(3.236.214.19) 您好!臺灣時間:2021/05/10 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王耀德
研究生(外文):Yao-Te Wang
論文名稱:原子層沉積成長氧化物發光二極體之研製
論文名稱(外文):Oxide Semiconductor Light Emitting Diode Fabrication by the Atomic Layer Deposition Method
指導教授:彭隆瀚
指導教授(外文):Lung-Han Peng
口試委員:王維新胡振國賴志明
口試委員(外文):Way-Seen WangJenn-Gwo HwuChih-Ming Lai
口試日期:2013-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:71
中文關鍵詞:氧化物發光二極體
外文關鍵詞:Oxide Semiconductor Light Emitting Diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文在探討利用自組小球微影技術與原子層沉積系統製作氧化鋅/氮化鎵或矽發光二極體元件與特性量測,分成三部分論述第一部分是自組小球微影技術之原理與步驟介紹,且介紹原子層沉積系統原理與材料分析,第二部分是氧化鋅/氮化鎵發光二極體製作與量測,第三部分為氧化鋅/矽發光二極體製作與量測。
首先,本文敘述利用原子層沉積系統成長氧化鋅,並且使用PL、XRD等量測技術,分析氧化鋅之成分。從PL結果得知晶體激發出中心位置在383 nm,半高寬為25 nm之紫外光,而由XRD材料分析得知晶體為多晶結構。
吾人以上述之自組小球微影技術與原子層沉積系統製作氧化鋅/氮化鎵發光二極體元件,並量測其電壓-電流特性、電激發光頻譜,並發現該元件在正負偏壓下皆有可見光及紫外光發光特徵。吾人利用自組小球微影技術與原子層沉積製作氧化鋅/矽發光二極體元件,發現該原件具整流特徵,導通電壓為6伏特,在正偏壓產生連續可見光頻譜,且不因注入電流之增加而光譜明顯藍移。吾人改用平面型發光二極體元件結構,成長於(001)與(111)面向之矽基板,發現以6 nm厚度ZnO/Si LED 其發光強度較3 nm ZnO/Si 結構提升五倍且亮度均勻。


In this thesis, we present the fabrication and characterization of ZnO/GaN and ZnO/Si light-emitting diode (LED) using self-assembled nanosphere lithography and atomic layer deposition (ALD). First, we discuss the theory and process of self-assemble nanosphere lithography, and present the theory of ALD system followed by material analysis. Second, we fabricate and measure the ZnO/GaN LED devices. Third part, we fabricate and measure the ZnO/Si LED devices.
From the PL analysis pumped by a 266nm Nd:YAG solid-state laser, we observed a peak emission wavelength at 383nm with a full width at half maximum (FWHM) of 25nm. Data from the XRD analysis suggest the ZnO film grown by the ALD system to be poly crystalline.
For fabricated the ZnO/GaN LED devices from the current-voltage and the electroluminescence (EL) data, these devices exhibit non-ideal electrical characteristic. The devices emit ultraviolet and visible light under both forwarded and reversed bias, respectively.
For the ZnO/Si LED devices, they exhibit current rectification characterization and have a turn-on voltage of 6V and the devices emit continuous visible light under forward bias. In addition, we fabricated planar type for ZnO LED on (001) and (111) P-Si substrates. We detect five-fold increase in the emission intensity for a 6nm-thick ZnO/Si LED compared with a 3nm-thick ZnO/Si LED.


目錄
中文摘要 i
Abstract 2
目錄 3
圖表目錄 5
第一章 8
導論 8
1.1 前言 8
1.2 研究動機 10
1.3 論文架構 12
第二章 13
自組小球微影技術 13
2.1 自組小球微影技術 13
2.2 自組小球微影技術製程 17
2.2.1 小球旋轉塗佈法 19
2.2.2靜置蒸發法 21
2.3自組小球微影技術之應用 22
第三章 25
ALD (Atomic-Layer-Deposition) 25
3.1 ALD 成長原理 27
3.2 ALD 成長之材料分析 31
第四章 33
氧化鋅/氮化鎵發光二極體研製與特性分析 33
4.1氧化鋅/氮化鎵發光二極體研製 33
4.1.1結構一之氧化鋅/氮化鎵發光二極體 33
4.1.2結構二之氧化鋅/氮化鎵發光二極體 39
4.1.3發光二極體之標號與形貌 45
4.2元件光學與電性特性分析 45
第五章 53
氧化鋅/矽發光二極體研製與特性分析 53
5.1氧化鋅/矽發光二極體研製 53
5.2元件光學與電性特性分析 58
5.2.1電性量測結果 58
5.2.2光譜量測結果 61
5.3元件主動層與矽基板之變化特性分析 63
第六章 67
結論與未來展望 67
6.1 結論 67
6.2 未來展望 68
參考文獻 69



