. Lin, C. Y. Yeh, H.-H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460-2465 (2012). [1.24] G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012). [1.25] Y. C. Meng, S. M. Zhang, X. L. Li, H. F. Li, J. Du, and Y. P. Hao, “Passive harmonically mode-locked fiber laser with low pumping power based on a graphene saturable absorber,” Laser Phys. Lett. 9, 537–541 (2012). [1.26] J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, “Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser,” Opt. Lett. 36, 1948–1950 (2011) [1.27] G.-R. Lin, C.-K. Lee, and J.-J. Kang, “Rational harmonic mode-locking pulse quality of the dark-optical-comb injected semiconductor optical amplifier fiber ring laser,” Opt. Express 16, 9213-9221 (2008). [1.28] G.-R. Lin and I.-H. Chiu, “110-pJ and 410-fs pulse at 10 GHz generated by single-stage external fiber compression of optically injection-mode-locked semiconductor optical amplifier fiber laser,” IEEE Photon. Technol. Lett. 18, 1010-1012 (2006). [2.1] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. Khlobystov, and L. J. Li, “High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation,” ACS Nano 5, 2332-2339 (2011). [2.2] H. S. Choo, T. Kinumoto, M. Nose, K. Miyazaki, T. Abe, and Z. Ogumi, “Electrochemical oxidation of highly oriented pyrolytic graphite during potential cycling in sulfuric acid solution,” J. Power Sources 185, 740-746 (2008). [2.3] J. Lu, J. X. Yang, J. Wang, A. Lim, S. Wang, and K. P. Loh, “One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids,” ACS Nano 3, 2367-2375 (2009). [2.4] G. U. Sumanasekera, J. L. Allen, S. L. Fang, A. L. Loper, A. M. Rao, and P. C. Eklund, “Electrochemical Oxidation of Single Wall Carbon Nanotube Bundles in Sulfuric Acid,” J. Phys. Chem. B 103, 4292-4297 (1999). [2.5] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett. 97, 187401 (2006). [2.6] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films,” Nano Lett. 6, 2667-2673 (2006). [2.7] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, “Studying disorder in graphite-based systems by Raman spectroscopy,” Phys. Chem. Chem. Phys. 9, 1276-1291 (2007). [2.8] Z. Q. Luo, T. Yu, Z. H. Ni, S. H. Lim, H. L. Hu, J. Z. Shang, L. Liu, Z. X. Shen, and J. Y. Lin, “Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy,” J. Phys. Chem. C 115, 1422-1427 (2011). [2.9] A. K. Gupta, Y. Tang, V. H. Crespi, and P. C. Eklund, “Nondispersive Raman D band activated by well-ordered interlayer interactions in rotationally stacked bilayer graphene,” Phys. Rev. B 82, 241406 (2010). [2.10] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, “Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets,” Nano Lett. 8, 36-41 (2008). [2.11] H. Huang, Y. Xia, X. Tao, J. Du, J. Fang, Y. Gan, and W. Zhang, “Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism,” J. Mater. Chem. 22, 10452-10456 (2012). [3.1] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature 363, 603–605 (1993) [3.2] K.-N. Cheng, Y.-H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys. 23, 045105 (2013). [3.3] K.-N. Cheng, Y.-H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic Order-Dependent Pulsewidth Shortening of a Passively Mode-Locked Fiber Laser With a Carbon Nanotube Saturable Absorber,” IEEE Photon. J. 4, 1542–1552 (2012). [3.4] S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10, 137–146 (2004). [3.5] H. Kataura, Y. Kumazawa, Y. Maniwa, Y. Ohtsuka, R. Sen, S. Suzuki, and Y. Achiba, “Diameter control of single-walled carbon nanotubes,” Carbon 38, 1691–1697 (2000). [3.6] F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotech. 3, 738–742 (2008). [3.7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666–669 (2004). [3.8] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [3.9] P. L. Huang, S. C. Lin, C. Y. Yeh, H.-H. Kuo, S. H. Huang, G.-R. Lin, L. J. Li, C. Y. Su, and W.-H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express 20, 2460-2465 (2012). [3.10] G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012). [3.11] J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express 20, 15474–15480 (2012). [3.12] H. Zhang, Q. Bao, D. Y. Tang, L. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009). [3.13] G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett. 8, 880-886 (2011). [3.14] Y.-H. Lin and G.-R. Lin, “Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser,” Laser Phys. Lett. 9, 398–404 (2012). [3.15] Y.