(3.238.235.155) 您好!臺灣時間:2021/05/11 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅元彥
研究生(外文):Yuan-Yen Lo
論文名稱:氟化并五苯分子在金屬表面的吸附行為
論文名稱(外文):The Adsorption Behaviors of Perfluoropentacene Molecules on Metallic Surfaces
指導教授:吳志毅
指導教授(外文):Chih-I Wu
口試委員:張嘉升蘇維彬何孟書吳育任
口試委員(外文):Chia-Seng ChangWei-Bin SuMon-Shu HoYuh-Renn Wu
口試日期:2013-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:121
中文關鍵詞:有機半導體掃描式穿遂電子顯微術
外文關鍵詞:organic semiconductorsscanning tunneling microscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們使用掃描穿隧顯微術以及光電子能譜來研究氟化并五苯在金屬表面的吸附行為。首先,我們比較并五苯和氟化并五苯在金(111)表面的吸附行為。可以發現如果樣品正偏壓提高,掃描探針會拖動并五苯分子在金(111)的表面移動,而并五苯分子的移動同時還會改變金(111)上面的表面重構。然而,氟化并五苯在金(111)的表面會由於強烈的自身內聚力而形成島嶼結構。再者,光電子能譜研究可以證明單層氟化并五苯有很強的分子間作用力以及分子內作用力。除此之外,我們比較了氟化并五苯在金(111)、銀(111)和銅(111)表面上吸附行為的不同。我們發現氟化并五苯在三種金屬上的排列情形不同,而在銅(111)結構最堅硬。而較強的吸附物與基板的作用力將會幫助氟化并五苯的內聚。最後,我們使用兩種不同的方法,包括紫外光電子能譜以及高階的昆拉赫震盪來量測有機材料在金屬上的工函數改變。我們發現,昆拉赫震盪量測出來的結果與相同厚度的紫外光電子能譜量測的結果不同。原因是紫外光電子能譜量測的是全域的平均結果,而昆拉赫震盪量測的結果是局域性的,比較接近高層數的薄膜層的真空階改變,再加上表層分子結構的影響。

We use scanning tunneling microscopy (STM) and X-ray and ultraviolet photoemission spectroscopy (XPS and UPS) to study the adsorption behaviors of perfluoropentacene (PFP) on metallic surfaces. At first, the comparison study of different adsorption behaviors of pentacene (PEN) and PFP molecules on Au(111) surfaces is presented. PEN molecules are mobile underneath the scanning probe tip at elevated positive sample bias and the surface reconstruction of Au(111) is changed by the moving PEN molecules as well. However, PFP molecules are self-assembled and form compact islands on Au(111). Furthermore, strong intermolecular and intramolecular interactions of monolayer PFP are verified by UPS and XPS. Additionally, we compare the different adsorption behaviors of PFP on Au(111), Ag(111) and Cu(111) surfaces. The arrangements of PFP islands on these three surfaces are different and the islands are firmest on Cu(111). The adsorbate-substrate interaction is verified to aid the assembly process. Finally, two different methods, UPS and high order Gundlach oscillation are demonstrated for measuring the work function difference of PFP islands and metallic surfaces. The work function shift measured by high order Gundlach oscillation is not consistent with that measured by UPS at low coverage but is close to that measured by UPS at high coverage. The reason could be UPS reflects the surface dipole but high order Gundlach oscillation reflects the local vacuum level shift and the shift is similar to the vacuum level shift at high coverage with the influence by the arrangement at monolayers.

