(3.235.245.219) 您好!臺灣時間:2021/05/10 00:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林子耘
研究生(外文):Tzu-Yun Lin
論文名稱:智慧型動態日光模擬照明系統
論文名稱(外文):Smart Lighting and Dynamic Daylight Simulation
指導教授:黃鼎偉
指導教授(外文):Ding-Wei Huang
口試委員:李允立陳正言林晃嚴
口試委員(外文):Yun-Li LiCheng-Yen ChenHoang-Yan Lin
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:77
中文關鍵詞:發光二極體混色照明演色性色溫
外文關鍵詞:LEDSmart lightingColor rendering indexCorrelated color temperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:525
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是利用太陽光頻譜配對的的觀點(Spectrum Matching Strategy)來最佳化動態混色的 LED 智慧照明系統,將以往需要非 線性最佳化的參數如演色性、色溫等,利用頻譜配對觀點轉換為 線性最小平方估計的問題。本論文中討論了四種演算法,梯度遞 減法(Gradient Method)、遞迴式奇異值分解法 (Recursive Singular Value Decomposition, RSVD)、非負最小平方估計法 (Non-negative Least Squares, NNLS) 以及自適應直接搜尋法 (Mesh Adaptive Direct Search, MADS),來求最小平方估計的解。其中梯度遞減法是最直觀地解決最 小平方估計的方法,然而很容易被限制在局部最小值,而遞迴式奇異 值分解法具有節省空間及時間的效果,然而無法有效解決非負解的問 題。約束最佳化模式搜尋法結果最為精準,可以達到平均演色性 97 以 上,色溫及照度幾乎零誤差的發光表現,然而約束最佳化模式搜尋法 需要大量的時間空間,並且很難實現於一般嵌入式系統。比較之間的 準確度與好壞度並且衡量各個演算法的需求時間和空間,再加上色溫 修正和有效的系統設計,最後選擇利用非負最小平方估計法為最適合 使用於動態混色 LED 照明系統,並且以 Kim、Sra 和 Dhillon 所提出的 新型投影式類牛頓法實現,可以在節省時間和空間的條件下得到相對 最佳解。本篇論文提出的所有方法及結果都模擬於 MATLAB 平台。未 來希望能將本論文方法實現於嵌入式系統,除了繼續最佳化演算法的 時間空間利用之外,也希望能開發出獨特的人機介面,以達到真正的 智慧照明。

This thesis presents a first-of-its-kind approach and simulation of multi-chromatic LED-based dynamic lighting system that the lighting performance can be optimized by itself to less than 5% error. In this work, though the parameters we want to optimize should be calculated nonlinearly, the control of the different LEDs is formulated as a linear optimization problem via the spectrum matching strategy, which is a new way to think how to optimize a dynamic lighting system. Instead of optimizing each parameter directly, here we provide a much more time-saving and space-saving way to optimize the color rendering index, correlated color temperature and luminous flux. Consequently the lighting system can dynamically optimize the light output for greater controllability, higher color quality and luminous flux. The algorithm is also chosen from lots of studies from machine learning, computer science to numerical recipe and implemented into MATLAB to simulate the entire system. In summary, this thesis provides the foundation for future research in the areas of the spectral mixture lighting system model, efficient lighting control, dynamic utility regulation and optimization.

