|
[1]E. H. I. J. Brandrup, Polymer handbook, 1966. [2]F. W. Billmeyer, Textbook of Polymer Science, 3rd Edition, 1984. [3]P. C. Hiemenz, Polymer Chemistry: The Basic Concepts, 1984. [4]G. G. Odian, Principles of Polymerization, 4th Edition, 2004. [5]Y. K. Lee, B. S. Lim, and C. W. Kim, "Difference in polymerization color changes of dental resin composites by the measuring aperture size," Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 66B, pp. 373-378, Jul 15 2003. [6]C. A. Lefebvre, K. Tamareselvy, G. S. Schuster, and F. A. Rueggeberg, "Toxicity of Dental Resin Components - Material and Polymerization Influence," Journal of Dental Research, vol. 73, pp. 381-381, 1994. [7]R. M. Carvalho, J. C. Pereira, M. Yoshiyama, and D. H. Pashley, "A review of polymerization contraction: the influence of stress development versus stress relief," Operative dentistry, vol. 21, pp. 17-24, 1996. [8]R. Nomoto, "Effect of light wavelength on polymerization of light-cured resins," Dental materials journal, vol. 16, pp. 60-73, 1997. [9]N. Lamarche, N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, et al., "Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade," Cell, vol. 87, pp. 519-29, 1996. [10]A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, et al., "Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia, vol. 2, pp. 267-275, 2006. [11]J.-K. Suh, S. Scherping, T. Mardi, J. Richard Steadman, and S. L. Y. Woo, "Basic science of articular cartilage injury and repair," Operative Techniques in Sports Medicine, vol. 3, pp. 78-86, 1995. [12]J. P. Fisher, Tissue engineering. New York, N.Y.: Springer : Aegean Conferences, 2006. [13]D. J. Overstreet, D. Dutta, S. E. Stabenfeldt, and B. L. Vernon, "Injectable hydrogels," Journal of Polymer Science Part B: Polymer Physics, vol. 50, pp. 881-903, 2012. [14]T. E. Hogenesch, K. R. Shah, and C. R. Fitzgerald, "Development of Injectable Poly(Glyceryl Methacrylate) Hydrogels for Vitreous Prosthesis," J Biomed Mater Res, vol. 10, pp. 975-976, 1976. [15]N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, "The effect of photopolymerization on stem cells embedded in hydrogels," Biomaterials, vol. 30, pp. 344-353, 2009. [16]K. A. Davis, J. A. Burdick, and K. S. Anseth, "Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications," Biomaterials, vol. 24, pp. 2485-2495, 2003. [17]C. T. Huynh, M. K. Nguyen, and D. S. Lee, "Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications," Macromolecules, vol. 44, pp. 6629-6636, 2011/09/13 2011. [18]M. K. Nguyen and D. S. Lee, "Injectable Biodegradable Hydrogels," Macromol Biosci, vol. 10, pp. 563-579, 2010. [19]R. J. Williams, Cartilage repair strategies. Totowa, N.J.: Humana Press, 2007. [20]C. W. Archer, Biology of the synovial joint. Amsterdam, The Netherlands: Harwood Academic Publishers, 1999. [21]E. B. Hunziker, "Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects," Osteoarthritis and Cartilage, vol. 10, pp. 432-463, 2002. [22]E. B. Hunziker, "Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?," Osteoarthritis and Cartilage, vol. 7, pp. 15-28, 1999. [23]B. M. Cascio and B. Sharma, "The Future of Cartilage Repair," Operative Techniques in Sports Medicine, vol. 16, pp. 221-224, 2008. [24]M. Ettenberg, H. Kressel, and J. Wittke, "Very high radiance edge-emitting LED," Quantum Electronics, IEEE Journal of, vol. 12, pp. 360-364, 1976. [25]E. F. Schubert, T. Gessmann, and J. K. Kim, "Light Emitting Diodes," in Kirk-Othmer Encyclopedia of Chemical Technology, ed: John Wiley & Sons, Inc., 2000. [26]S. Liu and X. Luo, LED packaging for lighting applications : design, manufacturing and testing. Singapore: John Wiley & Sons (Asia), 2011. [27]R. N. Kumar, L. Y. Keem, N. C. Mang, and A. Abubakar, "Ultraviolet radiation curable epoxy resin encapsulant for light emitting diodes," Journal of Applied Polymer Science, vol. 100, pp. 1048-1056, 2006. [28]R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, "Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization," Appl. Opt., vol. 40, pp. 5860-5871, 2001. [29]H. Wang, K.