中文摘要………………………………………………………………………................I
Abstract………………………………………………………………………………….II
Contents………………………………………………………………………………...IV
List of Figure………………………………………………………………...…….…VIII
List of Table……………………………………………………………………………..X

Chapter 1 Introduction……………………………...…………………...…………….1
1.1 Organic Semiconductors……………………………………………………….......1
1.2 Organic Semiconductor Materials……………………………………………..…..3
1.2.1 Pentacene…………………………………………...…………………………5
1.2.1 Perfluoropentacene…………………………………...……………………….5
References……………………………………………………..………….…………..10

Chapter 2 Experimental principles……………………………..………….……...…14
2.1 Principle of scanning tunneling microscopy (STM)…………………..……….....14
2.2 Operation modes in STM and STS……………………………………………….18
2.2.1 Constant current mode……………………………………………………….18
2.2.2 Constant height mode………………………………………………….. ...…19
2.2.3 Scanning tunneling spectroscopy (STS)……………………………………..19
2.3 Local density of states (LDOS) and scanning tunneling spectroscopy (STS)........23
2.4 Photoemission Spectroscopy…………………………………………….……….25
References……………………………………………………..………….…………..29

Chapter 3 Instrumentation and experimental procedure………..……….……...…30
3.1 4.3 K STM………………………………………………………………………..30
3.2 PHI 5400 ESCA System…………………………….………………….…….......33
3.3 Experimental procedure…………………………………………………………..38

Chapter 4 Comparative study of pentacene and perfluoropentacene thin films deposited on Au(111) surface……………………………………………..39
4.1 Introduction………………………………………………………………………39
4.2 Physical properties of PEN/Au(111) interface…………………………………...42
4.2.1 Morphology of PEN thin films deposited on Au(111) surfaces…………….42
4.2.2 The bias voltage dependent PEN displacement process…………………….43
4.2.3 Modified surface reconstruction induced by the scanning probe tip………..45
4.2.4 XPS and UPS spectra of PFP thin film deposited on Au(111)……………47
4.3 Physical properties of PFP/Au(111) interface……………………………………56
4.3.1 Morphology of PFP thin film adsorbed on Au(111)…………………..……56
4.3.2 XPS and UPS spectraof PFP thin film deposited on Au(111)…………….58
4.4 Comparison of PEN and PFP thin films adsorbed on Au(111)…………………...65
References……………………………………………………..………….…………..67

Chapter 5 Comparative study of perfluoropentacene thin film on Au(111), Ag(111) and Cu(111) metal surfaces……………………………………………..72
5.1 Introduction………………………………………………………………………72
5.2 Physical properties of PFP/Ag(111) interface……………………………………78
5.2.1 Morphology of PFP thin film deposited on Ag(111) surfaces……………..78
5.2.2 XPS and UPS spectra of PFP thin films deposited on Ag(111)……………78
5.3 Physical properties of PFP/Cu(111) interface……………………………………..87
5.3.1 Morphology of PFP thin films deposited on Cu(111) surfaces……………..87
5.3.2 XPS and UPS spectra of PFP thin film on Cu(111)……………………….87
5.4 Comparison of PFP thin films deposited on Au(111), Ag(111), and Cu(111)
surfaces…………………………………………………………………………..93
References……………………………………………………..………….…………..98

Chapter 6 Study of work function difference measured by STS and UPS……...101
6.1 Introduction to Gundlach Oscillation……………………………………...……101
6.2 Work function of PFP on metallic surfaces measured using UPS……………104
6.3 Work function difference measured by high order Gundlach oscillation……….107
6.4 Comparison of work function difference measured by UPS and high order Gundlach oscillation……………………………………………………………114
References……………………………………………………..………….………….118

