(3.238.130.97) 您好!臺灣時間:2021/05/14 18:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪梓堯
研究生(外文):Tzu-Yao Hung
論文名稱:以三嗪衍生物作為藍色磷光有機發光二極體主體材料及並四苯-矽混成太陽能電池
論文名稱(外文):Triazine derivatives as hosts of blue phosphorescent organic light-emitting diode and tetracene/Si hybrid solar cell
指導教授:李君浩
口試委員:胡振國梁文傑林浩雄王俊凱
口試日期:2013-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:藍色磷光有機發光二極體混成太陽能電池光檢測器及單態分裂
外文關鍵詞:blue organic light emitting diodehybrid solar cellphoto diode and singlet fission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要研究有兩大項為以三嗪衍生物作為藍色磷光有機發光二極體主體材料及並四苯-矽混成太陽能電池。
對於藍光光有機發光二極體而言,提高效率及載子的平衡在白光中扮演了很重要的角色。由於2,4,6-triphenyl-1,3,5-triazine derivatives (TRZs) 擁有很高的lowest unoccupied molecule orbital (LUMO)能階,於是將新材料當作發光層中的主題,如此可以使得電洞更加容易將能量轉移給客體。我製作了一系列不同濃度以dium(III)bis(4,6-(difluorophenyl)pyridinato-N,C2’)picolinate (FIrpic)當作客體的藍光磷光有機發光二極體,其中電流效率最高到達 18.85 cd/A 和有相當低的驅動電壓約9.68V (100mA/cm2) 。
另一方面,在混成太陽能電池上我使用擁有單態分裂(singlet fission)能力的並四苯製作製作了三個元件分別為 TRPL 的光學量測元件、光檢測器及並四苯-矽混成太陽能電池。 在TRPL的光學量測上面我們可以清楚的看到在無機及有機之間的能量轉移。接著在我所做的光檢測器可以量測到它的光電訊號。然後我們製作混成太陽能電池並且量測它在光電訊號上的表現。最高光電轉換效率可以到達 2.34 % 是使用poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) 當作一個有機的吸收體。而以並四苯當作一個有機的吸收體最高光電轉換效率可以達到1.47 %。


The objectives of the researches are two topics about the blue phosphorescence organic light emitting diode (PHOLED) and hybrid solar cell.
For the blue PHOLED, the high efficiency and carriers balance plays an important role in white-OLED. 2,4,6-triphenyl-1,3,5-triazine derivatives (TRZs) have higher lowest unoccupied molecule orbital (LUMO) material, which will help the hole transport to the dopant easier by TRZs as host. I fabricated the various concentration of dium(III)bis(4,6-(difluorophenyl)pyridinato-N,C2’)picolinate (FIrpic) as guest for the blue PHOLED. The highest current efficiency can reach about 18.85 cd/A and with a lower turn on voltage at 9.68V in100mA/cm2.
For the hybrid solar cell, solar cell plays an important role on green energy while expand of energy demand and environmental awareness. We fabricated Si-Organic heterojunction (SOH) solar cell with organic layer such as tetracene with photoelectron generate and singlet fission characteristics. To confirm the energy transfer from organic to inorganic, we fabricated photodiode (PD) to measure the responsivity. The PD device has parallel electrode on silicon surface and deposit organic layer between the electrodes gap. After the PD fabrication, we start to fabricate SOH solar cell. The highest power conversion efficiency (PCE) reaches about 2.34 % by the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) as organic layer. Tetracene as organic of hybrid solar cell has PCE about 1.47 %.