-S. Lee, S. Li, L. Jin, S.-K. Lee, Y. Wu, et al., "Fabrication of CdSe–ZnS nanocrystal-based local fluorescent aperture probes by active polymerization of photosensitive epoxy," Optics Communications, vol. 281, pp. 1588-1592, 2008. [30]S. Nakamura, M. Senoh, and T. Mukai, "P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 32, pp. L8–L11, 1993. [31]Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, et al., "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," Journal of Crystal Growth, vol. 312, pp. 1311-1315, 4/1/ 2010. [32]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, et al., "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Applied Physics Letters, vol. 98, pp. 151102-151102-3, 2011. [33]R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semiconductor Science and Technology, vol. 27, p. 024001, 2012. [34]D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, "Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, pp. 041513-8, 07/00/ 2012. [35]H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express, vol. 19, pp. A991-A1007, 07/04 2011. [36]R. A. Arif, Y.-K. Ee, and N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Applied Physics Letters, vol. 91, pp. 091110-3, 08/27/ 2007. [37]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, et al., "Illumination with solid state lighting technology," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 310-320, 2002. [38]R. J. M. Zwiers, H. J. L. Bressers, B. Ouwehand, and D. Baumann, "Development of a new low-stress hyperred LED encapsulant," Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 12, pp. 387-392, 1989. [39]J. N. Tey, A. M. Soutar, S. G. Mhaisalkar, H. Yu, and K. M. Hew, "Mechanical properties of UV-curable polyurethane acrylate used in packaging of MEMS devices," Thin Solid Films, vol. 504, pp. 384-390, 2006. [40]J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express, vol. 12, pp. 5221-5228, 2004. [41]D. Therriault, S. R. White, and J. A. Lewis, "Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly," Nat Mater, vol. 2, pp. 265-271, 2003. [42]W. Hao, L. Kyu-Seung, R. Jae-Hyoung, H. Chang-Hee, and C. Yong-Hoon, "Active Packaging Method for Light-Emitting Diode Lamps With Photosensitive Epoxy Resins," Photonics Technology Letters, IEEE, vol. 20, pp. 87-89, 2008. [43]H. Wang, J.-H. Ryu, K.-S. Lee, C. H. Tan, L. Jin, S. Li, et al., "Active packing method for blue light-emitting diodes with photosensitive polymerization: formation of self-focusing encapsulates," Opt. Express, vol. 16, pp. 3680-3685, 2008. [44]S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Applied Physics Letters, vol. 75, pp. 737-739, 08/02/ 1999. [45]J. P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications: Hanser-Gardner Publications, 1995. [46]N. Stephenson, D. Kriks, M. El-Maazawi, and A. Scranton, "Spatial and temporal evolution of the photo initiation rate for thick polymer systems illuminated on both sides," Polymer International, vol. 54, pp. 1429-1439, 2005. [47]N. S. Kenning, D. Kriks, M. El-Maazawi, and A. Scranton, "Spatial and temporal evolution of the photoinitiation rate for thick polymer systems illuminated with polychromatic light," Polymer International, vol. 55, pp. 994-1006, 2006. [48]N. S. Kenning, B. A. Ficek, C. C. Hoppe, and A. B. Scranton, "Spatial and temporal evolution of the photoinitiation rate for thick polymer systems illuminated by polychromatic light: selection of efficient photoinitiators for LED or mercury lamps," Polymer International, vol. 57, pp. 1134-1140, 2008. [49]V. V. Ivanov and C. Decker "Kinetic study of photoinitiated frontal polymerization," Polymer International, vol. 50, pp. 113-118, 2001. [50]G. Terrones and A. J. Pearlstein, "Effects of Optical Attenuation and Consumption of a Photobleaching Initiator on Local Initiation Rates in Photopolymerizations," Macromolecules, vol. 34, pp. 3195-3204, 2001/05/01 2001. [51]J. S. Murday, R. W. Siegel, J. Stein, and