Chapter 7 Conclusions…………………………………….……………………...…120




chapter 1
[1]M. Pope, H. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics 38, 2042 (1963)
[2]W. Helfrich and W.G. Schneider, Recombination Radiation in Anthracene Crystals. Physical Review Letters 14, 229 (1965)
[3]C.K. Chiang, C.R. Fincher, Jr., Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, Electrical Conductivity in Doped Polyacetylene. Physical Review Letters 39, 1098 (1977)
[4]F. Ebisawa, T. Kurokawa, and S. Nara, Electrical properties of polyacetylene/polysiloxane interface. Journal of Applied Physics 54, 3255 (1982)
[5]C.W. Tang, Two‐layer organic photovoltaic cell. Applied Physics Letters 48, 183 (1986)
[6]C.W. Tang and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters 51, 913 (1987)
[7]A. Tsumura, H. Koezuka, and T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters 49, 1210 (1986)
[8]A. Assadi, C. Svensson, M. Willander, and O. Inganas, Field‐effect mobility of poly(3‐hexylthiophene). Applied Physics Letters 53, 195 (1988)
[9]G.H. Gelinck, T.C.T. Geuns, and D.M. de Leeuw, High-performance all-polymer integrated circuits. Applied Physics Letters 77, 1487 (2000)
[10]S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911 (2004)
[11]G.H. Gelinck, H.E. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B. van der Putten, T.C. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J. van Rens, and D.M. de Leeuw, Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat Mater 3, 106 (2004)
[12]M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schutz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963 (2004)
[13]J.H. BURROUGHES, D.D.C. BRADLEY, A.R. BROWN, R.N. MARKS, K. MACKAY, R.H. FRIEND, P.L. BURNS, and A.B. HOLMES, Light-emitting diodes based on conjugated polymers. Nature 347, 539 (1990)
[14]G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 270, 1789 (1995)
[15]W. Clemens, W. Fix, J. Ficker, A. Knobloch, and A. Ullmann, From polymer transistors toward printed electronics. Journal of Materials Research 19, 1963 (2004)
[16]E. Cantatore, T.C.T. Geuns, A.F.A. Gruijthuijsen, G.H. Gelinck, S. Drews, and D.M.d. Leeuw, A 13.56MHz RFID System based on Organic
Transponders. 2006 IEEE International Solid-State Circuits Conference 15.2, (2006)
[17]W. L, F. D, S. D, T. L, and D. A, Nanoscale organic and polymeric field-effect transistors as chemical sensors. Anal Bioanal Chem 384, 310 (2006)
[18]T.D. Anthopoulos, J.P.J. Markham, E.B. Namdas, I.D.W. Samuel, S.-C. Lo, and P.L. Burn, Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Applied Physics Letters 82, 4824 (2003)
[19]C.-c. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-M. Chen, and Y.-Y. Chien, Unusual Nondispersive Ambipolar Carrier Transport and High Electron Mobility in Amorphous Ter(9,9-diarylfluorene)s. Journal of the American Chemical Society 125, 3710 (2003)
[20]B.J. Schwartz, Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu Rev Phys Chem 54, 141 (2003)
