(3.236.122.9) 您好!臺灣時間:2021/05/09 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:洪瑞宏
研究生(外文):Jui-Hung Hung
論文名稱:氮化鋁鎵/氮化鎵金氧半高電子遷移率場效電晶體之製作與特性研究
論文名稱(外文):Fabrication and Characterization of AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Field Effect Transistors
指導教授:彭隆瀚
口試委員:王維新胡振國賴志明
口試日期:2013-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:MOS-HEMT光致電化學氧化法(PEC Oxidation)閘極掘入
外文關鍵詞:MOS-HEMTPEC OxidationGate Recessed MOS-HEMT
相關次數:
  • 被引用被引用:2
  • 點閱點閱:255
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討兩大部分:1. AlGaN/GaN MOS-HEMT以及2. 閘極掘入式AlGaN/GaN MOS-HEMT兩種元件,除了對於製作過程中所需的各項技術進行確認,更對於製程中光致電化學氧化法對於元件特性的影響提出一些觀察。
在AlGaN/GaN MOS-HEMT方面,我們發現到薄層的PEC閘極氧化層對於元件特性(電流開關比、閘極漏電流)有所提升,使電流開關比由5個數量級提升至6個數量級、閘極漏電流下降1個數量級,而閾值電壓往負偏移約2 V,可能與PEC氧化層/AlGaN介面狀態有關、或與AlGaN受到氧化層的應力有關。在PEC閘極氧化層增厚的情況下,比起薄層的PEC閘極氧化,閾值電壓再往正電壓偏移2.2 V左右。然而,元件特性卻大幅下降,在VG=0 V時,飽和電流由410 mA/mm下降至144.5 mA/mm,轉導峰值則由63 mS/mm下降至30.67 mS/mm,說明以PEC氧化法削減AlGaN層厚度並非製作增強型元件的優良手段。
閘極掘入式AlGaN/GaN MOS-HEMT證明了閘極掘入可製作出增強型元件,而PEC氧化層鈍化表面可以進一步提升元件的各種電特性,電流開關比由5個數量級提升至5.5個數量級,轉導峰值由95 mS/mm上升至120 mS/mm,調整PEC氧化時間以及原子層沉積的氧化層厚度等,可望做出特性更優良的電晶體。


This work is focused on the effects of the photoelectrochemical oxidation (PEC oxidation) method on both AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors (MOS-HEMTs) and gate recessed AlGaN/GaN MOS-HEMTs.
The measurement of AlGaN/GaN MOS-HEMTs with PEC oxide gate shows that with lightly PEC oxidation, the current on/off ratio has increased from 5 to 6 order of magnitude and the gate leakage current decreased almost 1 order of magnitude. However with short-time PEC oxidation, the threshold voltage has shifted -2 V. This phenomenon is related to the interface state of the PEC oxide and the AlGaN layer or the strain of the AlGaN layer induced by the PEC oxide. Moreover, with long-time PEC oxidation, the threshold voltage has shifted 2.2 V, but the device performance is greatly decreased.
The measurement of gate recessed AlGaN/GaN MOS-HEMTs shows that the gate recess method can effectively shift threshold voltage from -5 V to -1 V. The PEC oxidized passivation layer further increases the threshold voltage to nearly zero volts. with moderate PEC oxidation, the transconductance can be increased from 95 mS/mm to 120 mS/mm, though the recessed gate structure is suffered from the poor gate leakage current.
In a nutshell, we propose a useful method to fabricate an enhancement mode MOS-HEMT, but we still need some calibrations and optimizations to further increase our device performance.


誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xi

第 1 章 緒論 1
1.1 簡介 1
1.2 研究動機 5
1.3 論文架構 7

第 2 章 AlGaN/GaN MOS-HEMT理論介紹 8
2.1 AlGaN/GaN極化現象與二維電子氣形成機制 8
2.1.1 自發極化效應 8
2.1.2 壓電極化效應 10
2.1.3 二維電子氣形成機制 11
2.2 晶格面蝕刻法 15
2.3 金屬接觸原理 16
2.3.1 歐姆接觸原理 16
2.3.2 傳輸線模型原理 19
2.4 光致電化學氧化法原理 21
2.5 原子層沉積[30] 23
2.6 電性量測架構 25

第 3 章 AlGaN/GaN MOS-HEMT的製程技術 26
3.1 表面清潔 27
3.2 元件隔離 28
3.3 晶格面蝕刻法 29
3.4 歐姆接觸(傳輸線模型量測用) 30
3.5 光致化學氧化法 31
3.6 AlGaN/GaN MOS-HEMT 製作流程 33
3.6.1 元件隔離 33
3.6.2 PEC網格電極製作 35
3.6.3 PEC閘極氧化層及表面鈍化層製作 37
3.6.4 原子層沉積 39
3.6.5 歐姆接觸 40
3.6.6 閘極金屬沉積 42
3.7 閘極掘入式AlGaN/GaN MOS-HEMT製作流程 44

