(18.232.50.137) 您好!臺灣時間:2021/05/07 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴佑瑋
研究生(外文):Yu-Wei Lai
論文名稱:釩、鈣共摻雜氧化鉍離子導電材料之合成與用於固態燃料電池陰極之性能研究
論文名稱(外文):Processing and Cell Performance of Bi-V-O and Bi-V-Ca-O Cathode in Solid Oxide Fuel Cell Systems
指導教授:韋文誠韋文誠引用關係
口試委員:郭俞麟洪逸明馬小康
口試日期:2013-06-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:105
中文關鍵詞:氧化鉍陰極相圖導電度氧化鈣氧化釩固態燃料電池
外文關鍵詞:bismuth oxidecathodephase diagramelectrical conductivityCaOvanadium oxideSOFC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討釩、鈣共摻雜之氧化鉍材料具有之混合電子、離子導體之合成特性與應用於中溫型固態燃料電池陰極之電性表現。本研究總摻雜量在13 mol%以下,並以X光繞射、熱分析、兩點及四點直流電量測、X光電子能譜及掃瞄電子顯微鏡技術予以分析。本研究並對釩摻雜量少於13 mol%的鉍釩相圖做進一步的修正,包含γ相之相界與未報導之7:1相。結果顯示少量之釩、鈣共摻雜的氧化物B8VC(0.5:0.5) 之導電度結果在650oC之導電度為0.013 Scm-1。除了全導電率,離子導電度也在本研究裡予以測量,其結果顯示鉍釩氧化物為混合電子離子導體。另外,X光電子能譜(XPS)分析出釩離子除五價外尚有三價與四價釩的存在,間接證明混合導體的特性。最後,B8VC(0.5:0.5)導體應用在固態燃料電池之陰極在800oC之電池電功率輸出為395 mWcm-2,較之以鑭鍶鈷鐵(LSCF6428)做為陰極之標準電池的電功率輸出(353mWcm-2)高出約10%。


This work synthesizes Bi-V-(Ca)-O materials and investigates the properties of the cells with Bi-V-(Ca)-O cathode. Total concentration of V and Ca dopants is less than 13 mol%. The samples have been characterized by X-ray diffraction (XRD), thermal analysis, 2-probe and 4-probe DC measurements, X-ray photoelectronic spectrum (XPS), and scanning electron microscopy. The results allow us proposing a new revision of Bi2O3-V2O5 phase diagram in the region less than 13 mol% V2O5. The electrical conductivities show that B8VC(0.5:0.5) shows the highest electrical conductivity, 0.013 Scm-1 at 650oC among the prepared samples. Besides, the ionic conductivities of the Bi-V-O materials show mix-electronic-ionic (MEI) property. Moreover, XPS analysis shows the coexistence of 3+ and 4+ vanadium ions with 5+ ions, which prove the presence of MEIC property indirectly. Besides, the power density of the cell with B8VC(0.5:0.5) cathode is 395 mWcm-2 at 800oC, which is 10% higher than that, 353 mWcm-2, of standard-cell with LSCF6428 cathode.

口試委員會審定書 I
摘要 II
Abstract III
List of Figures VII
List oF Tables XI
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Properties of Bi2O3 5
2.1.1 Structure and Electrical Conductivity of Bi2O3 5
2.1.2 Phase Stabilization of δ-structure. 6
2.2 Sillenite-type Bi-V Oxide 7
2.2.1 Sillenite Structure. 7
2.2.2 Electrical Conductivity. 8
2.3 Bi2O3-V2O5 Phase Diagram 9
2.4 Aurivillius-type Bi-V Oxides 10
2.5 Ternary Bi-V-Me Oxide Systems 11
2.5.1 δ-type Bi-V-Me Oxide Systems. 11
2.5.2 Aurivillius-type Bi2(V,Me)O5.5 Oxide Systems. 11
Chapter 3 Experimental Procedure 28
3.1 Starting Materials 28
3.2 Sample Preparation 28
3.2.1 Colloidal Process 28
3.2.2 Pechini Method 29
3.2.3 Thermal Treatments 29
3.3 Property Characterization 30
3.3.1 Sedimentation Experiment 30
3.3.2 Zeta-potential Measurement 31
3.3.3 Density Measurement 31
3.3.4 SEM Analysis 32
3.3.5 XRD Analysis 32
3.3.6 Thermal Analysis 32
3.3.7 Electrical and Ionic Conductivity Measurement 32
3.3.8 XPS Analysis 34
3.4 SOFC Assembling and Test 34
3.4.1 Layers and Materials 34
3.4.2 Assembling Process 35
3.5 Cell Test 37
Chapter 4 Results 42
4.1 Dispersion Properties of Oxide Powders in Aqueous Solution 42