[21]E. Greenbaum, S.L. Blankinship, J.W. Lee, and R.M. Ford, Solar Photobiochemistry:  Simultaneous Photoproduction of Hydrogen and Oxygen in a Confined Bioreactor. The Journal of Physical Chemistry B 105, 3605 (2001)
[22]K.P.C. Vollhardt, Organische Chemie. VCH-Verlag, Weinheim (1990)
[23]C.W. Scherr, Free‐Electron Network Model for Conjugated Systems. II. Numerical Calculations. Journal of Chemical Physics 21, 1582 (1953)
[24]M. Pope and C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers. Oxford Unervisity Press, Oxford (1999)
[25]R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli, K.-C. Chang, A.C. Mayer, P. Clancy, J.M. Blakely, R.L. Headrick, S. Iannotta, and G.G. Malliaras, Pentacene Thin Film Growth. Chemistry of Materials 16, 4497 (2004)
[26]R.G. Della Valle, E. Venuti, A. Brillante, and A. Girlando, Inherent structures of crystalline pentacene. The Journal of Chemical Physics 118, 807 (2003)
[27]D.J. Gundlach, Y.Y. Lin, T.N. Jackson, S.F. Nelson, and D.G. Schlom, Pentacene organic thin-film transistors-molecular ordering and mobility. Electron Device Letters, IEEE 18, 87 (1997)
[28]T.B. Singh, P. Senkarabacak, N.S. Sariciftci, A. Tanda, C. Lackner, R. Hagelauer, and G. Horowitz, Organic inverter circuits employing ambipolar pentacene field-effect transistors. Applied Physics Letters 89, 033512 (2006)
[29]Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, and S. Tokito, Perfluoropentacene:  High-Performance p−n Junctions and Complementary Circuits with Pentacene. Journal of the American Chemical Society 126, 8138 (2004)
[30]F. Babudri, G.M. Farinola, F. Naso, and R. Ragni, Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chem Commun (Camb) 1003 (2007)
[31]Z. Bao, A.J. Lovinger, and J. Brown, New Air-Stable n-Channel Organic Thin Film Transistors. Journal of the American Chemical Society 120, 207 (1998)
[32]H. Peisert, M. Knupfer, T. Schwieger, G.G. Fuentes, D. Olligs, J. Fink, and T. Schmidt, Fluorination of copper phthalocyanines: Electronic structure and interface properties. Journal of Applied Physics 93, 9683 (2003)
[33]H. Brinkmann, C. Kelting, S. Makarov, O. Tsaryova, G. Schnurpfeil, D. Wohrle, and D. Schlettwein, Fluorinated phthalocyanines as molecular semiconductor thin films. physica status solidi (a) 205, 409 (2008)
[34]Y. Inoue, Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, and S. Tokito, Organic Thin-Film Transistors with High Electron Mobility Based on Perfluoropentacene. Japanese Journal of Applied Physics 44, 3663 (2005)
[35]T. Kato and T. Yamabe, The essential role of H-F substitution in the electron-phonon interactions and electron transfer in the negatively charged acenes. J Chem Phys 121, 2356 (2004)
[36]H.-Y. Chen and I. Chao, Effect of perfluorination on the charge-transport properties of organic semiconductors: density functional theory study of perfluorinated pentacene and sexithiophene. Chemical Physics Letters 401, 539 (2005)