J. F. Wright, "Translational nanomedicine: status assessment and opportunities," Nanomedicine : nanotechnology, biology, and medicine, vol. 5, pp. 251-273, 2009. [52]P. K. Jain and M. A. El-Sayed, "Surface Plasmon Resonance Sensitivity of Metal Nanostructures: Physical Basis and Universal Scaling in Metal Nanoshells," The Journal of Physical Chemistry C, vol. 111, pp. 17451-17454, 2007/11/01 2007. [53]P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine," The Journal of Physical Chemistry B, vol. 110, pp. 7238-7248, 2006/04/01 2006. [54]I. Moreno, "LED Intensity Distribution," 2006, p. TuD6. [55]I. Moreno and C.-C. Sun, "Modeling the radiation pattern of LEDs," Opt. Express, vol. 16, pp. 1808-1819, 02/04 2008. [56]I. Moreno, "Spatial distribution of LED radiation," pp. 634216-634216, 2007. [57]A. R. Mitchell and D. F. Griffiths, The finite difference method in partial differential equations. Chichester Eng. ; New York: Wiley, 1980. [58]T. Sauer, Numerical analysis, 2nd ed. Boston: Pearson, 2012. [59]J. M. Jarem and P. P. Banerjee, Computational methods for electromagnetic and optical systems, 2nd ed. Boca Raton, FL: CRC Press, 2011. [60]K. S. a. M. Koshiba, "Full-Vectorial Finite Element Beam Propagation Method with Perfectly Matched Layers for Anisotropic Optical Waveguides," Journal of Lightwave Technology, vol. 19, p. 405, 2001. [61]G. Terrones and A. J. Pearlstein, "Effects of Kinetics and Optical Attenuation on the Completeness, Uniformity, and Dynamics of Monomer Conversion in Free-Radical Photopolymerizations," Macromolecules, vol. 34, pp. 8894-8906, 2001/12/01 2001. [62]J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, "Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations," Journal of Applied Physics, vol. 88, pp. 1073-1081, 2000. [63]K. A. Neyts, "Simulation of light emission from thin-film microcavities," J. Opt. Soc. Am. A, vol. 15, pp. 962-971, 1998. [64]A. Epstein, N. Tessler, and P. D. Einziger, "The Impact of Spectral and Spatial Exciton Distributions on Optical Emission From Thin-Film Weak-Microcavity Organic Light-Emitting Diodes," Quantum Electronics, IEEE Journal of, vol. 46, pp. 1388-1395, 2010. [65]K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green?s functions," Opt. Express, vol. 15, pp. 1762-1772, 2007. [66]K. Ting-Wei, L. Shi-Xiong, H. Yueh-Yu, H. Jui-Hong, and H. Mau-Phon, "Improved Extraction Efficiency of Light-Emitting Diodes by Wet-Etching Modifying AZO Surface Roughness," Photonics Technology Letters, IEEE, vol. 23, pp. 362-364, 2011. [67]K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, A. Kawasaki, and M. Kagami, "Shape control of Self-Written Waveguide," in Communications and Information Technology, 2009. ISCIT 2009. 9th International Symposium on, 2009, pp. 993-995. [68]N. Hirose and O. Ibaragi, "Optical Component Coupling using Self-Written Waveguides," in Optical Communication, 2002. ECOC 2002. 28th European Conference on, 2002, pp. 1-2. [69]S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar, "Self-written waveguides in photopolymerizable resins," Opt. Lett., vol. 27, pp. 185-187, 02/01 2002. [70]W. P. Huang and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," Quantum Electronics, IEEE Journal of, vol. 29, pp. 2639-2649, 1993. [71]C. C. Chin, C. L. Wu, S. H. Tseng, C. Y. Chen, Y. L. Li, and D. W. Huang, "Photoinitiated Polymerization for Active Packaging of Light-Emitting Diodes," Photonics Journal, IEEE, vol. 5, pp. 2500110-2500110, 2013. [72]K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, "Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process," Photonics Technology Letters, IEEE, vol. 16, pp. 801-803, 2004. [73]S. J. Naoum, A. Ellakwa, L. Morgan, K. White, F. E. Martin, and I. B. Lee, "Polymerization profile analysis of resin composite dental restorative materials in real time," Journal of Dentistry, vol. 40, pp. 64-70, Jan 2012. [74]H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed. Oxford Oxfordshire, New York: Clarendon Press ; Oxford University Press, 1986.
|