(3.238.96.184) 您好!臺灣時間:2021/05/12 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林軒立
研究生(外文):Shiuan-Li Lin
論文名稱:光柵式側向耦光技術於摻鉺釔鋁石榴石晶體光纖雷射之研究
論文名稱(外文):Study of Grating Side-coupled Technique for Er:YAG Crystal Fiber Laser
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
口試委員:賴暎杰李穎玟黃鼎偉
口試委員(外文):Yin-Chieh LaiYin-Wen LeeDing-Wei Huang
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:109
中文關鍵詞:晶體光纖雷射半導體雷射陣列光柵光柵耦合器繞射
外文關鍵詞:crystal fiber laserlaser diode arraygratinggrating couplerdiffraction
相關次數:
  • 被引用被引用:4
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,高功率光纖雷射的發展日益增長且應用廣泛。由於半導體雷射光源擁有高電光轉換效率,結構精巧與低成本等優點,目前已被應用於各種不同的幫浦雷射系統架設中。本實驗室於2011年提出半導體雷射陣列之側向式光柵耦光系統,於光纖內纖衣尺寸為400 μm之架構下,將21 W之976 nm雷射光源耦入並達到50%耦光效率。為凸顯及提升側向式耦光系統高光亮度耦合效率的性質,我們針對雷射加熱基座長晶法生長之小尺寸單纖衣摻鉺釔鋁石榴石晶體光纖,以理論設計與實作出晶體光纖之側向式光柵耦光系統。

於光柵實作中,我們克服了玻璃基板N-LaSF41蝕刻的困難,設計一二氧化矽內嵌膜層式光柵結構,考慮理論與實作光柵凹槽之結構差異,繞射效率可優化至89.51%。運用光學模擬系統架構,理論模擬出應用於內纖衣尺寸130 μm之合適的基板與光纖介面尺寸,優化整體之耦合效率。於實驗架構中,藉由高溫熔燒680 ℃與慢速降溫7 ℃/Hr,完成玻璃基板與晶纖之熔接,應用於晶體光纖之側向耦光系統得以實現。此外,於晶體光纖雷射對摻雜濃度為1 at.%之纖心大小為40 μm的模擬中,結果可得以1532 nm之10 W幫浦光源可得1645 nm之7 W功率輸出,斜向效率73%,理想晶體光纖長度為9 cm。


In recent years, high-power fiber lasers have been extensively investigated for various applications. Because of the high electrical-optical efficiency, compact and low cost, laser diode arrays (LDAs) have been used in many high-power fiber laser systems as the pump sources. In 2011, side-coupling schemes, using gold-embedded grating couplers, were investigated to couple the light from a high-power LDA into double-clad glass fibers in our group. A 50% coupling efficiency has been achieved from a 21-W, 976nm LD array into a 400-μm double-clad fiber. To demonstrate the main advantage of this pumping scheme, high brightness conversion efficiency, this research is focused on the gain fibers with small inner-cladding diameters. Our system is a resonantly side-pumped 1645-nm Er:YAG crystal fiber laser utilizing a gold grating coupler.

Firstly, we overcome difficulties of dry-etching the high index glass substrate, N-LaSF41, by utilizing a SiO2 thin-film embedded grating structure. Based on the theoretical simulation, an optimized diffraction efficiency of 89.51% could be achieved with the grating structure. Secondly, we optimize the overall coupling efficiency for a 130 μm fiber, by choosing a proper size of the fiber-substrate interface. In addition, the glass substrate and crystal fiber are fused under high-temperature melting at 680 ℃ and low-cooling speed at 7 ℃/Hr to eliminate scattering loss. Finally, we simulated the fiber laser performance for a 1 at.% Er:YAG crystal fiber with 40-μm-core diameter. The result shows a 9-cm Er:YAG crystal fiber is long enough to achieve 7-W 1645 nm laser output with 73% slope efficiency under 10-W pumping at 1532 nm .