Chap 1 Introduction 1
1.1 Motivation.................................. 1
1.2 Contribution............................... 2
Chap 2 Dynamic Lighting System 3
2.1 Solid State Lighting..................... 3
2.2 White Light using LEDs ............... 4
2.3 Smart Lighting ............................ 8
2.4 Spectrally TunableLighting .......... 9
2.5 Dynamic Lighting......................... 11
Chap 3 System Modeling 13
3.1 Problem Definition....................... 13
3.1.1 Spectrum Matching Strategy(SMS)................ 13
3.1.2 Mathematical Model ........................ 15
3.1.3 Overdetermined System ...................... 16
3.2 Optimization Approaches.......................... 18
3.2.1 Gradient DescentMethod ..................... 19
3.2.2 Singular Value Decomposition(SVD) ......................21
3.2.3 Mesh Adaptive Direct Search Algorithm (MADS) . . . . . . . . 23
3.2.4 Non-negative Least Squares Problem (NNLS) . . . . . . . . . . . 24
3.3 Simulation Background........................... 25
3.3.1 Environment............................. 25
3.3.2 CIE 1931 XYZ ColorSpace .................... 26
3.3.3 CIE 1976(L∗u∗v∗) Color Space ................. 28
3.3.4 CIE 1964(U∗V∗W∗) Color Space................ 29
3.3.5 Color Rendering Index(CRI) ................... 30
3.3.6 LED Model............................. 31
3.3.7 Generating Daylight Spectrum................... 32
Chap 4 Observations and Analysis 33
4.1 Simulation of Ideal Cases.......................... 33
4.2 Simulation of Practical Cases........................ 39
4.2.1 Observations ............................ 39
4.2.2 GeneralPerformance........................ 44
4.2.3 PowerCoefficient ......................... 45
4.2.4 ColorTemperature ......................... 48
4.3 ColorTemperatureCorrection ....................... 49
4.3.1 Color temperature correction formula ................ 49
4.3.2 Observations with CCT correction................. 51
4.3.3 Comparison with Conventional XYZ mixture method ....... 59
4.4 SystemModification ............................ 63
4.4.1 Controllable Luminous Flux of the System (CLS) ....... 63
4.4.2 PruningProcess........................... 64
4.4.3 Comparison............................. 65
4.4.4 Summary.............................. 70
5 Conclusions 71
5.1 Overview of Performance.......................... 71
5.2 FutureWork................................. 73
References 74

[1] A.Bergh,G.Craford,A.Duggal,andR.Haitz,“Thepromiseandchallengeofsolid- state lighting,” Physics Today, vol. 54, p. 42, 2001.
[2] E. F. Schubert, J. K. Kim, H. Luo, and J. Xi, “Solid-state lighting—a benevolent technology,” Reports on Progress in Physics, vol. 69, no. 12, p. 3069, 2006.
[3] I.L.Azevedo,M.G.Morgan,andF.Morgan,“Thetransitiontosolid-statelighting,” Proceedings of the IEEE, vol. 97, no. 3, pp. 481–510, 2009.
[4] E.F.Schubert,“Innovationsinlight-emittingdiodes,”inLasersandElectro-Optics, 2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on, pp. 1–2, IEEE, 2006.
[5] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science, vol. 308, no. 5726, pp. 1274–1278, 2005.
[6] A.R.Webb,“Considerationsforlightinginthebuiltenvironment:Non-visualeffects of light,” Energy and Buildings, vol. 38, no. 7, pp. 721–727, 2006.
[7] G. Wyszecki, V. Stiles, and K. L. Kelly, “Color science: Concepts and methods, quantitative data and formulas,” Physics Today, vol. 21, no. 6, pp. 83–84, 1968.
[8] X. Guo and K. W. Houser, “A review of colour rendering indices and their applica- tion to commercial light sources,” lighting Research and Technology, vol. 36, no. 3, pp. 183–197, 2004.
[9] W. Davis and Y. Ohno, “Toward an improved color rendering metric,” in Optics & Photonics 2005, pp. 59411G–59411G, International Society for Optics and Photon- ics, 2005.
[10] R. M. Boynton, “History and current status of a physiologically based system of photometry and colorimetry,” JOSA A, vol. 13, no. 8, pp. 1609–1621, 1996.
[11] N.Narendran,L.Deng,R.M.Pysar,Y.Gu,andH.Yu,“Performancecharacteristics of high-power light-emitting diodes,” in Optical Science and Technology, SPIE’s 48th Annual Meeting, pp. 267–275, International Society for Optics and Photonics, 2004.
[12] A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. Shur, “Optimiza- tion of white polychromatic semiconductor lamps,” Applied physics letters, vol. 80, no. 2, pp. 234–236, 2002.
[13] R. Stanikūnas, H. Vaitkevičius, A. Švegžda, V. Viliūnas, Z. Bliznikas, K. Breive, R. Vaicekauskas, A. Novičkovas, G. Kurilčik, A. Žukauskas, et al., “Polychromatic solid-state lamps versus tungsten radiator: hue changes of munsell samples,” Journal of Physics D: Applied Physics, vol. 38, no. 17, p. 3202, 2005.
