(3.236.214.19) 您好!臺灣時間:2021/05/06 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宸羽
研究生(外文):Chen-Yu Lin
論文名稱:利用倍頻顯微術觀察口腔癌前病變特性
論文名稱(外文):Characterization of Oral Precancerous Lesions Based on Higher Harmonic Generation Microscopy
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
口試委員:張逸良宋孔彬謝達斌
口試委員(外文):Yih-Leong ChangKung-Bin SungDar-Bin Shieh
口試日期:2013-07-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:64
中文關鍵詞:倍頻顯微術非侵入式口腔癌前病變
外文關鍵詞:Harmonic generation microscopyNon-invasiveOral precancerous lesion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
口腔癌為國人癌症死亡的第四大死因,同時也是年輕男性發生率第一的癌症。每年都會有新增將近5400個病例。然而至今,口腔癌的五年存活率仍然很難令人滿意,只有依靠早期診斷,才能真正解決這個問題。臨床上診斷癌症的方式的終極標準是依靠病理切片診斷,但是組織切片常常伴隨著疼痛、流血、創傷甚至是癌細胞擴散的副作用。因此,發展一套非侵入式的檢查方式是一件非常重要的事情。
在這次的實驗中,筆者利用非侵入式倍頻顯微術觀察23個紅斑病與白斑病的口腔癌前病變黏膜樣本。在23個樣品之中,有4個樣品無法取得整層口腔上皮層的影像而排除在接下來的分析。根據病理診斷結果,將這19個病變組織的倍頻影像分成原位癌、重度異生、中度異生、輕度異生與增生性病灶五組並與傳統H&E染色切片病理特徵做比較。為了能夠更清楚的量化不同癌前病變的嚴重程度,筆者更進一步依照病理診斷的準則,分析這19個樣品的上皮層三分之一與三分之二處的細胞密度。在這次的分析結果中,筆者將原位癌與重度異生(以下稱重度異生)合併與其他三組作分析發現,在上皮層的三分之一處重度增生組的細胞密度與其他三組比較發現有明顯的上升(假定質小於0.05)。而在上皮層三分之二處,中度異生的細胞密度也和輕度異生和增生性病灶有顯著的不同(假定質小於0.05)。此結果顯示我們能夠成功辨別重度異生、中度異生與輕度異生以下的病灶。此外,筆者也同時分析了細胞密度隨著上皮層深度的變化,在這分析中發現重度異生的病灶在60微米以內細胞密度就有很顯著的上升。因此,對於無法完全取得口腔上皮層影像的病灶,我們也能夠用此方法來辨別是否為重度異生的病灶。這些結果也指出倍頻顯微術將來非常有機會應用能夠應用在口腔癌前病變的臨床診斷。


Oral cancer is the fourth most common cause of male cancer death in Taiwan and ranks first among the cancers that affect the young male population. About 5,400 new oral cancer cases are reported in Taiwan each year. However, the five-year survival rates of oral cancer patients are still low. The only way to address this problem is early diagnosis. In the oral cancer diagnosis, surgical biopsy followed by pathological exam is the standard operating procedure. But, surgical biopsy is always accompanied by pain, bleeding, trauma, and spreading of cancer cells. Thus, developing a non-invasive diagnosis tool is relatively important.
In this research, we used a noninvasive harmonic generation microscope to observe the ex vivo oral mucosa of 23 precancerous specimens, including leukoplakia and erythroplakia. In all of these specimens, there were 4 specimens excluded in our analysis due to the fact that we could not obtain the whole epithelium imaging of these samples.
According to pathological diagnosis results, we separated 19 samples to carcinoma in situ, severe dysplasia, moderate dysplasia, mild dysplasia, and hyperplasia. We compared the five groups with their H&E stained slides. Moreover, based on the histopathological diagnosis criteria, we further analyzed the cellular density at one-third and two-third of epithelium to quantify the difference between the oral dysplasia lesions. In this analysis, we grouped the carcinoma in situ and severe dysplasia as severe dysplasia. The cellular density of severe dysplasia lesions had a significant increase comparing with other lesions at one third of oral epithelium (P value <0.05). In the two third of epithelium, the cellular density of moderate dysplasia also had statistically difference comparing with mild dysplasia and hyperplasia (P value<0.05).
This result showed that we could distinguish the severe dysplasia and moderate dysplasia from all of precancerous lesions. We then analyzed the changes of cellular density versus depth. Additionally, we also calculated the changes in cellular density versus depth. The results of this analysis indicated that the cellular density of severe dysplasia had a marked increase at first 60μm depth. For these samples, we could not define the one-third and two-third of the epithelium; however, we could still analyze the trend of cellular density versus depth to separate severe/carcinoma in situ lesions from other lesions.
These results indicated that HGM could be a broad potential application to precancerous diagnosis, intraoperative margin, and prognosis.