致謝 I
中文摘要 II
Abstract III
圖目錄 VI
表目錄 X
第一章 緒論與研究動機 1
第二章 晶體光纖於高功率雷射之應用 3
2.1 高功率光纖雷射之介紹 3
2.2 內層纖衣幫浦技術與種類 6
2.2.1 內層纖衣幫浦之端面耦光技術 6
2.2.2 內層纖衣幫浦之側面耦光技術 9
2.3 摻鉺晶體光纖之特性 15
第三章 側向式耦光光柵之設計與製作 20
3.1 側向式耦光光柵之設計 20
3.1.1 光柵結構理論 20
3.1.2 矩形結構式光柵之優化 21
3.1.3 梯形結構式光柵之優化 26
3.1.4 理想與實際光柵結構之討論與比較 29
3.2 側向式耦光光柵之製作 32
3.2.1 內嵌式光柵之製作流程 32
3.2.2 內嵌膜層式光柵之製作流程 33
3.2.3 電子束顯影蝕刻的原理與製程 34
3.2.4 高折射率玻璃基板N-LaSF41之蝕刻製程 39
3.2.5 二氧化矽膜層之蝕刻製程 41
第四章 側向式耦光之光學設計與晶體光纖雷射模擬 49
4.1 側向式耦光之光學架構 49
4.2 反射光柵之第二次繞射損耗 53
4.3 側向式耦光快軸光學模擬 54
4.3.1 ZEMAX模擬 54
4.3.2 TracePro模擬 61
4.4 晶體光纖雷射之理論模擬與討論 69
第五章 側向式耦光系統之實驗與結果討論 75
5.1 晶體生長系統之架構與晶體光纖 75
5.1.1 摻鉺晶體光纖製作 75
5.1.2 摻鉺晶體光纖 77
5.1.3 晶體光纖之研磨與拋光 79
5.2 半導體雷射陣列之特性量測 83
5.3 高折射率玻璃基板N-LaSF41與晶體光纖之熔接 87
5.4 側向式耦光於被動式傳輸光纖之實驗 94
第六章 結論與未來展望 98
6.1 研究結果統整 98
6.2 側向式耦光系統中光纖內纖衣尺寸大小之限制與耦光優化 99
6.3 未來展望 103
參考文獻 105


