跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:勤竣傑
研究生(外文):Chun-Chieh CHin
論文名稱:光起始聚合反應的動力學研究及其應用
論文名稱(外文):Kinetics of photoinitiated polymerization for various applications
指導教授:黃鼎偉
指導教授(外文):Ding-Wei Huang
口試委員:林晃巖林義彬李允立陳正言
口試委員(外文):Hoang Yan LINYih-Bin LinCharles LiRobert Chen
口試日期:2013-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:114
中文關鍵詞:聚合反應自我封裝自發寫成波導光熱化模擬
外文關鍵詞:polymerizationactive packaging methodself-written waveguidemodeling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:215
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,光固化機制被應用在許多的領域中,例如,牙齒修補、醫學治療、發光二極體的封裝,以及自我寫成光波導等相關應用。在此篇論文中,用於多種應用中的光固化聚合反應之模型被提出。我們也探討了溫度是如何影響固化反應中,光啟始反應速率、光固化速率、以及固化反應的均勻度。再者,用於發光二極體的封裝、自我寫成波導應用中,光啟始固化反應的動力學被詳細得探討。光傳播的行為可以用光速傳播法表示,而從發光二極體表面發出的光強度分度,可由積分每一無限小且位於發光二極體表面的發光源得知。接著我們提出基於有限差分法的模擬流程,來解決光固化反應中光學吸收和固化反應的交互作用。隨時間變化之固化物的形狀可由單體分子濃度的變化所分析且決定。本模擬流程可描繪出固化物之精確的尺寸、形狀,於不同的固化反應條件下,不同的固化時間、光強度、單體濃度、吸收係數等等。最後,我們實作了光二極體封裝實驗,及其他論文實驗的佐證,證明我們的模擬結果符合相關之實驗的結果。

In recent years, Light curing mechanism can be applied in many applications such as dental restorations, medical treatment, LED packaging, self-written waveguide, etc. In this dissertation, the modeling of polymerization of various application is presented. We also discuss the temperature how to influence the photoinitiation rate, and the uniformity of the polymerization. Furthermore, the kinetics of photoinitiated polymerization for active packaging of light-emitting diodes (LEDs), and self-written waveguides is presented thoroughly. The light propagation behavior can be expressed by beam propagation method, and the light distribution emitted from LED chip can be expressed by integrating the infinitesimal emitting area on the LED surface. Then we provide a simulation process based on finite difference method to solve the mechanism between the light absorption and polymerization reaction. The time-evolution of the polymer profile during polymerization can be analyzed as the monomer concentration varies. The proposed technique can depict the shape and precise size of the polymer for any specific parameters in the polymerization reaction, e.g., LED power or laser beam intensity, polymerization time, absorptivity of the epoxy and photolysis. Polymerization experiments for LED packaging and self-written waveguides with different light intensity, polymerization time were made to support our simulation results, and the simulation results agree well with the experiment results.