第 4 章 AlGaN/GaN MOS-HEMT直流量測 45
4.1 傳輸線模型量測 45
4.2 PEC光致電化學氧化法之研究 47
4.3 MOS-HEMT IDS-VDS與IDS-VG特性 50
4.3.1 閾值電壓變化(Threshold Voltage Shift) 54
4.3.2 電流開關比(On/Off Current Ratio) 55
4.3.3 閘極漏電流(Gate Leakage Current) 56
4.4 閘極掘入式MOS-HEMT IDS-VDS與IDS-VG特性 57
4.4.1 閾值電壓變化(Threshold Voltage Shift) 62
4.4.2 電流開關比(On/Off Current Ratio) 63
4.4.3 閘極漏電流(Gate Leakage Current) 64
4.4.4 轉導(Transconductance) 65

第 5 章 結論與未來展望 66
5.1 結論 66
5.2 未來展望 69
參考文獻 70



[1]Available: http://en.wikipedia.org/wiki/Transistor#History
[2]I. T. R. S. Committee. (2012, International Technology Roadmap for Semiconductors 2012 update. Available: http://www.itrs.net/Links/2012ITRS/Home2012.htm
[3]U. K. Mishra, P. Parikh, and W. Yi-Feng, "AlGaN/GaN HEMTs-an overview of device operation and applications," Proceedings of the IEEE, vol. 90, pp. 1022-1031, 2002.
[4]B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," Electron Device Letters, IEEE, vol. 10, pp. 455-457, 1989.
[5]T. Palacios, "Beyond the AlGaN/GaN HEMT: new concepts for high-speed transistors," physica status solidi (a), vol. 206, pp. 1145-1148, 2009.
[6]G. Meneghesso, F. Rampazzo, P. Kordos, G. Verzellesi, and E. Zanoni, "Current Collapse and High-Electric-Field Reliability of Unpassivated GaN/AlGaN/GaN HEMTs," Electron Devices, IEEE Transactions on, vol. 53, pp. 2932-2941, 2006.
[7]J. A. del Alamo and J. Joh, "GaN HEMT reliability," Microelectronics Reliability, vol. 49, pp. 1200-1206, 2009.
[8]B. Jong-Ho, H. Injun, S. Jong-Min, K. Hyuck-In, P. Chan Hyeong, H. Jongbong, et al., "Characterization of traps and trap-related effects in recessed-gate normally-off AlGaN/GaN-based MOSHEMT," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 13.2.1-13.2.4.
[9]P. Lagger, C. Ostermaier, G. Pobegen, and D. Pogany, "Towards understanding the origin of threshold voltage instability of AlGaN/GaN MIS-HEMTs," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 13.1.1-13.1.4.
[10]S. Sugiura, Y. Hayashi, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, et al., "Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator," Solid-State Electronics, vol. 54, pp. 79-83, 2010.
[11]S. Huang, Q. Jiang, S. Yang, C. Zhou, and K. J. Chen, "Effective passivation of AlGaN/GaN HEMTs by ALD-grown AlN thin film," Electron Device Letters, IEEE, vol. 33, pp. 516-518, 2012.
[12]Y. Yuanzheng, Y. Hao, J. Zhang, J. Ni, W. Mao, F. Qian, et al., "AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 Interfacial Passivation Layer Grown by Atomic Layer Deposition," Electron Device Letters, IEEE, vol. 29, pp. 838-840, 2008.
[13]D. Deen, D. Storm, D. Meyer, D. S. Katzer, R. Bass, S. Binari, et al., "AlN/GaN HEMTs with high-κ ALD HfO2 or Ta2O5 gate insulation," physica status solidi (c), vol. 8, pp. 2420-2423, 2011.
[14]巫漢敏, "氮化鎵金氧半電容元件之製作與特性研究," 碩士論文, 光電工程研究所, 國立台灣大學, 2002.
[15]賴彥霖, "氮化銦鎵(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究," 博士論文, 材料科學及工程學系, 國立成功大學, 2006.
[16]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, p. 3222, 1999.
[17]余湘璘, "氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析 " 碩士論文, 電機工程研究所, 國立中央大學, 2009.
[18]E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 17, p. 1742, 1999.
[19]T. Yamanaka, K. Sun, Y. Li, M. Dutta, and M. A. Stroscio, "Spontaneous polarizations, electrical properties, and phononic properties of GaN nanostructures and systems," pp. 64730F-64730F, 2007.
[20]F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Physical Review B, vol. 56, pp. R10024-R10027, 10/15/ 1997.
[21]AlGaN/GaN HEMTs. Available: http://www.ee.sc.edu/personal/faculty/simin/ELCT871/18%20AlGAN-GaN%20HEMTs.pdf
[22]F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs," Electron Devices, IEEE Transactions on, vol. 48, pp. 450-457, 2001.
