跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭雅菁
研究生(外文):Ya-Ching Kuo
論文名稱:異質接面倒置型有機太陽能電池效率及結構研究
論文名稱(外文):Investigation of Device Performance and Structures of BHJ Inverted Organic Solar Cells
指導教授:吳志毅
指導教授(外文):Chih-I Wu
口試委員:余沛慈陳奕君
口試委員(外文):Pei-Chen YuI-Chun Cheng
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:有機高分子太陽能電池倒置結構氧化鋅低能隙材料添加劑
外文關鍵詞:Organic polymer solar cellsInverted structureZinc oxideLow bangap materialAdditive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有機高分子太陽能電池具有成本低、重量輕、製程簡單等優點,因此近年來,吸引許多研究團隊積極投入研究,改良製程、材料、元件結構,使其於短時間內,光電轉換效率快速上升。
本論文以穩定性高的倒置型結構為基礎,研究結果發現氧化鋅(Zinc oxide;ZnO)為非常適合當作電子傳輸層的材料,因此本論文選用氧化鋅當作元件的電子傳輸層。本論文的氧化鋅薄膜是採用溶膠-凝膠(Sol-gel)法所製備。研究結果發現,塗佈多層的氧化鋅,將會使薄膜表面趨於平坦,優化氧化鋅與主動層的介面,進而提高元件電流表現,三層氧化鋅的P3HT:PC61BM系統元件效率可達3.78%。另外,研究結果也發現,於氧化鋅中掺入鋁原子,將會提高氧化鋅傳輸電子的能力,1.35%的三層掺鋁氧化鋅的P3HT:PC61BM系統元件效率可達3.91%。
接著本論文改用低能隙材料PBDTTT-C-T,因其可吸收較寬太陽頻譜的特性,且利用添加劑濃度控制主動層表面型貌,增加元件效率。研究結果發現,加入4%添加劑的PBDTTT-C-T:PC71BM系統,有機材料所形成的群集顆粒( Cluster )尺寸,為其取出載子最適當的大小,因此,效率最高可達6.51%。最後,本論文針對元件的穩定性做長時間的效率觀測,未封裝的元件於氮氣環境下900小時後,元件效率仍有起始效率的97%以上,而於大氣環境下900小時後,元件效率仍有起始效率的79%以上。


Organic polymer solar cells (PSCs) have lots of advantages for low-cost technology
, light weight, easy fabrication and have drawn a great deal of attention. In recent years, many research groups are devoted to the study of processing, materials, and device structures. As a result, the PCE increases rapidly in a short time.

In this study, we investigate the inverted structure solar cells with zinc oxide as the electron transport layer because of its stability. The ZnO film in our solar devices is deposited by sol-gel technique. Our study shows that more ZnO layers lead to flatter film. This would make the contact between ZnO and the active layer better. The short circuit current (Jsc) of our device is enhanced. The PCE of P3HT:PC61BM device with 3-layer ZnO is 3.78%. It should be noted that, the conductivity of ZnO thin film can be improved by addition of small amount of Al. The PCE of device with 3-layer of AZO is 3.91%.

In addition, we use a low bangap material, PBDTTT-C-T, to increase short circuit current because of its broad light absorption enhancement. The surface morphology of these devices can be modified by additives such as DIH. The maximum PCE of PBDTTT-C-T:PC71BM devices is 6.51% with 4% DIH because the cluster size of organic material is suitable for carrier extraction in this mixture ratio.

Finally, we study the lifetime of aforementioned devices. The PCE of the device without encapsulation under N2 environment is still above 97% after 900 hours. The PCE of the device without encapsulation under ambient environment of air is above 79% after 900 hours.


口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii

第一章 緒論 1
1.1 前言 1
第二章 理論基礎與介紹 3
2.1 太陽能電池介紹 3
2.1.1 太陽能電池歷史簡表 3
2.1.2 歷代太陽能電池介紹 4
2.2 有機太陽能電池 5
2.2.1 有機太陽能電池 5
2.2.2 有機太陽能電池光電轉換機制 7
2.2.3 電流密度-電壓特性曲線 8
2.2.4 六大重要參數 10
2.2.5 倒置型太陽能電池 11
第三章 實驗儀器、材料、步驟 14
3.1 實驗儀器介紹 14
3.1.1 氮氣手套箱與太陽能量測模擬器 14
3.1.2 原子力顯微鏡 15
3.1.3 紫外-可見光光譜儀 16
3.1.4 外部量子效率 18
3.1.5 霍爾量測儀 19
3.2 實驗材料介紹 19
3.2.1 氧化銦錫基板 19
3.2.2 電子傳輸層材料 20
3.2.3 主動層材料 21
3.2.4 電洞傳輸層材料與陽極材料 23
3.3 實驗步驟 24
3.3.1 元件製作流程圖 24
3.3.2 元件製程步驟 25
第四章 以氧化鋅為電子傳輸層之太陽電池 30
4.1 研究動機 30
4.2 不同電子傳輸層元件效率比較 30
4.2.1 元件最佳化過程 30
4.2.2 與其它電子傳輸層元件比較 33
4.3 針對氧化鋅提高元件效率 36
4.3.1 改變層數增進元件效率 36
4.3.2 利用掺雜增進元件效率 40
4.4 結論 42
第五章 不同主動層之倒置太陽電池 44
5.1 研究動機 44
5.2 低能隙高分子太陽電池 44
5.2.1 低能隙高分子材料 44
5.2.2 不同添加劑濃度元件效率 45
5.3 不同主動層之倒置元件 49
5.4 倒置元件之壽命 52
5.5 結論 53
第六章 總結與未來展望 55
6.1 總結 55
6.2 未來展望 57