致謝 I
摘要 IV
ABSTRACT V
LIST OF FIGURES X
LIST OF TABLES XIII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Optical imaging in oral cavity over view 2
1.3 Structure of oral epithelium 5
1.3.1 Keratinized epithelium 6
1.3.2 Non-keratinized epithelium 7
1.4 Oral precancerous lesion 7
1.4.1 Leukoplakia 8
1.4.2 Erythroplakia 8
1.5 Thesis aim and organization 9
Chapter 2 Basic principles and properties of harmonic generation microscopy 12
2.1 Conventional optical microscopy 12
2.2 Confocal microscopy 16
2.3 Nonlinear Optical Microscopy 18
2.3.1 Second harmonic generation (SHG) 20
2.3.2 Third harmonic generation (THG) 22
Chapter 3 Experimental Setup 27
3.1 Choosing laser source 27
3.2 HGM system 30
3.3 Sample preparation 32
Chapter 4 HGM Study on oral precancerous lesion 33
4.1 Samples 33
4.2 Ex vivo HGM imaging of dysplasia lesion 34
4.3 Ex vivo HGM imaging of early stage OSCC 47
4.4 Cellular density analysis 50
4.4.1 Analysis method 50
4.4.2 Results of cellular density analysis 52
Chapter 5 Summary 57
Reference 58
Appendix A 62
Appendix B 63
Appendix C 64


1.D. Roblyer, R. Richards-Kortum, K. Sokolov, A. K. El-Naggar, M. D. Williams, C. Kurachi, and A. M. Gillenwater, Multispectral optical imaging device for in vivo detection of oral neoplasia. Journal of Biomedical Optics, 2008. 13(2): p. 024019-1-20419-11.
2.K. H. Awan, P. R. Morgan, and S. Warnakulasuriya, Evaluation of an autofluorescence based imaging system (VELscope™) in the detection of oral potentially malignant disorders and benign keratoses. Oral Oncology, 2011. 47(4): p. 274-277.
3.P. Lane, M. Follen, and C. MacAulay, Has Fluorescence Spectroscopy Come of Age? A Case Series of Oral Precancers and Cancers Using White Light, Fluorescent Light at 405 nm, and Reflected Light at 545 nm Using the Trimira Identafi 3000. Gender Medicine, 2012. 9(1): p. S25-S35.
4.T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. M. Gillenwater, and R. Richards-Kortum, Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Optics Express, 2007. 15(25): p. 16413-16423.
5.L. L. Levy, P. M. Vila, R. W. Park, R. Schwarz, A. D. Polydorides, M. S. Teng, V. V.Gurudutt, E. M. Genden, R. Richards-Kortum, and A. G. Sikora, High-Resolution Optical Imaging of Benign and Malignant Mucosa in the Upper Aerodigestive Tract: An Atlas for Image-Guided Surgery. ISRN Minimally Invasive Surgery, 2012. 2012.
6.B. W. Colston, M. J. Everett, L. B. Da Silva, L. L. Otis, P. Stroeve, and H. Nathel, Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Applied Optics, 1998. 37(16): p. 3582-3585.
7.P. Wilder‐Smith, K. Lee, S. Guo, J. Zhang, K. Osann, Z. Chen, and D. Messadi, In Vivo Diagnosis of Oral Dysplasia and Malignancy Using Optical Coherence Tomography: Preliminary Studies in 50 Patients. Lasers in Surgery and Medicine, 2009. 41(5): p. 353-357.
8.C.-C. Yang, M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, and Y.-M. Wang, Effective indicators for diagnosis of oral cancer using optical coherence tomography. Optics Express, 2008. 16(20): p. 15847-15862.
9.A. L. Clark, A. M. Gillenwater, T. G. Collier, R. Alizadeh-Naderi, A. K. El-Naggar, and R. R Richards-Kortum., Confocal Microscopy for Real-time Detection of Oral Cavity Neoplasia. Clinical Cancer Research, 2003. 9(13): p. 4714-21.
10.K. C. Maitland, A. M. Gillenwater, M. D. Williams, A. K. El-Naggar, M. R. Descour, and R. R. Richards-Kortum, In vivo imaging of oral neoplasia using a miniaturized fiber optic confocal reflectance microscope. Oral Oncology, 2008. 44(11): p. 1059-1066.
11.M. C. Skala, J. M. Squirrell, K. M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, Multiphoton Microscopy of Endogenous Fluorescence Differentiates Normal, Precancerous, and Cancerous Squamous Epithelial Tissues. Cancer Research, 2005. 65(4): p. 1180-1186.
12.M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy. Biomedical Optics Express, 2011. 2(8): p. 2317-2328.
13.M. Rahman, P.j Chaturvedi, A. M Gillenwater, and Rebecca Richards-Kortum, Low-cost, multimodal, portable screening system for early detection of oral cancer. Journal of biomedical optics, 2008. 13(3): p. 030502-1-030502-3.
14.F. Feldchtein, V. Gelikonov, R. Iksanov, G. Gelikonov, R. Kuranov, A. Sergeev, N. Gladkova, M. Ourutina, D. Reitze, and J. Warren, In vivo OCT imaging of hard and soft tissue of the oral cavity. Optics Express, 1998. 3(6): p. 239-250.