chapter 2
[1]R.L. Liboff, Introductory Quantum Mechanics. Addison Wesley, New York (1980)
[2]C.J. Chen, Introduction to Scanning Tunneling Microscopy. Oxford Unervisity Press, Oxford (1993)
[3]C.N. Berglund and W.E. Spicer, Photoemission Studies of Copper and Silver: Theory. Physical Review 136, A1030 (1964)

chapter 4

[1]N. Koch, A. Gerlach, S. Duhm, H. Glowatzki, G. Heimel, A. Vollmer, Y. Sakamoto, T. Suzuki, J. Zegenhagen, J.P. Rabe, and F. Schreiber, Adsorption-Induced Intramolecular Dipole: Correlating Molecular Conformation and Interface Electronic Structure. Journal of the American Chemical Society 130, 7300 (2008)
[2]M. Eremtchenko, R. Temirov, D. Bauer, J. Schaefer, and F. Tautz, Formation of molecular order on a disordered interface layer: Pentacene/Ag(111). Physical Review B 72, 115430 (2005)
[3]D.B. Dougherty, W. Jin, W.G. Cullen, J.E. Reutt-Robey, and S.W. Robey, Variable Temperature Scanning Tunneling Microscopy of Pentacene Monolayer and Bilayer Phases on Ag(111). The Journal of Physical Chemistry C 112, 20334 (2008)
[4]S.L. Wong, H. Huang, Y.L. Huang, Y.Z. Wang, X.Y. Gao, T. Suzuki, W. Chen, and A.T.S. Wee, Effect of Fluorination on the Molecular Packing of Perfluoropentacene and Pentacene Ultrathin Films on Ag (111). The Journal of Physical Chemistry C 114, 9356 (2010)
[5]J.Z. Wang, J.T. Sadowski, Z.H. Xiong, Y. Fujikawa, Q.K. Xue, and T. Sakurai, Comparative studies of pentacene and perfluoropentacene grown on a Bi(0001) surface. Nanotechnology 20, 095704 (2009)
[6]D.G. de Oteyza, Y. Wakayama, X. Liu, W. Yang, P.L. Cook, F.J. Himpsel, and J.E. Ortega, Effect of fluorination on the molecule–substrate interactions of pentacene/Cu(100) interfaces. Chemical Physics Letters 490, 54 (2010)
[7]H. Glowatzki, G. Heimel, A. Vollmer, S.L. Wong, H. Huang, W. Chen, A.T.S. Wee, J.P. Rabe, and N. Koch, Impact of Fluorination on Initial Growth and Stability of Pentacene on Cu(111). The Journal of Physical Chemistry C 116, 7726 (2012)
[8]C.B. France, P.G. Schroeder, J.C. Forsythe, and B.A. Parkinson, Scanning Tunneling Microscopy Study of the Coverage-Dependent Structures of Pentacene on Au(111). Langmuir 19, 1274 (2003)
[9]N. Koch, A. Vollmer, S. Duhm, Y. Sakamoto, and T. Suzuki, The Effect of Fluorination on Pentacene/Gold Interface Energetics and Charge Reorganization Energy. Advanced Materials 19, 112 (2007)
[10]S. Duhm, I. Salzmann, G. Heimel, M. Oehzelt, A. Haase, R.L. Johnson, J.r.P. Rabe, and N. Koch, Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds. Applied Physics Letters 94, 033304 (2009)
[11]S. Duhm, S. Hosoumi, I. Salzmann, A. Gerlach, M. Oehzelt, B. Wedl, T.-L. Lee, F. Schreiber, N. Koch, N. Ueno, and S. Kera, Influence of intramolecular polar bonds on interface energetics in perfluoro-pentacene on Ag(111). Physical Review B 81, 045418 (2010)
[12]A. Hinderhofer, U. Heinemeyer, A. Gerlach, S. Kowarik, R.M. Jacobs, Y. Sakamoto, T. Suzuki, and F. Schreiber, Optical properties of pentacene and perfluoropentacene thin films. J Chem Phys 127, 194705 (2007)
[13]D. Kafer and G. Witte, Evolution of pentacene films on Ag(111): Growth beyond the first monolayer. Chemical Physics Letters 442, 376 (2007)
[14]J.H. Kang and X.Y. Zhu, Pi-stacked pentacene thin films grown on Au(111). Applied Physics Letters 82, 3248 (2003)
[15]S. Kowarik, A. Gerlach, A. Hinderhofer, S. Milita, F. Borgatti, F. Zontone, T. Suzuki, F. Biscarini, and F. Schreiber, Structure, morphology, and growth dynamics of perfluoro-pentacene thin films. physica status solidi (RRL) – Rapid Research Letters 2, 120 (2008)
[16]D.G. de Oteyza, E. Barrena, S. Sellner, J.O. Osso, and H. Dosch, Molecular structure and growth morphologies of pentacene/fluorinated copper-phthalocyanine heterostructures. Thin Solid Films 516, 7525 (2008)