E. Fred Schubert (2006) Light-Emitting Diodes. New York, Cambridge University Press
http://www.olympusmicro.com/primer/lightandcolor/ledsintro.html
Z. L. Wang,” Zinc oxide nanostructures: growth, properties and Applications,” J. Phys.: Condens. Matter 16, R829.R858 (2004)
D.C. Look , “ Recent advances in ZnO materials and devices,” Mater. Sci. Eng., B 80, 383.387 (2001)
S. J. Pearton, D.P. Norton, K. Ip, Y. W. Heo ,and T. Steiner, Superlattices, Microstruct. 34, 3 (2003)
P. Vinotha Boorana Lakshmi, K. Sakthi Raj ,and K. Ramachandran, Cryst. Res. Technol. 44, No. 2, 153.158 (2009)
Q. Yang, W. Wang, S. Xu ,and Z. L. Wang, “ Enhancing Light Emission of ZnO microwire.based diodes by piezo.phototronic effect,” Nano Lett.11, 9, 4012–4017 (2011)
J. C. Johnson, H. Yan, P. Yang ,and R. J. Saykally,“ Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides,” J. Phys. Chem. 107, 8816.8828 (2003)
M. D. Benoy, E.M. Mohammed, Suresh Babu M. ,and P.J. Binu, “ Thickness dependence of the properties of indium tin oxide (ITO) FILMS prepared by activated reactive evaporation,” Brazilian J. Phys., 39, 4 (2009)
A. H. Reading, J . J. Richardson, C. C. Pan, S. Nakamura ,and S. P. DenBaars,” High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy” Opt. Express 20, 12 (2012)
E. Guziewicz, M. Godlewski, T.A. Krajewski, Ł. Wachnicki, G. Łuka, W. Paszkowicz, J.Z. Domagała, E. Przeździecka, E. Łusakowska ,and B.S. Witkowski,” ZnO by ALD - Advantages of the Material Grown at Low Temperature,” Acta Phys. Pol., A 116, 5 (2009)
C. F. Lin, C. C. Yang, J. F. Chien, C. M. Lin, K. T. Chen, and S. K. Yen, “ Fabrication of the InGaN-based light-emitting diodes through a photoelectrochemical process,” IEEE Photonics Technol. Lett., 21, 16, (2009)
T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano and I. Akasaki, “ Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys., 36, 4A, L382-L 385 (1997)
T. Mukai, M. Yamada ,and S. Nakamura, J. Appl. Phys. 38, 3976 (1999)
Zhong Lin Wang, J. Phys.: Condens. Matter 16 R829 (2004)
Z. Fan and J. G. Lu ”Zinc Oxide Nanostructures: Synthesis and Properties,” J. Nanoscience Nanotechnology. 5, 10, 1561.1573 (2005)
C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size.dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599 (2001).
H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377 (1982).
S. H. Park, B. Gates, and Y. Xia, “A three.dimensional photonic crystal operating in the visible region,” Adv. Mater. 11, 462 (1999).
黃培誠, “以微米小球顯影術及光致電化學蝕刻法製作氮化鎵次微米三角柱結構,” 國立台灣大學光電工程研究所碩士論文,2006.
巫漢敏, “亞波長透鏡陣列技術於光電半導體元件之應用,” 國立台灣大學光電工程研究所博士論文,2009.
W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon.polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B 69, 165407 (2004).

C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size.dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599 (2001).

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth.eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661 (2006).
H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl. 15, 415 (2007).
林均彥, “使用自組小球顯影技術研製氮化銦鎵/氮化鎵微米柱結構發光二極體,” 國立台灣大學光電工程研究所碩士論文,2010.
Steven M. George* ” Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010)
黃政銘, “ALD 低溫成長ZnO 磊晶薄膜以及結構與光學特性研究,” 國立新竹教育大學應用科學系研究所碩士論文,2010
葉伯淳, “具穿隧結構氮化鎵奈米線白光二極體之研製,” 國立台灣大學光電工程研究所碩士論文,2008.
Jacques I. Pankove,”Optical processes in semiconductors”, Dover Publications, Inc., New York (1971)
L.C. Zhang, Q.S. Li, C. Qu, Z.J. Zhang, R.Z. Huang, and F.Z. Zhao,” White electroluminescence from ZnO nanorods/p-GaN heterojunction light-emitting diodes under reverse bias,” J.Opt. 15, 6 (2013)
H. J. Xu, L.Su, Y. F. Chan ,and X. M. Sun,” Structural and multiband photoluminescent properties of a hierarchical ZnO/Si nanoheterostructure,” J. Mater. Res. 26, 9 (2011)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