15.W. M. White, M. Rajadhyaksha, S. Gonzalez, R. L. Fabian, and R. R. Anderson, Noninvasive Imaging of Human Oral Mucosa in Vivo by Confocal Reflectance Microscopy. Laryngoscope, 1999. 109(10): p. 1709-1717.
16.M.-R. Tsai, D.-B. Shieh, P.-J. Lou, C.-F. Lin, and C.-K. Sun, Characterization of oral squamous cell carcinoma based on higher-harmonic generation microscopy. Journal of Biophotonics, 2012. 5(5-6): p. 415-24.
17.C. Squier and K. Brogden, Human Oral Mucosa: Development, Structure and Function. 2011: Wiley.
18.P. M. Speight, Update on Oral Epithelial Dysplasia and Progression to Cancer. Head Neck Pathology, 2007. 1(1): p. 61-66.
19.J. E. Bouquot, P. M. Speight, and P. M. Farthing, Epithelial dysplasia of the oral mucosa—Diagnostic problems and prognostic features. Current Diagnostic Pathology, 2006. 12(1): p. 11-21.
20.K. P. Schepman, E. H. Van der Meij, L. E. Smeele, and I. Van der Waal, Malignant transformation of oral leukoplakia: a follow-up study of a hospital-based population of 166 patients with oral leukoplakia from The Netherlands. Oral oncology, 1998. 34(4): p. 270-275.
21.S Silverman, M. Gorsky, and F. Lozada, Oral leukoplakia and malignant transformation. A follow‐up study of 257 patients. Cancer, 1984. 53(3): p. 563-568.
22.S.-P. Tai, W.-J. Lee, D.-B. Shieh, P.-C. Wu, H.-Y. Huang, C.-H. Yu, and C.-K. Sun, In vivo optical biopsy of hamster oral cavity with epi-third-harmonic-generation microscopy. Optics Express, 2006. 14(13): p. 6178-6187.
23.E. Abbe, Beitrage zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv fur mikroskopische Anatomie 1873. 9(1): p. 413-418.
24.M. Born and E. Wolf, Principles of Optics 7th edition. Cambridge University Press.
25.M. Minsky, Microscopy apparatus, 1957.
26.G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. Journal of Microscopy, 1996. 181(2): p. 217-226.
27.Y. Guo, P. P. Ho, H. Savage, D. Harris, P. Sacks, S. Schantz, F. Liu, N. Zhadin, and R. R. Alfano, Second-harmonic tomography of tissues. Optics Letters, 1997. 22(17): p. 1323-1325.
28.A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Muller, Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Applied Optics, 1999. 38(36): p. 7393-7397.
29.M. E. Andersen and R. Z. Muggli, Microscopical Techniques with the Molecular Optics Laser Examiner Raman Microprobe. Analytical Chemistry, 1981. 53(12): p. 1772-1777.
30.J. Squier and M. Muller, High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging. Review of Scientific Instruments, 2001. 72(7): p. 2855-2867.
31.Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, Nonlinear scanning laser microscopy by third harmonic generation. Applied Physics Letters, 1997. 70(8): p. 922-924.
32.H. Kogelnik and T. Li, Laser beams and resonators. Proceedings of the IEEE, 1966. 54(10): p. 1312-1329.
33.I. Freund and M. Deutsch, Second-harmonic microscopy of biological tissue. Optics Letters, 1986. 11(2): p. 94-96.
34.L. Kou, D. Labrie, and P. Chylek, Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Applied Optics, 1993. 32(19): p. 3531-3540.
35.A. N. Bashkatov, E A. Genina, V. I. Kochubey, and V. V. Tuchin, Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm. Optics and Spectroscopy, 2005. 99(5): p. 836-842.
36.S.-W. Chu, I.-H. Chen, T.-M. Liu, P.-C. Chen, C.-K. Sun, and B.-L. Lin, Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Optics Letters, 2001. 26(23): p. 1909-1911.
37.C.-S. Hsieh, C.-Y. Ko, S.-Y. Chen, T.-M. Liu, J.-S. Wu, C.-H. Hu, and C.-K. Sun, In vivo long-term continuous observation of gene expression in zebrafish embryo nerve systems by using harmonic generation microscopy and morphant technology. Journal of Biomedical Optics, 2008. 13(6): p. 064041-1-064041-7.
38.C.-S. Hsieh, S.-U. Chen, Y.-W. Lee, Y.-S. Yang, and C.-K. Sun, Higher harmonic generation microscopy of in vitro cultured mammal oocytes and embryos. Optics Express, 2008. 16(15): p. 11574-11588.
39.S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy. IEEE J. Sel. Top. Quantum Electron, 2010. 16(3): p. 478-492.
40.L. Barnes, J. W. Eveson, P. Reichart, and D. Sidransky, World Health Organization classification of tumours: pathology and genetics of head and neck tumours. . 2005.
41.M. A. Landay and H. E. Schroeder, Quantitative electron microscopic analysis of the stratified epithelium of normal human buccal mucosa. Cell and Tissue Research, 1977. 177(3): p. 383-405.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