[23]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, et al., "Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy," Journal of Applied Physics, vol. 86, p. 4520, 1999.
[24]B. Jogai, "Free electron distribution in AlGaN/GaN heterojunction field-effect transistors," Journal of Applied Physics, vol. 91, p. 3721, 2002.
[25]J. Osvald, "Polarization effects and energy band diagram in AlGaN/GaN heterostructure," Applied Physics A, vol. 87, pp. 679-682, 2007.
[26]D. A. Stocker, E. F. Schubert, and J. M. Redwing, "Crystallographic wet chemical etching of GaN," Applied Physics Letters, vol. 73, pp. 2654-2656, 1998.
[27]D. A. Neamen, "Semiconductor Physics and Devices," Third ed: McGraw-Hill, 2005, pp. 395-398.
[28]Work Function. Available: http://en.wikipedia.org/wiki/Work_function
[29]A. Vertiatchikh, E. Kaminsky, J. Teetsov, and K. Robinson, "Structural properties of alloyed Ti/Al/Ti/Au and Ti/Al/Mo/Au ohmic contacts to AlGaN/GaN," Solid-State Electronics, vol. 50, pp. 1425-1429, 2006.
[30]原子層化學氣相沉積(Atomic Layer Chemical Vapor Deposition, ALCVD). Available: http://web.it.nctu.edu.tw/~FMPANLAB/ALD.htm
[31]J. A. Bardwell, S. Haffouz, W. R. McKinnon, C. Storey, H. Tang, G. I. Sproule, et al., "The Effect of Surface Cleaning on Current Collapse in AlGaN∕GaN HEMTs," Electrochemical and Solid-State Letters, vol. 10, p. H46, 2007.
[32]R. D. Long and P. C. McIntyre, "Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices," Materials, vol. 5, pp. 1297-1335, 2012.
[33]張仁誠, "氮化鋁鎵/氮化鎵金屬氧化物半導體高電子遷移率場效電晶體之研究," 碩士論文, 光電工程研究所, 國立台灣大學, 2011.
[34]W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, "Recessed-gate enhancement-mode GaN HEMT with high threshold voltage," Electronics Letters, vol. 41, p. 449, 2005.
[35]A. Davydov, A. Motayed, W. Boettinger, R. Gates, Q. Xue, H. Lee, et al., "Combinatorial optimization of Ti/Al/Ti/Au ohmic contacts to n‐GaN," physica status solidi (c), vol. 2, pp. 2551-2554, 2005.
[36]D.-F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, et al., "Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN," Journal of Applied Physics, vol. 89, p. 6214, 2001.
[37]M. Ťapajna and J. Kuzmík, "A comprehensive analytical model for threshold voltage calculation in GaN based metal-oxide-semiconductor high-electron-mobility transistors," Applied Physics Letters, vol. 100, p. 113509, 2012.
[38]N. Harada, Y. Hori, N. Azumaishi, K. Ohi, and T. Hashizume, "Formation of Recessed-Oxide Gate for Normally-Off AlGaN/GaN High Electron Mobility Transistors Using Selective Electrochemical Oxidation," Applied Physics Express, vol. 4, p. 021002, 2011.
[39]C.-T. Ya-Lan Chiou; Li-Hsien Huang; Lee, "Photoelectrochemical Function in Gate-Recessed AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors," Electron Device Letters, IEEE ,, vol. 31, p. 3, March 2010 2010.
[40]C. Mizue, Y. Hori, M. Miczek, and T. Hashizume, "Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3/AlGaN Interface," Japanese Journal of Applied Physics, vol. 50, p. 021001, 2011.
[41]Y. Hori, C. Mizue, and T. Hashizume, "Interface state characterization of ALD-Al2O3/GaN and ALD-Al2O3/AlGaN/GaN structures," physica status solidi (c), vol. 9, pp. 1356-1360, 2012.
[42]S. Huang, S. Yang, J. Roberts, and K. J. Chen, "Characterization of Vth-instability in Al2O3/GaN/AlGaN/GaN MIS-HEMTs by quasi-static C-V measurement," physica status solidi (c), vol. 9, pp. 923-926, 2012.
[43]S. Kim, Y. Hori, W.-C. Ma, D. Kikuta, T. Narita, H. Iguchi, et al., "Interface Properties of Al2O3/n-GaN Structures with Inductively Coupled Plasma Etching of GaN Surfaces," Japanese Journal of Applied Physics, vol. 51, p. 060201, 2012.
[44]N. Shiozaki and T. Hashizume, "Improvements of electronic and optical characteristics of n-GaN-based structures by photoelectrochemical oxidation in glycol solution," Journal of Applied Physics, vol. 105, p. 064912, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