誌謝 ...... III
摘要 .................... IV
Abstract ......... VI
Content ............ VIII
Figure Content ........ XI
Chapter 1 Introduction ..... 1
1-1 Overview ............... 1
1-2 Blue phosphorescent OLED ......... 2
1-3 Singlet fission mechanism and device design ... 7
1-3-1 Theory of singlet fission ..... 8
1-3-2 Singlet fission based device ...... 9
1-3-3 Si-based solar cell structure ...........10
1-4 Motivation ...............14
1-5 References: .........15
Chapter 2 Fabrication and measurement systems ... 18
2-1 Introduction ....18
2-2 Device fabrication .....19
2-2-1 OLED ........19
2-2-2 Organic thin film on Si substrate for TRPL measurements ...............19
2-2-3 Photodiode.............22
2-2-4 Hybrid solar cell .........26
2-3 Measurement system ......29
2-3-1 BIV measurement ........29
2-3-2 EQE and responsivity measurement ....29
2-3-3 PD responsivity measurement .....32
2-3-4 Power conversion efficiency (PCE) ......33
2-3-5 TRPL measurement .........34
2-3-6 AFM .......35
2-3-7 Absorption spectra ..........35
2-4 References: ..........36
Chapter 3 Blue phosphorescent OLED with triazine derivatives as host material .................. 37
3-1 Introduction ........37
3-2 The blue PHOLED by TRZ as host .....38
3-3 The TRZ1 as host with various dopant concentrations ...45
3-4 Reference ......51
Chapter 4 Tetracene/Si hybrid solar cell ...... 52
4-1 Introduction ......52
4-1-1 Surface morphology of silicon and tetracene film.............................53
4-1-2 The optical measurement by TRPL .......56
4-2 Photodiode measurement ............61
4-3 The hybrid solar cell ..............68
4-3-1 P3HT based hybrid solar cell ......69
4-3-2 PEDOT:PSS based hybrid solar cell .......73
4-3-3 Tetracene based hybrid solar cell ........76
4-4 Reference .........82
Chapter 5 Summary ......... 83
Appendix A ............ 84
Appendix B .......... 88

[1] C. W. Tang and S. A.Vanslyke, Appl. Phys. Lett., 51, 913 (1987).
[2] C. W. Lee, K. S. Yook, J. Y. Lee, Orga. Electron., 14, 1009 (2013).
[3] V. E. Choong, S. Shi, J. Curless, C. L. Shieh, H. C. Lee, F. So, J. Shen and J. Yang, Appl. Phys. Letter, 75, 172 (1999).
[4] H. Sasabe, J. I. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz and J. Kido, Adv. Mater., 22, 5003 (2010).
[5] P. Erk, M. Bold, M. Egen, E. Fuchs, T. Gebner, K. Kahle, C. Lennartz, O. Molt, S. Nord, H. Reichelt, C. Schildknecht, H. H. Johannes, W. Kowalsky, SID Digest, 37, 131 (2006).
[6] H. Y. Wang, X. X. Zhang, J. J. Shi,G. Chen,X. P. Xu, S. J. Ji, Spectrochim. Acta, 93, 343 (2012).
[7] S. O. Jeon and J. Y. Lee, J. Mater. Chem., 22, 4233 (2012).
[8] M. Cocchi, J. Kalinowski, L. Murphy, J. A. Gareth Williams, V. Fattori, Org. Electron., 11, 388 (2010).
[9] J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. Xue, F. So, and J. Shi, Appl. Phys. Lett.,93, 123306 (2008).
[10] H. H. Chou and C. H. Cheng, Adv. Mater., 22, 2468 (2010).
[ 1] M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondaland and K. T. Wong, J. Mater. Chem., 22, 16114 (2012).
[ 2] H. Lee, I. Park, J. Kwak, D. Y. Yoon and C. Lee, Appl. Phys. Lett., 96, 153306 (2010).
[ 3] S. Tao, S. L. Lai, C. Wu, T. W. Ng, M. Y. Chan, W. Zhao and Xiaohong Zhang, Org. Electron., 12, 2061 (2011).
[ 4] S. O. Jeon, K. S. Yook, C. W. Joo and J. Y. Lee, Appl. Phys. Lett., 94, 013301 (2009).
[ 5] S. E. Jang, C. W. Jang, S. O. Jeon, K. S. Yook and J. Y. Lee, Org. Electron.,11, 1059 (2010).
[ 6] W. Y. Hung, G. M. Tu, S. W. Chen and Y. Chi, J. Mater. Chem., 22, 5410 (2012).
[ 7] W. Shockley and H. J. Queisser, J. Appl. Phys., 32, 510 (1961).
[ 8] T. Ameri, N. Li and C. J. Brabec, Energy Environ. Sci., 6, 2390 (2013).
[ 9] A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson and J. C. Johnson, Chem. Rev.,110,6873 (2010).
[20] D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. V. Voorhis and M. A. Baldo, Science, 340, 334 ( 2013).
[21] P. J. Jadhav, P. R. Brown, N. Thompson, B. Wunsch, A. Mohanty , S. R. Yost, E. Hontz, T. V. Voorhis, M. G. Bawendi,V. Bulovic’ and M. A. Baldo, Adv. Mater., 24, 6169 (2012)
[22] M. B. Smith and J. Michl, Chem. Rev., 110, 6891 (2010).
[23] P. M. Zimmerman, Z. Zhang and C. B. Musgrave, Nature Chem., 2, 648 (2010).
[24] W. L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, M. A. Luis, X. Y. Zhu, Science, 334, 1541 (2011).
[25] P. M. Zimmerman, Z. Zhang and C. B. Musgrave, Nature Chemistry, 2, 648 (2010).
[26] J. Lee, P. Jadhav, and M. A. Baldo, Appl. Phys. Lett., 95, 033301 (2009).
[27] P. J. Jadhav, A. Mohanty, J. Sussman, J. Lee and M. A. Baldo, Nano Lett., 11, 1495 (2011).
[28] P. D. Reusswig, D. N. Congreve, N. J. Thompson and M. A. Baldo, Appl. Phys. Lett., 101, 113304 (2012).
[29] Sunpower corporation, Avalible online http://us.sunpowercorp.com/ (accessed on 31 July 2013).
[30] D. L. Pumwey, Solid-State Electronics, 20, 455 (1977).
[3 ] M. A. Green, R. B. Godfrey, Appl. Phys. Lett., 29 , 9, 610 (1999)
[32] S. Avasthi, S. Lee, Y. L. Loo and J. C. Sturm, Adv. Mater., 23, 5762 (2011).
[33] R. Hezel, Prog. Photovolt: Res. Appl., 5, 109 (1997).
[34] B. Ehrler, K. P. Musselman, M. L. Bohm, R. H. Friend and N. C. Greenham, Appl. Phys. Lett., 101, 153507 (2012).
[35] L. He, C. Jiang, H. Wang, D. Lai and L. H. Rusli, Appl. Phys. Lett., 100, 073503 (2012).

