(3.235.139.152) 您好!臺灣時間:2021/05/11 12:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周鵬豪
研究生(外文):Peng-Hao Chou
論文名稱:不同尺寸設計對發光電晶體光頻寬之影響
論文名稱(外文):The effect of optical bandwidth of light-emitting transistors under different size layout design
指導教授:吳肇欣
指導教授(外文):Chao-Hsin Wu
口試委員:黃建璋林浩雄張書維
口試委員(外文):Jian-Jang HuangHao-Hsiung LinShu-Wei Chang
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:異質接面雙極性電晶體發光電晶體等效小訊號電路模型光頻率響應
外文關鍵詞:Heterojunction bipolar transistorLight-emitting transistorEquivalent small-signal circuit modelOptical response
相關次數:
  • 被引用被引用:1
  • 點閱點閱:300
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  自2004年起,發光電晶體的發明打破了以往對載子復合放光速度的認知,傳統發光二極體及二極體雷射其載子復合的生命週期是在奈秒等級(Nano-second level),而發光電晶體已經被實驗證實其自發性復合放光的生命週期可達到皮秒等級(Pico-second level),其快速的載子復合速度,加上本身就是電晶體的許多特性,使得發光電晶體及電晶體雷射成為下一代光通訊系統光源的候選人之一。
  為了提升元件自發性放光的調變速率(降低載子復合的生命週期),縮小尺寸成為了一個重要的課題。在本篇論文中,我們設計了不同射極以及不同基極大小的In0.49Ga0.51P/GaAs 發光電晶體元件,藉此研究之間的關係。透過直流量測與分析,我們發現不同結構下的元件其電流增益(β = IC/IB)和光輸出會因為電路造成的寄生效應和不同的載子復合過程而有所差異。當固定基極,將射極半徑從9 μm (E18B27)縮減至6.5 μm (E13B27)時,電流增益會因為有較高的電流密度而增加,且光輸出較易被侷限在元件內部;當固定射極,將基極半徑從13.5 μm (E13B27)縮減至11 μm (E13B22)時,電流增益也會有所提升。透過高頻小訊號的量測,我們可以得到GHz等級的自發性放光調變速度,且利用發光電晶體之等效電路小訊號模型得到元件的電路特性。
  我們發現到元件的表現會受到電路的電阻電容寄生效應影響,並且可以透過去嵌入(De-embed)的方式將電路造成的效應去除,進而得到元件的本質光頻寬(Intrinsic optical bandwidth),而本質光頻寬會隨著基極電流密度的提升而增加。我們透過對現有元件的分析去預測E8B27、E8B16及E5B16的光頻寬,當IB為2 mA時,E5B16的本質光頻寬可以達到14 GHz,但是受到電路效應的影響後,整體光頻寬(Overall optical bandwidth)會降至8.1 GHz,而8.1 GHz依然有機會可以突破過去實驗得到的光頻寬。


  The invention of light-emitting transistors (LETs) in 2004 has revolutionized the concept of the carrier radiative recombination rate for the past 50 years. It is recognized that the radiative recombination lifetime of the traditional light-emitting diodes (LEDs) and diode lasers (DLs) are in the nano-second range. However, the pico-second level of recombination lifetime of LETs and transistor lasers (TLs), which can be determined by experiments, provides great potential for next generation optical communication light source.
  In the thesis, we have designed different sizes of emitter radius hE and base radius hB of InGaP/GaAs LETs in aperture layout design. Through different layout designs, the LETs exhibit different electrical current gain (β = IC/IB) and optical light output due to different carrier recombination processes in the transistor base region and different parasitics. By reducing the lateral emitter radius from 9 to 6.5 μm, β increases due to the higher injection current densities and better confinement of the radiative recombination in the base region. Moreover, β increases when reducing the base radius from 13.5 to 11 μm with fixed emitter diameter. We have obtained multi-GHz spontaneous light modulation of LETs from rf measurement, and the device performance is closely related to different layout designs with different device parasitics under equivalent circuit small-signal model analysis.
  The intrinsic optical bandwidth, enhanced under the higher base current density, can be also obtained by de-embeding the circuit parasitics effect. Through the analysis of small-signal equivalent circuit models, we have projected the overall optical bandwidth under device lateral scaling, such as E8B27, E8B16, and E5B16. As IB is 2 mA, the intrinsic optical bandwidth of E5B16 is 14 GHz. By the circuit paracistics effect, the overall optical bandwidth would drop to 8.1 GHz, but it still has a great potential to break the record.


誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiv
第1章 緒論 1
1.1 背景介紹 1
1.2 從電晶體至發光電晶體之發展 6
1.3 研究動機 12
1.4 論文導覽 13
第2章 固定射極尺寸並改變基極大小對發光電晶體之特性影響 14
2.1 元件磊晶層及佈局結構介紹 14
2.2 直流訊號分析 19
2.2.1 直流訊號量測儀器介紹與架設 19
2.2.2 BE二極體分析 22
2.2.3 BC二極體分析 25
2.2.4 Gummel曲線特性分析 29
2.2.5 光、電族曲線特性分析 32
2.3 小訊號量測分析 38
2.3.1 小訊號量測儀器介紹與架設 38
2.3.2 S參數簡介 42
2.3.3 發光電晶體之等效小訊號電路模型之簡介 45
2.3.4 相同基極電流密度下之等效小訊號電路模型與光頻率響應比較 46
2.3.5 相同射極電流密度下之等效小訊號電路模型與光頻率響應比較 51
第3章 固定基極尺寸並改變射極大小對發光電晶體之特性影響 56
3.1 元件佈局結構介紹 56
3.2 直流量測分析 57
3.2.1 BE二極體分析 57
3.2.2 BC二極體分析 60
3.2.3 Gummel曲線特性分析 62
3.2.4 光、電族曲線特性分析 65
3.3 小訊號量測分析 70
3.3.1 相同基極電流密度下之等效小訊號電路模型與光頻率響應比較 70
3.3.2 相同射極電流密度下之等效小訊號電路模型與光頻率響應比較 75
第4章 利用等效小訊號電路模型對縮減尺寸之發光電晶體頻寬預測 79
4.1 高P型參雜濃度基極對發光電晶體頻寬之影響 79
4.2 發光電晶體之本質光頻率響應(Intrinsic optical response)計算 83
4.3 模擬縮減元件尺寸對發光電晶體之頻寬影響 85
4.3.1 從E13B27縮減至E8B27之光頻寬模擬 85
4.3.2 從E8E27縮減至E8B16之光頻寬模擬 89
4.3.3 從E8B16縮減至E5B16之光頻寬模擬 92
4.4 結論 96
第5章 論文總結 97
參考文獻 98


[1]Cisco System, Inc., “Cisco visual networking index: Forecast and methodology, 2012–2017,” May 29, 2013,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
[2]Cisco System, Inc., “The zettabyte era - Trends and analysis,” May 29, 2013,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.pdf
[3]Cisco System, Inc., “Cisco visual networking index: Global mobile data traffic forecast update, 2012-2017,” February 6, 2013,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
[4]International Technology Roadmap for Semiconductors, “Executive Summary,” 2011.
[5]Cisco System, Inc., “Cisco global cloud index: Forecast and methodology, 2011-2016,” 2012,
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns1175/Cloud_Index_White_Paper.pdf
[6]W. Snodgrass, B.R. Wu, K.Y. Cheng, and M. Feng, “Type-II GaAsSb/InP DHBTs with record fT = 670 GHz and simultaneous fT, fMAX > 400 GHz,” in IEEE International Electron Devices Meeting (IEDM), 2007, pp. 663-666.
[7]N. Holonyak, Jr. and S.F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) junctions,” Applied Physics Letters, vol. 1, pp. 82-83, December 1962.
[8]M. Feng, N. Holonyak, Jr., and W. Hafez, “Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors,” Applied Physics Letters, vol. 84, pp. 151-153, January 2004.
[9]M. Feng, N. Holonyak, Jr., and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84, pp. 1952-1954, March 2004.
[10]H. W. Then, M. Feng, N. Holonyak, Jr., and C.H. Wu, “Experimental determination of the effective minority carrier lifetime in the operation of a quantum-well n-p-n heterojunction bipolar light-emitting transistor of varying base quantum-well design and doping,” Applied Physics Letters, vol. 91, pp. 033505, July 2007.
[11]J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Physical Review Letters, vol. 74, pp. 230-231, July 1948.
[12]W. Shockley, “Circuit element utilizing semiconductive material,” U.S. 2,569,347, September 25, 1951.
[13]H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proceedings of the IRE, vol. 45, pp. 1535-1537, 1957.
[14]S. Oktyabrsky and P.D. Ye, Eds., Fundamentals of III-V Semiconductor MOSFETs. New York: Springer, 2010, pp. 9.
[15]G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr., “Tilted-charge high speed (7 GHz) light emitting diode,” Applied Physics Letters, vol. 94, pp. 231125, June 2009.
[16]M. Passlack, G. Doornbos, C. Wann, and Y.C. Sun, “Classification and benchmarking of III–V MOSFETs for CMOS,” in Symposium on VLSI Technology (VLSIT), 2010, pp.155-156.