誌謝 1
摘要 2
Abstract 3
Table of contents 4
Figure captions 7
Table caption 12
Chapter 1 Introduction 13
1.1 Polymerization mechanism 14
1.2 Polymers in everyday life 15
1.2.1 Dental applications 15
1.2.2 Medical treatments 18
1.2.3 LED packaging 23
1.3 Polymerization applications 24
1.3.1 Active packaging method 24
1.3.2 Self-written waveguide 26
1.3.3 Photoinitiated and photothermalized polymerization 27
Chapter 2 Background 29
2.1 Radical chain polymerization 29
2.1.1 Rate of radical chain polymerization 29
2.1.2 Rate expression 32
2.2 LED intensity distribution 34
2.3 Finite difference method 36
2.3.1 Finite difference beam propagation method 38
2.4 Summary 41
Chapter 3 The kinetics of photoinitiated polymerization for Active Packaging of Light-Emitting Diodes 42
3.1 Paper review 43
3.1.1 Uniformity, dynamics of initiator concentration in free-radical photopolymerization 43
3.1.2 Uniformity, dynamics of monomer Conversion in Free-Radical Photopolymerization 47
3.1.3 Active packaging method for blue light-emitting with photosensitive polymerization 51
3.2 Method 54
3.2.1 LED radiation pattern 54
3.2.2 LED intensity distribution 56
3.2.3 Photoinitiated polymerization 58
3.2.4 Process of numerical simulation 58
3.3 Results of encapsulation profile 61
3.4 Summary 67
Chapter 4 The kinetics of photoinitiated polymerization for self-written waveguides for optical connection 68
4.1 Paper review 69
4.1.1 Optical component coupling using Self-written waveguides 69
4.1.2 Self-written waveguides in photopolymerizable resins 76
4.2 Method 79
4.2.1 Electromagnetic waves 79
4.2.2 Photoinitiated polymerization 80
4.2.3 Process of numerical simulation 81
4.3 Simulation results 84
4.4 Summary 88
Chapter 5 Modeling of polymerization via combined mechanism of photoinitiation and photothermalization 89
5.1 Method 92
5.1.1 Heat equation 92
5.1.2 Photoinitiation equation 93
5.1.3 Polymerization rate 93
5.2 Results and discussions 94
5.2.1 The temperature distribution and optimal absorption coefficient 94
5.2.2 The pulsed train laser and linearly increasing laser function 95
5.2.3 Initiator concentration 98
5.2.4 Polymerization rate 101
5.3 Summary 103
Chapter 6 Conclusions 104
References 106


[1]E. H. I. J. Brandrup, Polymer handbook, 1966.
[2]F. W. Billmeyer, Textbook of Polymer Science, 3rd Edition, 1984.
[3]P. C. Hiemenz, Polymer Chemistry: The Basic Concepts, 1984.
[4]G. G. Odian, Principles of Polymerization, 4th Edition, 2004.
[5]Y. K. Lee, B. S. Lim, and C. W. Kim, "Difference in polymerization color changes of dental resin composites by the measuring aperture size," Journal of Biomedical Materials Research Part B-Applied Biomaterials, vol. 66B, pp. 373-378, Jul 15 2003.
[6]C. A. Lefebvre, K. Tamareselvy, G. S. Schuster, and F. A. Rueggeberg, "Toxicity of Dental Resin Components - Material and Polymerization Influence," Journal of Dental Research, vol. 73, pp. 381-381, 1994.
[7]R. M. Carvalho, J. C. Pereira, M. Yoshiyama, and D. H. Pashley, "A review of polymerization contraction: the influence of stress development versus stress relief," Operative dentistry, vol. 21, pp. 17-24, 1996.
[8]R. Nomoto, "Effect of light wavelength on polymerization of light-cured resins," Dental materials journal, vol. 16, pp. 60-73, 1997.
[9]N. Lamarche, N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, et al., "Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade," Cell, vol. 87, pp. 519-29, 1996.
[10]A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, et al., "Two photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia, vol. 2, pp. 267-275, 2006.
[11]J.-K. Suh, S. Scherping, T. Mardi, J. Richard Steadman, and S. L. Y. Woo, "Basic science of articular cartilage injury and repair," Operative Techniques in Sports Medicine, vol. 3, pp. 78-86, 1995.
[12]J. P. Fisher, Tissue engineering. New York, N.Y.: Springer : Aegean Conferences, 2006.
[13]D. J. Overstreet, D. Dutta, S. E. Stabenfeldt, and B. L. Vernon, "Injectable hydrogels," Journal of Polymer Science Part B: Polymer Physics, vol. 50, pp. 881-903, 2012.
[14]T. E. Hogenesch, K. R. Shah, and C. R. Fitzgerald, "Development of Injectable Poly(Glyceryl Methacrylate) Hydrogels for Vitreous Prosthesis," J Biomed Mater Res, vol. 10, pp. 975-976, 1976.
[15]N. E. Fedorovich, M. H. Oudshoorn, D. van Geemen, W. E. Hennink, J. Alblas, and W. J. A. Dhert, "The effect of photopolymerization on stem cells embedded in hydrogels," Biomaterials, vol. 30, pp. 344-353, 2009.