4.1.1 The Best Dispersion of Oxide Powders 42
4.1.2 Surface Charge of Oxide Powders Dispersed by D-134 43
4.1.3 Calcination Effect on Sintering and Sublimation Rate of Samples 43
4.2 Phases of Bi-V-O and Bi-V-Ca-O Compounds 45
4.2.1 Phases in BxV Series 45
4.2.2 Phases of B15VC(1-Y:Y) 47
4.3 Microstructures of Sintered Bi-V-O Materials 47
4.4 Electrical Conductivities 49
4.5 Transference Number in Bi-V-O Materials 50
4.6 Valance States of V Ions in Bi-V-Ca-O Material 50
4.7 Cell Performance 51
4.7.1 Cell Structure 51
4.7.2 STD-cell Performance 51
4.7.3 B8VC(0.5:0.5) Cathode Performance 52
Chapter 5 Discussion 80
5.1 Electrical Conductive Behavior 80
5.2 Comparison of Various B-V-O Ionic Conductors 82
5.3 Revision in Bi2O3-V2O5 Phase Diagram 82
Chapter 6 Conclusions 86
Chapter 7 Future Work 88
Appendix Contact Resistance between Copper Plates 93
Reference 99

[1] J. P. P. Huijsmans, F. P. F. Van Berkel, G. M. Christie, Intermediate temperature SOFC - A promise for the 21st century, J. Power Sources, 71 (1998) 107–110.
[2] A. Samson Nesaraj, I. A. Raj, R. Pattabiraman, Synthesis and characterization of LaCoO3 based cathode and its chemical compatibility with CeO2 based electrolytes for intermediate temperature solid oxide fuel cell (ITSOFC), Indian J. Chem. Technol., 14 (2007) 154–160.
[3] A. S. Nesaraj, I. A. Raj, R. Pattabiraman, Preparation and characterization of ceria-based electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFC), J. Iran. Chem. Soc., 7 (2010) 564–584.
[4] J. W. Choi, T. Saradha, M. H. Heo, K. Park, Synthesis and characterization of nanocrystalline Gd and Tb co-doped ceria-based electrolyte materials for IT-SOFC, J. Nanosci. Nanotechnol., 10 (2010) 3659–3662.
[5] B. Bai, N. M. Sammes, A. L. Smirnova, G. Tompsett, Characterization of scandia stabilized zirconia doped with various B2O3 additions as an intermediate temperature solid oxide fuel cell electrolyte, J. Fuel Cell Sci. Tech., 7 (2010) 0210021–0210027.
[6] D. Lee, J. H. Han, G. Tompsett, Characterization of Co-doped LSGM electrolyte prepared by GNP for IT-SOFC, ECS Trans., 25 (2009) 1717–1722.
[7] N. M. Sammes, G. A. Tompsett, H. Nage and F. Aldinger, Bismuth Based Oxide Electrolytes- Structure and Ionic Conductivity, J. Eur. Ceram. Soc., 19 (1999) 1801-1826.
[8] G. Y. Meng, C. S. Chen, X. Han, P. H. Yang and D. K. Peng, Conductivity of Bi2O3-Based Oxide Ion Conductors with Double Stabilizers, Solid State Ionics, 28-30 (2010) 533-538.
[9] K. Z. Fung and A. V. Virkar, Phase Stability, Phase Transformation Kinetics and Conductivity of Y2O3-Bi2O3 Solid Electrolytes Containing Aliovalent Dopants, J. Am. Ceram. Soc., 74 (1991) 1970-1980.
[10] D. W. Jung, K. L. Duncan, E. D. Wachsman, Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y, Acta Mater., 58 (2010) 355–363.
[11] T, Chou, L. D. Liu, W. C. J. Wei, Phase stability and electric conductivity of Er2O3-Nb2O5 co-doped Bi2O3 electrolyte, J. Eur. Ceram. Soc., 31 (2011) 3087–3094.
[12] D. W. Jung, K. L. Duncan, E. D. Wachsman, Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x–(WO3)y–(BiO1.5)1-x-y, Acta Materialia, 58 (2010) 355–363.