參考文獻 58


[1]http://blog.bledu.net.cn/home.php?mod=space&uid=81&do=blog&id=5590/
[2]M.E. Ashry “Renewables 2012 global status report,” REN21,France.
[3]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta ”Solar cell efficiency tables (version41),” Progress in Photovoltaics 21, 1-11(2013).
[4]Wiki, “太陽能電池”.
[5]Organic semiconductor world, http://www.orgworld.de/
[6]材料世界網,”共軛性導電高分子材料技術簡介”, http://www.materialsnet.com.tw/DocView.aspx?id=9028/
[7]T. Kietzke, “Recent Advances in Organic Solar Cells,”Adv. OptoElectron.,
2007, 40285, 1.
[8]Solarcellideas.com,,http://www.solarcellideas.com/2013/05/bulk-solar-cells.html/
[9]B.R.Saunders, and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Advances in Colloid and Interface Science 138 (2008) 1–23.
[10]W. Gai, and X. Gong, “Polymer solar cells: Recent development and possible routes for improvement in the performance,” Solar Energy Materials & Solar Cells 94 (2010) 114–127.
[11]A. Cheknane, H. S. Hilal, F. Djeffal, B. Benyoucef, and J. P. Charles, “An equivalent circuit approach to organic solar cell modeling. ” Microelectronics Journal, 39(2008) 1173-1180
[12]J.T. Chen, and C.S. Hsu, “Conjugated polymer nanostructures for organic solar cell applications,” Polym. Chem., 2011, 2, 2707–2722.
[13]http://ridb.kanazawa-u.ac.jp/file/image_003439.jpg/
[14]M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” PNAS.vol.15,.no.8, 2008.
[15]E. Verploegen, R. Mondal, C. J. Bettinger, S. Sok, M. F. Toney and Z. Bao, “Effects of Thermal Annealing On the Morphology of Polymer–Fullerene Blends for Organic Solar Cells,” Adv. Funct. Mater.
20, 3519 (2010) doi: 10.1002/adfm.201000975.
[16]Meraun, http://www.mbraunchina.com/mbraun-glovebox-products-glovebox-workstations/
[17]Abet, http://www.lot-oriel.com/ib/es/home/solarsimulators/solarsimulator/
[18]Solarlux, http://www.eyesolarlux.com/Solar-simulation-energy.htm/
[19]Geobacter Project, http://www.geobacter.org/Nanowires/
[20]Jasco, http://www.jascoinc.com/products/spectroscopy/uv-visible-nir/v-670-uv-vis-spectrophotometer/
[21]J. Tauc, “Amorphous and liquid semiconductor,” Plenum Press, New York,1974, p159.
[22]王中彥,溶膠凝膠法製備鋁及銦掺雜之氧化鋅透明導電膜特性研究.國立台灣大學電機資訊學院光電工程學研究所碩士論文,2012.
[23]EnliTech, http://www.enli.com.tw/
[24]Bridge Technology, http://www.bridgetec.com/hms5000.html/
[25]Webelement.com, http://www.webelements.com/compounds/zinc/zinc_oxide.html/
[26]M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, “p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells,” PNAS.vol.15,.no.8, 2008.
[27]L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, “Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers,” Angew. Chem. Int. Ed. 2011, 50, 9697 –9702.
[28]L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Hurase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched
low-bandgap polymer,” Nature Photonics 6,180–185 (2012).
[29]L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, and J. Hou, ”Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers,” Angew. Chem. Int. Ed. 2011, 50, 9697 –9702.
[30]G. Zhao, Y. He, Y.Li, “6.5% efficiency of polymer solar cells based on poly and indene-C60 bisadduct by device optimization,” Adv. Mater. 2010, 22, 4355–4358.
[31]L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Hurase, T. Moriarty, K. Emery, G. Li, and Y. Yang, “Tandem polymer solar cells featuring a spectrally matched
low-bandgap polymer,” Nature Photonics 6,180–185 (2012).
[32]Y. Gu, C. Wang, and T. P. Russell, “Multi-length-scale morphologies in PCPDTBT/PCBM bulk heterojunction solar cells,” Adv. Energy Mater. 2012, 2, 683–690.
[33]http://www.ims.ut.ee/~alar/microtech/Ch1_4/Ch_1_4_4.php/
[34]Fabrication Technology,
http://www.ece.utep.edu/research/webedl/cdte/Fabrication/index.htm/
[35]Y.I.Lee, J. H. Youn, M. S. Ryu, J. Kim, H. T. Moon, and J. Jang, “Electrical properties of inverted poly(3-hexylthiophene):Methano
-fullerene [6,6]-phenylC71-butyric acidmethylesterbulkhetero-junctionsolarcell with Cs2CO3 and MoO3 layers,” Solar Energy Materials & Solar Cells 95 (2011) 3276–3280.
[36]K.S.Chen, J. F. Salinas, H. L. Yip, L. Huo, J. Huo, and A. K. Y.
Jen, ”Semi-transparent polymer solar cell with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications,” Energy Environ. Sci., 2012,5,95514-9557.
[37]Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, and G.Cao, “Effects of the Morphology of a ZnO Buffer Layer on the Photovoltaic Performance of Inverted Polymer Solar Cells,” Adv. Funct. Mater. 2012, 22, 2194–2201.
[38]X.Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Huo, J. You, Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv.Master.2012,DOI:10.1002/adma.201200120.
[39]http://www.chem.unc.edu/people/faculty/you/index.html?display=research_display&show=all/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top