[17]M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah, and Robert Chau, “Advanced high-K gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications,” in IEEE International Electron Devices Meeting (IEDM), 2009, pp. 319-322.
[18]Masafumi Yokoyama, Tetsuji Yasuda, Hideki Takagi, Hisashi Yamada, Noboru Fukuhara, Masahiko Hata, Masakazu Sugiyama, Yoshiaki Nakano, Mitsuru Takenaka, and Shinichi Takagi, “Thin body III-V-semiconductor-on-insulator metal-oxide-semiconductor field-effect transistors on Si fabricated using direct wafer bonding,” Applied Physics Express, vol. 2, pp. 124501, December 2009.
[19]W. Liu, J.S. Harris, Jr., “Dependence of base crowding effect on base doping and thickness for Npn AlGaAs/GaAs HBTs ,” IEEE Electronic Letters, vol. 27, pp. 2048-2050, October 1991.
[20]W. Liu, Ed., Handbook of III-V heterojunction bipolar transistors. New York: Wiley-Interscience, 1998, pp. 260-267.
[21]W. Liu, Ed., Handbook of III-V heterojunction bipolar transistors. New York: Wiley-Interscience, 1998, pp. 693-708.
[22]W. Liu, Ed., Handbook of III-V heterojunction bipolar transistors. New York: Wiley-Interscience, 1998, pp. 152-160
[23]W. Liu, S.K. Fan, Tae S. Kim, Edward A. Beam III, and David B. Davito, “Current transport mechanism in GaInP/GaAs heterojunction bipolar transistors,” IEEE Transactions on Electron Devices, vol. 40, pp. 1378 -1383, August 1993.
[24]W. Liu, “Microwave and d.c. characterizations of Npn and Pnp HBTs,” Ph.D. dissertation, University of Stanford, Stanford, CA, United States, 1991.
[25]W. Liu, “Ideality factor of extrinsic base surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Electronic Letters, vol. 28, pp. 379-380, February 1992.
[26]L. V. Keldysh, “Behaviour of non-Metallic crystals in strong electric fields,” Soviet. Physics-JETP, vol. 6, pp. 763-770, April 1958.
[27]L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Soviet. Physics-JETP, vol. 20, pp. 1307-1314 May 1965.
[28]W. Franz, “Einflus eines elektrischen Feldes auf eine optische Absorptionskante,” Zeitschrift Naturforschung Teil A, vol. 13, p. 484, 1958.
[29]K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Physical Review Letters, vol. 130, pp. 2204-2206, June 1963.
[30]H. L. Wang, P. H. Chou, and C. H. Wu, “Microwave determination of quantum-well capture and escape time in light-emitting transistors,” IEEE Transactions on Electron Devices, vol. 60, pp. 1088-1091, March 2013.
[31]D. R. Pehlke and D. Pavlidis, “Evaluation of the factors determining HBT high-frequency performance by direct analysis of S-parameter data,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 2367-2373, December 1992.
[32]B. Li, S. Prasad, L.-W. Yang, and S. C. Wang, “A semianalytical parameter-extraction procedure for HBT equivalent circuit,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, pp. 1427-1435, October 1998.
[33]S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameter-extraction method for HBT small-signal model,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, pp. 529-536, February 2002.
[34]Mohammad Sotoodeh, Lucia Sozzi, Alessandro Vinay, A. H. Khalid, Zhirun Hu, Ali A. Rezazadeh, and Roberto Menozzi, “Stepping toward standard methods of small-signal parameter extraction for HBTs”, IEEE Transactions on Electron Devices, vo. 47, pp. 1139-1151, June 2000.
[35]H. W. Then, C. H. Wu, M. Feng, N. Holonyak, Jr., and G. Walter, “Stochastic base doping and quantum-well enhancement of recombination in an n-p-n light-emitting transistor or transistor laser,” Applied Physics Letters, vol. 96, pp. 263505, June 2010.
[36]C. H. Wu, G. Walter, H. W. Then, M. Feng, N. Holonyak, Jr., “Scaling of light emitting transistor for multigigahertz optical bandwidth,” Applied Physics Letters, vol. 94, pp. 171101, April 2009.
[37]L. A. Coldren, and S. W. Corzine, Eds., Diode lasers and photonic integrated circuits. New York: Wiley, 1995.
[38]Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura, “Bessel’s Inequality,” Formalized Mathematics, vol. 11, pp. 169-173, 2003.
[39]C. H. Wu, F. Tan, M. K. Wu, M. Feng, and N. Holonyak, Jr., “The effect of microcavity laser recombination lifetime on microwave bandwidth and eye-diagram signal integrity,” Journal of Applied Physics, vol. 109, pp. 053112, March 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