[17]I. Salzmann, S. Duhm, G. Heimel, M. Oehzelt, R. Kniprath, R.L. Johnson, J.r.P. Rabe, and N. Koch, Tuning the Ionization Energy of Organic Semiconductor Films: The Role of Intramolecular Polar Bonds. Journal of the American Chemical Society 130, 12870 (2008)
[18]H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K. Kudo, and N. Ueno, Origin of the highest occupied band position in pentacene films from ultraviolet photoelectron spectroscopy: Hole stabilization versus band dispersion. Physical Review B 73, 245310 (2006)
[19]S. Lukas, G. Witte, and C. Woll, Novel Mechanism for Molecular Self-Assembly on Metal Substrates: Unidirectional Rows of Pentacene on Cu(110) Produced by a Substrate-Mediated Repulsion. Physical Review Letters 88, 028301 (2001)
[20]Q. Chen, A.J. McDowall, and N.V. Richardson, Ordered Structures of Tetracene and Pentacene on Cu(110) Surfaces. Langmuir 19, 10164 (2003)
[21]J.A. Smerdon, M. Bode, N.P. Guisinger, and J.R. Guest, Monolayer and bilayer pentacene on Cu(111). Physical Review B 84, 165436 (2011)
[22]J. Gotzen, C.H. Schwalb, C. Schmidt, G. Mette, M. Marks, U. Hofer, and G. Witte, Structural evolution of perfluoro-pentacene films on Ag(111): transition from 2D to 3D growth. Langmuir 27, 993 (2011)
[23]Y. Inoue, Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, and S. Tokito, Organic Thin-Film Transistors with High Electron Mobility Based on Perfluoropentacene. Japanese Journal of Applied Physics 44, 3663 (2005)
[24]I. Pong, S. Yau, P.Y. Huang, M.C. Chen, T.S. Hu, Y. Yang, and Y.L. Lee, In situ STM imaging of the structures of pentacene molecules adsorbed on Au(111). Langmuir 25, 9887 (2009)
[25]P.G. Schroeder, C.B. France, J.B. Park, and B.A. Parkinson, Orbital Alignment and Morphology of Pentacene Deposited on Au(111) and SnS2 Studied Using Photoemission Spectroscopy. The Journal of Physical Chemistry B 107, 2253 (2003)
[26]S. Soubatch, I. Kroger, C. Kumpf, and F.S. Tautz, Structure and growth of tetracene on Ag(111). Physical Review B 84, 195440 (2011)
[27]M. Bohringer, W.-D. Schneider, and R. Berndt, Scanning tunneling microscope-induced molecular motion and its effect on the image formation. Surface Science 408, 72 (1998)
[28]Y. Hasegawa and P. Avouris, Manipulation of the Reconstruction of the Au(111) Surface with the STM. Science 258, 1763 (1992)
[29]F. Rossel, P. Brodard, F. Patthey, N.V. Richardson, and W.-D. Schneider, Modified herringbone reconstruction on Au(111) induced by self-assembled Azure A islands. Surface Science 602, L115 (2008)
[30]A.E. Baber, S.C. Jensen, E.V. Iski, and E.C.H. Sykes, Extraordinary Atomic Mobility of Au{111} at 80 Kelvin: Effect of Styrene Adsorption. Journal of the American Chemical Society 128, 15384 (2006)
[31]N. Koch, A. Kahn, J. Ghijsen, J.J. Pireaux, J. Schwartz, R.L. Johnson, and A. Elschner, Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Applied Physics Letters 82, 70 (2003)
[32]P. Bagus, V. Staemmler, and C. Woll, Exchangelike Effects for Closed-Shell Adsorbates: Interface Dipole and Work Function. Physical Review Letters 89, 096104 (2002)
[33]G.E. Poirier, Characterization of Organosulfur Molecular Monolayers on Au(111) using Scanning Tunneling Microscopy. Chemical Reviews 97, 1117 (1997)
[34]J.T. Sun, L. Gao, X.B. He, Z.H. Cheng, Z.T. Deng, X. Lin, H. Hu, S.X. Du, F. Liu, and H.J. Gao, Surface reconstruction transition of metals induced by molecular adsorption. Physical Review B 83, (2011)
[35]J.K. Gimzewski, S. Modesti, T. David, and R.R. Schlittler, Scanning tunneling microscopy of ordered C[sub 60] and C[sub 70] layers on Au(111), Cu(111), Ag(110), and Au(110) surfaces. J. Vac. Sci. Technol. B 12, 1942 (1994)
[36]H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surface Science Reports 29, 195 (1997)