-H. Lin, Y.-C. Chi, and G.-R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10, 055105 (2013). [3.16] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano 5, 2332-2339 (2011). [3.17] Y. T. Lin and G.-R. Lin “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31, 1382-1384 (2006). [3.18] G.-R. Lin, H. H. Lu, and J. Y. Chang, “Wavelength tunability of a coupler and air-gap etalon controlled high-efficiency L-band mode-locked erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 18, 2233-2235 (2006). [3.19] G.-R. Lin, C. L. Pan, and Y. T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol. 25, 3597-3601 (2007). [3.20] G.-R. Lin and J. Y. Chang, “Femtosecond mode-locked erbium-doped fiber ring laser with intra-cavity loss controlled full L-band wavelength tunability,” Opt. Express 15, 97-103 (2007). [3.21] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006). [3.22] L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies,” Nano Lett. 11, 3190–3196 (2011). [3.23] H. Gao, Z. Liu, L. Song, W. Guo, W. Gao, L. Ci, A. Rao, W. Quan, R. Vajtai, and P. M. Ajayan, “Synthesis of S-doped graphene by liquid precursor,” Nanotechnology 23, 275605 (2012). [3.24] R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.-C. Charlier, M. Pan, and M. Terrones, “Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing,” Sci. Rep. 2, 586 (2012). [3.25] Y. Wang, Z. Ni, T. Yu, Z. X. Shen, H. Wang, Y. Wu, W. Chen, and A. T. S. Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect,” J. Phys. Chem. C 112, 10637–10640 (2008). [3.26] E. Watanabe, A. Conwill, D. Tsuya, and Y. Koide, “Low contact resistance metals for graphene based devices,” Diam. Relat. Mater. 24, 171–174 (2012). [3.27] D. Kim, J. Y. Han, D. Lee, Y. Lee, and D. Y. Jeon, “Facile conversion of a cellulose acetate laminate film to graphene by alamination process and post-annealing,” J. Mater. Chem. 22, 20026-20031 (2012). [3.28] F. X. Kartner, J. Aus der Au, and U. Keller, “Modelocking with slow and fast saturable absorbers - What''s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998). [3.29] M. L. Dennis and I. N. Duling, III, “Experimental Study of Sideband Generation in Femtosecond Fiber Lasers,”IEEE J. Quantum Electron. 30, 1469–1477 (1994). [4.1] Y.-H. Lin, Y.-C. Chi, and G.R. Lin, “Nanoscale charcoal powder induced saturable absorption and mode-locking of a low-gain erbium-doped fiber-ring laser,” Laser Phys. Lett. 10, 055105 (2013). [4.2] G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorber,” Laser Phys. Lett. 9, 581–586 (2012). [4.3] K.-N. Cheng, Y.-H. Lin, S. Yamashita, and G.-R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4, 1542–1552 (2012). [4.4] K.-N. Cheng, Y.-H. Lin, and G.-R. Lin, “Single- and double-walled carbon nanotube based saturable absorbers for passive mode-locking of an erbium-doped fiber laser,” Laser Phys. 23, 045105 (2013). [4.5] Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater. 19, 3077–3083 (2009). [4.6] Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Y. Tang, and H. P. Loh, “Monolayer graphene as saturable absorber in mode-locked laser,” Nano Res. 4, 297–307 (2011). [4.7] A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011). [4.8] G.-R. Lin, J.-Y. Chang, Y. S. Liao, and H. H. Lu, “L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tenability,” Opt. Express 14, 9743–9749 (2006). [4.9] H. Byun, D. Pudo, J. Chen, E. P. Ippen, and F X Kartner, “High-repetition-rate, 491 MHz, femtosecond fiber laser with low timing jitter,” Opt. Lett. 33, 2221–2223 (2008). [4.10] G.-R. Lin, I.-H. Chiu, and M. C. Wu, “1.2 ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60 ps backward dark-optical comb injection and soliton compression,” Opt. Express 13, 1008–1014 (2005). [4.11] F. X. Kaertner, “Mode-locked Laser Theory,” physics.gatech.edu, Chap.1 (2006). [4.12] H. A. Haus, “Theory of modelocking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [4.13] G.-R. Lin, C.-L. Pan, and Y.-T. Lin, “Self-steepening of prechirped amplified and compressed 29-fs fiber laser pulse in large-mode-area erbium-doped fiber amplifier,” J. Lightwave Technol. 25, 3597–3601 (2007). [4.14] Y.-T. Lin and G.-R. Lin, “Dual-stage soliton compression of a self-started additive pulse mode-locked erbium-doped fiber laser for 48 fs pulse generation,” Opt. Lett. 31, 1382–1384 (2006).
|