[1]黃玠維, "次波長光柵實現半導體雷射陣列側向激發之高功率光纖雷射," 國立臺灣大學,博士論文, 2012.
[2]D. Richardson, J. Nilsson, and W. Clarkson, "High power fiber lasers: current status and future perspectives," JOSA B, vol. 27, pp. B63-B92, 2010.
[3]http://en.wikipedia.org/wiki/Double-clad_fiber
[4]D. Kouznetsov and J. V. Moloney, "Highly efficient, high-gain, short-length, and power-scalable incoherent diode slab-pumped fiber amplifier/laser," Quantum Electronics, IEEE Journal of, vol. 39, pp. 1452-1461, 2003.
[5]http://en.wikipedia.org/wiki/Diode-pumped_solid-state_laser
[6]P. Schreiber, B. Hoefer, P. Dannberg, and U. D. Zeitner, "High-brightness fiber-coupling schemes for diode laser bars," Optics & Photonics 2005, pp. 587602-587602-10, 2005.
[7]H.-G. Treusch, K. Du, M. Baumann, V. Sturm, B. Ehlers, and P. Loosen, "Fiber-coupling technique for high-power diode laser arrays," Optoelectronics and High-Power Lasers & Applications, pp. 98-106, 1998.
[8]K. Du, M. Baumann, B. Ehlers, H. Treusch, and P. Loosen, "Fiber-coupling technique with micro step-mirrors for high-power diode laser bars," Advanced Solid State Lasers, 1997.
[9]H. Schluter, C. Tillkorn, U. Bonna, G. Charache, J. Hostetler, T. Li, C. Miester, R. Roff, T. Vethake, and C. Schnitzler, "Dense spatial multiplexing enables high brightness multi-kW diode laser systems," Lasers and Applications in Science and Engineering, pp. 61040M-61040M-8, 2006.
[10]M. Haag, B. Kohler, J. Biesenbach, and T. Brand, "Novel high-brightness fiber coupled diode laser device," Proc. SPIE, pp. 64560T, 2007.
[11]L. Goldberg, J. P. Koplow, and D. A. Kliner, "Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode," Optics letters, vol. 24, pp. 673-675, 1999.
[12]L. Goldberg, J. P. Koplow, R. P. Moeller, and D. A. Kliner, "High-power superfluorescent source with a side-pumped Yb-doped double-cladding fiber," Optics letters, vol. 23, pp. 1037-1039, 1998.
[13]J. P. Koplow, S. W. Moore, and D. A. Kliner, "A new method for side pumping of double-clad fiber sources," Quantum Electronics, IEEE Journal of, vol. 39, pp. 529-540, 2003.
[14]Q. Xiao, P. Yan, S. Yin, J. Hao, and M. Gong, "100 W ytterbium‐doped monolithic fiber laser with fused angle‐polished side‐pumping configuration," Laser Physics Letters, vol. 8, pp. 125-129, 2011.
[15]R. Herda, A. Liem, B. Schnabel, A. Drauschke, H.-J. Fuchs, E.-B. Kley, H. Zellmer, and A. Tuennermann, "Efficient side-pumping of fibre lasers using binary gold diffraction gratings," Electronics Letters, vol. 39, pp. 276-277, 2003.
[16]J. Walpole, "Semiconductor amplifiers and lasers with tapered gain regions," Optical and quantum electronics, vol. 28, pp. 623-645, 1996.
[17]J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and K.-I. Ueda, "Laser damage threshold of ceramic YAG," Japanese Journal of Applied Physics, vol. 42, pp. L 1025-L1027, 2003.
[18]S. Allison, G. Gillies, D. Magnuson, and T. Pagano, "Pulsed laser damage to optical fibers," Applied optics, vol. 24, pp. 3140-3145, 1985.
[19]Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "12-Watt Single-Mode Yb3+-Doped Phosphate Fiber Laser," Conference on Lasers and Electro-Optics (CLEO), pp. 2145, 2003.
[20]S. Allison, G. Gillies, D. Magnuson, and T. Pagano, "Pulsed laser damage to optical fibers," Applied optics, vol. 24, pp. 3140-3145, 1985.
[21]I. Kudryashov, D. Garbuzov, and M. Dubinskii, "Latest developments in resonantly diode-pumped Er: YAG lasers," Defense and Security Symposium, pp. 65520K-65520K-8, 2007.
[22]N. Ter-Gabrielyan, V. Fromzel, X. Mu, H. Meissner, and M. Dubinskii, "High efficiency, resonantly diode pumped, double-clad, Er: YAG-core, waveguide laser," Optics express, vol. 20, pp. 25554-25561, 2012.
[23]H. A. Haus, Waves and fields in optoelectronics vol. 1: Prentice-Hall Englewood Cliffs, NJ, 1984.
[24]Rsoft Design Group, http://www.rsoftdesign.com
[25]M. Moharam, E. B. Grann, D. A. Pommet, and T. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," JOSA A, vol. 12, pp. 1068-1076, 1995.
[26]C.-W. Huang, D.-W. Huang, C.-L. Chang, D.-Y. Jheng, K.-Y. Hsu, C.-H. Kuan, and S.-L. Huang, "Demonstration of side coupling between high power laser diode array and double-clad fiber using sub-wavelength grating," CLEO: Science and Innovations, 2011.
[27]P. Johnson and R. Christy, "Optical constants of transition metals: Ti, v, cr, mn, fe, co, ni, and pd," Physical Review B, vol. 9, pp. 5056, 1974.
[28]M. A. Ordal, R. J. Bell, R. Alexander Jr, L. Long, and M. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Applied optics, vol. 24, pp. 4493-4499, 1985.
[29]C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, "Electron beam lithography: resolution limits and applications," Applied Surface Science, vol. 164, pp. 111-117, 2000.
[30]T. Chang, "Proximity effect in electron‐beam lithography," Journal of vacuum science and technology, vol. 12, pp. 1271-1275, 1975.
[31]T. Mayer and R. Barker, "Reactive Ion Beam Etching with CF4 : Characterization of a Kaufman Ion Source and Details of SiO2 Etching," Journal of The Electrochemical Society, vol. 129, pp. 585-591, 1982.
[32]T. Ray, H. Zhu, and D. R. Meldrum, "Deep reactive ion etching of fused silica using a single-coated soft mask layer for bio-analytical applications," Journal of Micromechanics and Microengineering, vol. 20, pp. 097002, 2010.
[33]Radiant Zemax, http://radiantzemax.com/zemax/
[34]Lambda Research Corporation,http://lambdares.com/software_products/tracepro/
[35]http://www.nlight.net/nlight-files/file/datasheets/Software/nLIGHT_LIEKKI-Application-Designer-v4_0_080820.pdf
[36]王政凱, "摻鈦藍寶石寬頻晶體光纖光源之製備與檢測, " 國立臺灣大學,碩士論文, 2011.
[37]K. Y. Huang, K. Y. Hsu, D. Y. Jheng, W. J. Zhuo, P. Y. Chen, P. S. Yeh, and S. L. Huang, “Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique,” Optics Express, vol. 16, pp. 12264-12271, 2008.
[38]Y. S. Lin, C. C. Lai, K. Y. Huang, J. C. Chen, C. Y. Lo, S. L. Huang, T. Y. Chang, J. Y. Ji, and P. Shen, “Nanostructure formation of double-clad Cr4+:YAG crystal fiber grown by co-drawing laser-heated pedestal,” Journal of Crystal Growth, 289, pp. 515-519, 2006.
[39]Y. C. Huang, Y. K. Lu, J. C. Chen, Y. C. Hsu, Y. M. Huang, S. L. Huang, and W. H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Optics Express, 14, 8492-8497, 2006
[40]G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, "High-brightness narrow-line laser diode source with volume Bragg-grating feedback," Lasers and Applications in Science and Engineering, pp. 166-176, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