[16]K. A. Davis, J. A. Burdick, and K. S. Anseth, "Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications," Biomaterials, vol. 24, pp. 2485-2495, 2003.
[17]C. T. Huynh, M. K. Nguyen, and D. S. Lee, "Injectable Block Copolymer Hydrogels: Achievements and Future Challenges for Biomedical Applications," Macromolecules, vol. 44, pp. 6629-6636, 2011/09/13 2011.
[18]M. K. Nguyen and D. S. Lee, "Injectable Biodegradable Hydrogels," Macromol Biosci, vol. 10, pp. 563-579, 2010.
[19]R. J. Williams, Cartilage repair strategies. Totowa, N.J.: Humana Press, 2007.
[20]C. W. Archer, Biology of the synovial joint. Amsterdam, The Netherlands: Harwood Academic Publishers, 1999.
[21]E. B. Hunziker, "Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects," Osteoarthritis and Cartilage, vol. 10, pp. 432-463, 2002.
[22]E. B. Hunziker, "Articular cartilage repair: are the intrinsic biological constraints undermining this process insuperable?," Osteoarthritis and Cartilage, vol. 7, pp. 15-28, 1999.
[23]B. M. Cascio and B. Sharma, "The Future of Cartilage Repair," Operative Techniques in Sports Medicine, vol. 16, pp. 221-224, 2008.
[24]M. Ettenberg, H. Kressel, and J. Wittke, "Very high radiance edge-emitting LED," Quantum Electronics, IEEE Journal of, vol. 12, pp. 360-364, 1976.
[25]E. F. Schubert, T. Gessmann, and J. K. Kim, "Light Emitting Diodes," in Kirk-Othmer Encyclopedia of Chemical Technology, ed: John Wiley & Sons, Inc., 2000.
[26]S. Liu and X. Luo, LED packaging for lighting applications : design, manufacturing and testing. Singapore: John Wiley & Sons (Asia), 2011.
[27]R. N. Kumar, L. Y. Keem, N. C. Mang, and A. Abubakar, "Ultraviolet radiation curable epoxy resin encapsulant for light emitting diodes," Journal of Applied Polymer Science, vol. 100, pp. 1048-1056, 2006.
[28]R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, "Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization," Appl. Opt., vol. 40, pp. 5860-5871, 2001.
[29]H. Wang, K.-S. Lee, S. Li, L. Jin, S.-K. Lee, Y. Wu, et al., "Fabrication of CdSe–ZnS nanocrystal-based local fluorescent aperture probes by active polymerization of photosensitive epoxy," Optics Communications, vol. 281, pp. 1588-1592, 2008.
[30]S. Nakamura, M. Senoh, and T. Mukai, "P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes," Japanese Journal of Applied Physics, vol. 32, pp. L8–L11, 1993.
[31]Y.-K. Ee, X.-H. Li, J. Biser, W. Cao, H. M. Chan, R. P. Vinci, et al., "Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire," Journal of Crystal Growth, vol. 312, pp. 1311-1315, 4/1/ 2010.
[32]Y. Li, S. You, M. Zhu, L. Zhao, W. Hou, T. Detchprohm, et al., "Defect-reduced green GaInN/GaN light-emitting diode on nanopatterned sapphire," Applied Physics Letters, vol. 98, pp. 151102-151102-3, 2011.
[33]R. M. Farrell, E. C. Young, F. Wu, S. P. DenBaars, and J. S. Speck, "Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices," Semiconductor Science and Technology, vol. 27, p. 024001, 2012.
[34]D. A. Browne, E. C. Young, J. R. Lang, C. A. Hurni, and J. S. Speck, "Indium and impurity incorporation in InGaN films on polar, nonpolar, and semipolar GaN orientations grown by ammonia molecular beam epitaxy," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 30, pp. 041513-8, 07/00/ 2012.
[35]H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express, vol. 19, pp. A991-A1007, 07/04 2011.
[36]R. A. Arif, Y.-K. Ee, and N. Tansu, "Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes," Applied Physics Letters, vol. 91, pp. 091110-3, 08/27/ 2007.