[14] Z. Lei, G. Xia, L. Ting, G. Xiaoling, L. Qiao Ming, and S. Guangdi, “Color render- ing and luminous efficacy of trichromatic and tetrachromatic led-based white leds,” Microelectronics journal, vol. 38, no. 1, pp. 1–6, 2007.
[15] A. Zukauskas, R. Vaicekauskas, F. Ivanauskas, H. Vaitkevicius, and M. Shur, “Ren- dering a color palette by light-emitting diodes,” Applied physics letters, vol. 93, no. 2, pp. 021109–021109, 2008.
[16] R. Stevenson, “The led’s dark secret,” Spectrum, IEEE, vol. 46, no. 8, pp. 26–31, 2009.
[17] M. Burmen, F. Pernuš, and B. Likar, “Led light sources: a survey of quality-affecting factors and methods for their assessment,” Measurement science and technology, vol. 19, no. 12, p. 122002, 2008.
[18] N.NarendranandY.Gu,“Lifeofled-basedwhitelightsources,”DisplayTechnology, Journal of, vol. 1, no. 1, pp. 167–171, 2005.
[19] L.-R.Trevisanello,M.Meneghini,G.Mura,C.Sanna,S.Buso,G.Spiazzi,M.Vanzi, G. Meneghesso, and E. Zanoni, “Thermal stability analysis of high brightness led during high temperature and electrical aging,” in Optical Engineering+ Applications, pp. 666913–666913, International Society for Optics and Photonics, 2007.
[20] M. Hong, A Study on the Influence of Various Types of Artificial Lighting and Spec- tral Characteristics on Human’s Physical Reactions. PhD thesis, Master thesis, Na- tional Chung Kung University, Tainan City, ROC, 2008.
[21] S. Afshari, S. Mishra, J. Wen, and R. Karlicek, “An adaptive smart lighting sys- tem,” in Proceedings of the Fourth ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 201–202, ACM, 2012.
[22] L. Ciabattoni, A. Freddi, G. Ippoliti, M. Marcantonio, D. Marchei, A. Monteriu, and M. Pirro, “A smart lighting system for industrial and domestic use,” in Mechatronics (ICM), 2013 IEEE International Conference on, pp. 126–131, IEEE, 2013.
[23] H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light- emitting diode sources,” Optical Engineering, vol. 43, no. 7, pp. 1531–1536, 2004.
[24] A. Wenger, T. Hawkins, and P. Debevec, “Optimizing color matching in a lighting reproduction system for complex subject and illuminant spectra,” in Proceedings of the 14th Eurographics workshop on Rendering, pp. 249–259, Eurographics Associ- ation, 2003.
[25] I. Fryc, S. Brown, and Y. Ohno, “Spectral matching with an led-based spectrally tunable light source,” in Optics & Photonics 2005, pp. 59411I–59411I, International Society for Optics and Photonics, 2005.
[26] C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “Nist spectrally tunable lighting facility for colour rendering and lighting experiments,” in Proceeding ofLight and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting pp erratum 1, vol. 3, 2009.
[27] K. J. Dowling and B. Kolsky, “The design of a spectrally tunable light source,” in SPIE Optical Engineering+ Applications, pp. 742206–742206, International Society for Optics and Photonics, 2009.
[28] M. Aldrich, N. Zhao, and J. Paradiso, “Energy efficient control of polychromatic solid state lighting using a sensor network,” in SPIE Optical Engineering+ Applica- tions, pp. 778408–778408, International Society for Optics and Photonics, 2010.
[29] S.-J.LeeandC.-S.Ouyang,“Aneuro-fuzzysystemmodelingwithself-constructing rule generationand hybrid svd-based learning,” Fuzzy Systems, IEEE Transactions on, vol. 11, no. 3, pp. 341–353, 2003.
[30] C.Wu,N.Hu,Y.Fong,H.Hsiao,andS.Hsiao,“Optimalpruningforselectingledsto synthesize tunable illumination spectra,” Lighting Research and Technology, vol. 44, no. 4, pp. 484–497, 2012.
[31] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal on optimization, vol. 7, no. 1, pp. 1–25, 1997.
[32] C. L. Lawson and R. J. Hanson, Solving least squares problems, vol. 161. SIAM, 1974.
[33] D. Kim, S. Sra, and I. S. Dhillon, A new projected quasi-newton approach for the nonnegative least squares problem. Computer Science Department, University of Texas at Austin, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