chapter 5
[1]T. Schmitz-Hubsch, T. Fritz, F. Sellam, R. Staub, and K. Leo, Epitaxial growth of 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111): A STM and RHEED study. Physical Review B 55, 7972 (1997)
[2]I. Chizhov, A. Kahn, and G. Scoles, Initial growth of 3,4,9,10-perylenetetracarboxylic-dianhydride (PTCDA) on Au(111): a scanning tunneling microscopy study. Journal of Crystal Growth 208, 449 (2000)
[3]N. Nicoara, E. Roman, J.M. Gomez-Rodriguez, J.A. Martin-Gago, and J. Mendez, Scanning tunneling and photoemission spectroscopies at the PTCDA/Au(111) interface. Organic Electronics 7, 287 (2006)
[4]M. Toerker, T. Fritz, H. Proehl, F. Sellam, and K. Leo, Tunneling spectroscopy study of 3,4,9,10-perylenetetracarboxylic dianhydride on Au(110). Surface Science 491, 255 (2001)
[5]T. Schmitz-Hubsch, T. Fritz, R. Staub, A. Back, N.R. Armstrong, and K. Leo, Structure of 3,4,9,10-perylene-tetracarboxylic-dianhydride grown on reconstructed and unreconstructed Au(100). Surface Science 437, 163 (1999)
[6]M. Rohlfing, R. Temirov, and F. Tautz, Adsorption structure and scanning tunneling data of a prototype organic-inorganic interface: PTCDA on Ag(111). Physical Review B 76, 115421 (2007)
[7]K. Glockler, C. Seidel, A. Soukopp, M. Sokolowski, E. Umbach, M. Bohringer, R. Berndt, and W.D. Schneider, Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag(111) and Ag(110). Surface Science 405, 1 (1998)
[8]M. Bohringer, W.D. Schneider, K. Glockler, E. Umbach, and R. Berndt, Adsorption site determination of PTCDA on Ag(110) by manipulation of adatoms. Surface Science 419, L95 (1998)
[9]C. Seidel, C. Awater, X.D. Liu, R. Ellerbrake, and H. Fuchs, A combined STM, LEED and molecular modelling study of PTCDA grown on Ag(110). Surface Science 371, 123 (1997)
[10]T. Wagner, A. Bannani, C. Bobisch, H. Karacuban, and R. Moller, The initial growth of PTCDA on Cu(111) studied by STM. Journal of Physics: Condensed Matter 19, 056009 (2007)
[11]M. Stohr, M. Gabriel, and R. Moller, Investigation of the growth of PTCDA on Cu(110): an STM study. Surface Science 507–510, 330 (2002)
[12]L. Romaner, D. Nabok, P. Puschnig, E. Zojer, and C. Ambrosch-Draxl, Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111), Au(111) and Cu(111). New Journal of Physics 11, 053010 (2009)
[13]S. Duhm, A. Gerlach, I. Salzmann, B. Broker, R.L. Johnson, F. Schreiber, and N. Koch, PTCDA on Au(111), Ag(111) and Cu(111): Correlation of interface charge transfer to bonding distance. Organic Electronics 9, 111 (2008)
[14]M. Eremtchenko, D. Bauer, J.A. Schaefer, and F.S. Tautz, Polycyclic aromates on close-packed metal surfaces: functionalization, molecular chemisorption and organic epitaxy. New Journal of Physics 6, 4 (2004)
[15]Y. Zou, L. Kilian, A. Scholl, T. Schmidt, R. Fink, and E. Umbach, Chemical bonding of PTCDA on Ag surfaces and the formation of interface states. Surface Science 600, 1240 (2006)
[16]A. Gerlach, S. Sellner, F. Schreiber, N. Koch, and J. Zegenhagen, Substrate-dependent bonding distances of PTCDA: A comparative x-ray standing-wave study on Cu(111) and Ag(111). Physical Review B 75, 045401 (2007)
[17]N. Koch, A. Gerlach, S. Duhm, H. Glowatzki, G. Heimel, A. Vollmer, Y. Sakamoto, T. Suzuki, J. Zegenhagen, J.P. Rabe, and F. Schreiber, Adsorption-Induced Intramolecular Dipole: Correlating Molecular Conformation and Interface Electronic Structure. Journal of the American Chemical Society 130, 7300 (2008)
[18]S. Duhm, I. Salzmann, G. Heimel, M. Oehzelt, A. Haase, R.L. Johnson, J.r.P. Rabe, and N. Koch, Controlling energy level offsets in organic/organic heterostructures using intramolecular polar bonds. Applied Physics Letters 94, 033304 (2009)
[19]A. Hauschild, K. Karki, B. Cowie, M. Rohlfing, F. Tautz, and M. Sokolowski, Molecular Distortions and Chemical Bonding of a Large π-Conjugated Molecule on a Metal Surface. Physical Review Letters 94, (2005)
[20]S.K.M. Henze, O. Bauer, T.L. Lee, M. Sokolowski, and F.S. Tautz, Vertical bonding distances of PTCDA on Au(111) and Ag(111): Relation to the bonding type. Surface Science 601, 1566 (2007)