[37]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, et al., "Illumination with solid state lighting technology," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 8, pp. 310-320, 2002.
[38]R. J. M. Zwiers, H. J. L. Bressers, B. Ouwehand, and D. Baumann, "Development of a new low-stress hyperred LED encapsulant," Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, vol. 12, pp. 387-392, 1989.
[39]J. N. Tey, A. M. Soutar, S. G. Mhaisalkar, H. Yu, and K. M. Hew, "Mechanical properties of UV-curable polyurethane acrylate used in packaging of MEMS devices," Thin Solid Films, vol. 504, pp. 384-390, 2006.
[40]J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express, vol. 12, pp. 5221-5228, 2004.
[41]D. Therriault, S. R. White, and J. A. Lewis, "Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly," Nat Mater, vol. 2, pp. 265-271, 2003.
[42]W. Hao, L. Kyu-Seung, R. Jae-Hyoung, H. Chang-Hee, and C. Yong-Hoon, "Active Packaging Method for Light-Emitting Diode Lamps With Photosensitive Epoxy Resins," Photonics Technology Letters, IEEE, vol. 20, pp. 87-89, 2008.
[43]H. Wang, J.-H. Ryu, K.-S. Lee, C. H. Tan, L. Jin, S. Li, et al., "Active packing method for blue light-emitting diodes with photosensitive polymerization: formation of self-focusing encapsulates," Opt. Express, vol. 16, pp. 3680-3685, 2008.
[44]S. Shoji and S. Kawata, "Optically-induced growth of fiber patterns into a photopolymerizable resin," Applied Physics Letters, vol. 75, pp. 737-739, 08/02/ 1999.
[45]J. P. Fouassier, Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications: Hanser-Gardner Publications, 1995.
[46]N. Stephenson, D. Kriks, M. El-Maazawi, and A. Scranton, "Spatial and temporal evolution of the photo initiation rate for thick polymer systems illuminated on both sides," Polymer International, vol. 54, pp. 1429-1439, 2005.
[47]N. S. Kenning, D. Kriks, M. El-Maazawi, and A. Scranton, "Spatial and temporal evolution of the photoinitiation rate for thick polymer systems illuminated with polychromatic light," Polymer International, vol. 55, pp. 994-1006, 2006.
[48]N. S. Kenning, B. A. Ficek, C. C. Hoppe, and A. B. Scranton, "Spatial and temporal evolution of the photoinitiation rate for thick polymer systems illuminated by polychromatic light: selection of efficient photoinitiators for LED or mercury lamps," Polymer International, vol. 57, pp. 1134-1140, 2008.
[49]V. V. Ivanov and C. Decker "Kinetic study of photoinitiated frontal polymerization," Polymer International, vol. 50, pp. 113-118, 2001.
[50]G. Terrones and A. J. Pearlstein, "Effects of Optical Attenuation and Consumption of a Photobleaching Initiator on Local Initiation Rates in Photopolymerizations," Macromolecules, vol. 34, pp. 3195-3204, 2001/05/01 2001.
[51]J. S. Murday, R. W. Siegel, J. Stein, and J. F. Wright, "Translational nanomedicine: status assessment and opportunities," Nanomedicine : nanotechnology, biology, and medicine, vol. 5, pp. 251-273, 2009.
[52]P. K. Jain and M. A. El-Sayed, "Surface Plasmon Resonance Sensitivity of Metal Nanostructures:  Physical Basis and Universal Scaling in Metal Nanoshells," The Journal of Physical Chemistry C, vol. 111, pp. 17451-17454, 2007/11/01 2007.
[53]P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition:  Applications in Biological Imaging and Biomedicine," The Journal of Physical Chemistry B, vol. 110, pp. 7238-7248, 2006/04/01 2006.
[54]I. Moreno, "LED Intensity Distribution," 2006, p. TuD6.
[55]I. Moreno and C.-C. Sun, "Modeling the radiation pattern of LEDs," Opt. Express, vol. 16, pp. 1808-1819, 02/04 2008.