[13] O. Turkoglu and I. Belenli, Electrical conductivity of γ-Bi2O3-V2O5 solid solution, J. Therm. Anal. Calorim., 73 (2003) 1001–1012.
[14] Y.F. Kargin and V.Y. Voevodskii, Phase equilibria in the Bi2O3-V2O5 system over the composition range 0-15 mol% V2O5, Zh. Neorg. Khim., 42 (1997) 1547 – 1549.
[15] W. Wrobel, I. Abrahams, F. Krok, A. Kozanecka, S.C.M. Chan, M. Malys, W. Bogusz, J.R. Dygas, Phase transitions in the BIZRVOX system, Solid State Ionics, 176 (2005) 1731 – 1737.
[16] J.R. Dygas, M. Malys, F. Krok, W. Wrobel, A. Kozanecka, I. Abrahams, Polycrystalline BIMGVOX.13 studied by impedance spectroscopy, Solid State Ionics, 176 (2005) 2085 – 2093.
[17] I. Abrahams, F. Krok, M. Malys, W. Wrobel, Phase transition studies in BIMEVOX solid electrolytes using AC impedance spectroscopy, Solid State Ionics, 176 (2005) 2053 – 2058.
[18] I. Abrahams, J.A.G. Nelstrop, F. Krok, BICUVOF: a new copper fluoride doped BIMEVOX, Solid State Ionics, 136–137 (2000) 61 – 66.
[19] P. Shuk, H.D. Wiemhofer, U. Guth, W. Gopel, and M. Greenblatt, Oxide ion conducting solid electrolyte based on Bi2O3, Solid State Ionics, 89 (1996) 179–196.
[20] Z. T. Dai, Investigation of homogeneity, phase transformation and long-term conductivity of Nb and Y Co-doped Bi2O3-based electrolyte, NTU thesis (2012).
[21] G. Mairesse, P.271 in Fast Ion Transport in Solids, ed. B. Scrosati, Kluwer, Amsterdam, (1993)
[22] H. Iwahara , T. Esaka ,T. Sato , T. Takahashi , Formation of high oxide ion conductive phases in the sintered oxides of the system Bi2O3-Ln2O3 (Ln = La-Yb), J. Solid State Chem., 39 (1981) 173–180.
[23] M. J. Verkerk and A. J. Burggraaf, High oxygen ion conduction in sintered oxides of the Bi2O3-Dy2O3 system, J. Electrochem. Soc., 128 (1981) 75–82.
[24] K. Sardar and R. Walton, Hydrothermal synthesis map of bismuth titanates, J. Solid State Chem., 189 (2012) 32 – 37.
[25] A. Watanabe, H. Kodama, and S. Takenouchi, Nonstoichiometric phase with sillenite-type structure in the system Bi2O3-P2O5, J. Solid State Chem., 85 (1990) 76 – 82.
[26] D.C. Craig and N.C. Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3: The structures of Bi25FeO40 and Bi38ZnO60 , J. Solid State Chem., 15 (1975) 1 – 8.
[27] T.I. Milenov, P.M. Rafailov, C. Thomsen, A. Egorysheva, R. Titorenkova, B. Kostova, and V. Skorikov, Raman and optical spectroscopy characteristics of Se-doped Bi12SiO20 crystals, Opt. Mater., 33 (2011) 1573–1577.
[28] T. I. Mel’nikova, G. M. Kuz’micheva, V. B. Rybakov, N. B. Bolotina and A. B. Dubovskii, Structure of phases of the sillenite family in the Bi2O3-V2O5 system, Journal of Structure of Inorganic Compounds, 56 (2011) 227–232.
[29] G. Mairesse, P. Roussel, R.N. Vannier, M. Anne, C. Pirovano, G. Nowogrocki, Crystal structure determination of α, β and γ -Bi4V2O11 polymorphs. Part I: γ and β-Bi4V2O11, Solid State Sci., 5 (2003) 851–859.
[30] J. C. Boivin and G. Mairesse, Recent Material Developments in Fast Oxide Ion
Conductors, Chem. Mater., 10 (1998) 2870–2888.
[31] I. Abraham and F. Krok, A model for the mechanism of low temperature ionic conduction in divalent-substituted γ-BIMEVOXes, Solid State Ionics, 157 (2003) 139–145.
[32] R.N. Vannier, G. Mairesse, F. Abraham, G. Nowogrocki, E. Pernot, M. Anne, M. Bacmann, P. Strobel, and J. Fouletier, Thermal behaviour of Bi4V2O11, Solid State lonics, 78 (1995) 183 – 189.