chapter 2
[1] D. Westberg, O. Paul, G. I. Andersson and H. Baltes, J. Micromech. Microeng., 6, 376 (1996).
[2] G. Dennler, K. Forberich, M. C. Scharber and C. J. Brabe, J. Appl.Phys., 102, 054516 (2007).
[3] M. K. Das and N. R. Das, J. Appl. Phys., 105, 093118 (2009).
[4] Picoseconds Fluorescence Lifetime Measurement System C4780, Available online: http://www.chipfind.net/datasheet/hamamatsu/c4780.htm (accessed on 22 July 2013).
[5] Time-resolved fluorescence of Cs atoms in solid He, Available online: http://physics.unifr.ch/en/page/416/ (accessed on 22 July 2013).

chapter 3
[1] 殷佩, “含三氮雜苯基團衍生物具有高能隙的小分子之合成、性質探討及其在藍色磷光有機發光二極體上的應用”台大化學所碩士論文 (2012).
[2] C. Fan, Y. Chen, Z. Liu, Z. Jiang, C. Zhong, D. Ma, J. Qin and C. Yang, J. Mater. Chem. C, 1, 463, (2013).
[3] H. Sasabe, J. I. Takamatsu, T. Motoyama , S. Watanabe, G. Wagenblast, N. Langer, O. Molt , E. Fuchs, C. Lennartz and K Junji , Adv. Mater., 22 , 5003 (2010).

chapter 4
[1] V. Petrovich, M. Haurylau, S. Volchek, Sensors and Actuators A: Physical, 99, 45 (2002).
[2] R. B. Gupta, S. Nagpal, S. Arora, P. K. Bhatnagar and P. C. Mathur, J. Nanophoton., 5, 059505 (2011).
[3] G. K. Paul, J. Mwaura, A. A. Argun, P. Taranekar and J. R. Reynolds, Macromolecules, 39,7789 (2006).
[4] C. W. Chu, Y. Shao, V. Shrotriya and Y. Yang, Appl. Phys. Lett.,86, 243506 (2005).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top