[56]I. Moreno, "Spatial distribution of LED radiation," pp. 634216-634216, 2007.
[57]A. R. Mitchell and D. F. Griffiths, The finite difference method in partial differential equations. Chichester Eng. ; New York: Wiley, 1980.
[58]T. Sauer, Numerical analysis, 2nd ed. Boston: Pearson, 2012.
[59]J. M. Jarem and P. P. Banerjee, Computational methods for electromagnetic and optical systems, 2nd ed. Boca Raton, FL: CRC Press, 2011.
[60]K. S. a. M. Koshiba, "Full-Vectorial Finite Element Beam Propagation Method with Perfectly Matched Layers for Anisotropic Optical Waveguides," Journal of Lightwave Technology, vol. 19, p. 405, 2001.
[61]G. Terrones and A. J. Pearlstein, "Effects of Kinetics and Optical Attenuation on the Completeness, Uniformity, and Dynamics of Monomer Conversion in Free-Radical Photopolymerizations," Macromolecules, vol. 34, pp. 8894-8906, 2001/12/01 2001.
[62]J.-S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, "Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations," Journal of Applied Physics, vol. 88, pp. 1073-1081, 2000.
[63]K. A. Neyts, "Simulation of light emission from thin-film microcavities," J. Opt. Soc. Am. A, vol. 15, pp. 962-971, 1998.
[64]A. Epstein, N. Tessler, and P. D. Einziger, "The Impact of Spectral and Spatial Exciton Distributions on Optical Emission From Thin-Film Weak-Microcavity Organic Light-Emitting Diodes," Quantum Electronics, IEEE Journal of, vol. 46, pp. 1388-1395, 2010.
[65]K. Celebi, T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green?s functions," Opt. Express, vol. 15, pp. 1762-1772, 2007.
[66]K. Ting-Wei, L. Shi-Xiong, H. Yueh-Yu, H. Jui-Hong, and H. Mau-Phon, "Improved Extraction Efficiency of Light-Emitting Diodes by Wet-Etching Modifying AZO Surface Roughness," Photonics Technology Letters, IEEE, vol. 23, pp. 362-364, 2011.
[67]K. Myung-Joon, M. Kanda, O. Mikami, M. Yonemura, A. Kawasaki, and M. Kagami, "Shape control of Self-Written Waveguide," in Communications and Information Technology, 2009. ISCIT 2009. 9th International Symposium on, 2009, pp. 993-995.
[68]N. Hirose and O. Ibaragi, "Optical Component Coupling using Self-Written Waveguides," in Optical Communication, 2002. ECOC 2002. 28th European Conference on, 2002, pp. 1-2.
[69]S. Shoji, S. Kawata, A. A. Sukhorukov, and Y. S. Kivshar, "Self-written waveguides in photopolymerizable resins," Opt. Lett., vol. 27, pp. 185-187, 02/01 2002.
[70]W. P. Huang and C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," Quantum Electronics, IEEE Journal of, vol. 29, pp. 2639-2649, 1993.
[71]C. C. Chin, C. L. Wu, S. H. Tseng, C. Y. Chen, Y. L. Li, and D. W. Huang, "Photoinitiated Polymerization for Active Packaging of Light-Emitting Diodes," Photonics Journal, IEEE, vol. 5, pp. 2500110-2500110, 2013.
[72]K. Yamashita, T. Hashimoto, K. Oe, K. Mune, R. Naitou, and A. Mochizuki, "Self-written waveguide structure in photosensitive polyimide resin fabricated by exposure and thermosetting process," Photonics Technology Letters, IEEE, vol. 16, pp. 801-803, 2004.
[73]S. J. Naoum, A. Ellakwa, L. Morgan, K. White, F. E. Martin, and I. B. Lee, "Polymerization profile analysis of resin composite dental restorative materials in real time," Journal of Dentistry, vol. 40, pp. 64-70, Jan 2012.
[74]H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, 2nd ed. Oxford Oxfordshire, New York: Clarendon Press ; Oxford University Press, 1986.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top