[33] F. Krok, I. Abrahams, D.G. Bangobango, W. Bogusz, and J.A.G. Nelstrop, Electrical and structural study of BICOVOX, Solid State Ionics, 86 (1996) 261–266.
[34]M. Benkaddour, S. Obbade, P. Conflant, and M. Drache, Bi0.85Ln0.15(1-n)V0.15nO1.5+0.15n fluorite type oxide conductors : stability, conductivity, and powder crystal structure investigations, J. Solid State Chem., 163 (2002) 300–307.
[35] R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances, Acta. Cryst., 32 (1976) 751.
[36] M. Benkaddour, M.C. Steil, M. Drache, and P. Conflant, The influence of Particle Size on Sintering and Conductivity of Bi0.85Pr0.105V0.045O1.545 Ceramics, J. Solid State Chem., 155 (2000) 273–279.
[37] F. Krok, I. Abrahams, D. Bagobango, W. Bogusz, and J. A .G. Nelstrop , Structure and electrical characterization of BINIVOX, Solid State Ionics, 111 (1998) 37–43.
[38] F. Krok, I. Abrahams, A. Zadrozna, M. Malys, W. Bogusz, J. A. G. Nelstrop, and A.J. Bush, Electrical conductivity and structure correlation in BIZNVOX, Solid State Ionics,119 (1999) 139–144.
[39] F. Krok, I. Abrahams, M. Malys, W. Bogusz, J. R. Dygas, J.A.G. Nelstrop, and A. J. Bush, Structure and electrical consequences of high dopant levels in the BIMGVOX system, Solid State Ionics, 119 (1999) 139–144.
[40] F. Krok, I. Abrahams, W. Wrobel, S.C.M. Chan, M. Malys, W. Bogusz, and J. R. Dygas, Phase stability, structure and electrical conductivity in the system Bi2ZrxV1-xO5.5-(x/2)-d, Solid State Ionics, 154 (2002) 511–516.
[41] I. Abrahams, F. Krok, M. Malys, W. Wrobel, S. C. M. Chan, W. Bogusz, and J.R. Dygas, Phase stabilisation in the pseudo-binary system Bi2MgO4-Bi2VO5.5-δ, Solid State Ionics, 157 (2003) 155–161.
[42] J. Watanabe, Time-Dependent Degradation Due to the Gradual Phase Change in BICUVOX and BICOVOX Oxide-Ion Conductors at Temperatures below about 500°C, Solid State Chem., 161 (2001) 410.
[43] R.D. Shannon, Revised effective ionic radii in halides and chalcogenides, Acta Cryst., A32 (1976) 751.
[44] C. H. Weng and W. C. J. Wei, Synthesis and electric conductivity of homogeneous niobium-doped bismuth oxide, J. Am. Ceram. Soc., 93 2010 3124 – 3129.
[45] M. P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, U.S patent, Vol. 3330697. 1967.
[46] Y. Teraoka, H. M. Zhang, K. Okamoto, and N. Yamazoe, Mixed ionic-electronic conductivity of La1-xSrxCo1-yFeyO3-δ perovskite-type oxides, Mat. Res. Bull., 23 (1988) 51 – 58.
[47] A. Mai, V. A. C. Haanappel, , F. Tietz, and D. Stover, Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells: Part II. Influence of the CGO interlayer, Solid State Ionics, 177 (2006) 2103 – 2107.
[48] L. W. Tai, M.M. Nasrallah, H. U. Anderson, D. M. Sparlin, and S. R. Sehlin, Structure and electrical properties of La1−xSrxCo1−yFeyO3, Solid State Ionics, 76 (1995) 273 – 283.
[49] G. Silversmit, D. Depla, H. Poelman, GB. Marin, and R. De Gryse, Determination of V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron. Spectrosc., 135 (2004) 167 – 175.
[50] N.M. Sammes, G. A. Tompsett, H. Nafe, F. Aldinger, Bismuth based oxide electrolyte – structure and ionic conductivity, J. Eur. Ceram. Soc., 19 (1999) 1801 – 1826.
[51] K. O. Hyun, C. G. Man , Electrical conductivity of thick film YSZ, Solid State Ionics, 177 (2006) 3057 – 3062.
[52] C. H. Weng and W. C. J. Wei, Synthesis and electric conductivity of homogeneous niobium-doped bismuth oxide, J. Am. Ceram. Soc., 93 2010 3124 – 3129.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