chapter 6
[1]K.H. Gundlach, Zur berechnung des tunnelstroms durch eine trapezformige potentialstufe. Solid-State Electronics 9, 949 (1966)
[2]G. Binnig, K.H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A.R. Williams, Tunneling Spectroscopy and Inverse Photoemission: Image and Field States. Physical Review Letters 55, 991 (1985)
[3]R. Becker, J. Golovchenko, and B. Swartzentruber, Electron Interferometry at Crystal Surfaces. Physical Review Letters 55, 987 (1985)
[4]P. Wahl, M. Schneider, L. Diekhoner, R. Vogelgesang, and K. Kern, Quantum Coherence of Image-Potential States. Physical Review Letters 91, 106802 (2003)
[5]J. Pascual, C. Corriol, G. Ceballos, I. Aldazabal, H.P. Rust, K. Horn, J. Pitarke, P. Echenique, and A. Arnau, Role of the electric field in surface electron dynamics above the vacuum level. Physical Review B 75, 165326 (2007)
[6]S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle, M. Stengel, A. De Vita, and W.-D. Schneider, Insulator at the Ultrathin Limit: MgO on Ag(001). Physical Review Letters 87, 276801 (2001)
[7]C. Lin, S. Lu, W. Su, H. Shih, B. Wu, Y. Yao, C. Chang, and T. Tsong, Manifestation of Work Function Difference in High Order Gundlach Oscillation. Physical Review Letters 99, 216103 (2007)
[8]H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces. Advanced Materials 11, 605 (1999)
[9]P. Bagus, V. Staemmler, and C. Woll, Exchangelike Effects for Closed-Shell Adsorbates: Interface Dipole and Work Function. Physical Review Letters 89, 096104 (2002)
[10]N. Koch, A. Kahn, J. Ghijsen, J.J. Pireaux, J. Schwartz, R.L. Johnson, and A. Elschner, Conjugated organic molecules on metal versus polymer electrodes: Demonstration of a key energy level alignment mechanism. Applied Physics Letters 82, 70 (2003)
[11]S. Duhm, S. Hosoumi, I. Salzmann, A. Gerlach, M. Oehzelt, B. Wedl, T.-L. Lee, F. Schreiber, N. Koch, N. Ueno, and S. Kera, Influence of intramolecular polar bonds on interface energetics in perfluoro-pentacene on Ag(111). Physical Review B 81, 045418 (2010)
[12]W. Su, S. Lu, C. Lin, H. Shih, C. Jiang, C. Chang, and T. Tsong, Interplay between transmission background and Gundlach oscillation in scanning tunneling spectroscopy. Physical Review B 75, 195406 (2007)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