(3.238.235.155) 您好!臺灣時間:2021/05/11 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張景斌
研究生(外文):Ching-Pin Chang
論文名稱:應用於奈米材料之掃描穿透式電子顯微鏡分析技術:化學成分分布與三維斷層顯像
論文名稱(外文):Imaging and Spectroscopy of Nano-Materials by Scanning Transmission Electron Microscopy: Spectrum Imaging and 3D Tomography
指導教授:楊哲人楊哲人引用關係
指導教授(外文):Jer-Ren Yang
口試委員:陳俊維林昭吟張六文
口試日期:2013-07-08
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:108
中文關鍵詞:掃描穿透式電子顯微鏡球面像差校正器光譜成像技術三維斷層影像氧化物異質結構界面擴散錯合刃差排奈米複合材料
外文關鍵詞:Scanning transmission electron microscopeCs-Correctorspectrum imaging3D Tomographyoxide-heterostructureinterdiffusionmisfit edge dislocationnanocomposites
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著奈米科技的快速發展,對於奈米分析的需求與日俱增。近年來掃描穿透式電子顯微鏡(Scanning Transmission Electron Microscope,STEM)由於其非同調成像(incoherent imaging),且影像強度與原子序的1.7次方成正比之特性,使其在奈米材料研究中開始嶄露頭角。更特別的是當STEM結合各式光譜儀後,將可同時獲得材料局部區域之晶體結構與化學組成的信息。
本研究將應用兩項新的STEM技術,從新的視野來研究奈米材料的結構與性質。一是光譜成像(spectrum imaging)技術,利用具有球面像差校正器(Cs-Corrector)的STEM,結合X-ray能量散佈能譜(energy dispersive X-ray spectroscopy,EDS)與電子能量損失譜(electron energy-loss spectroscopy,EELS),進行原子解析度化學成分分布分析,另一則是三維斷層影像(3D Tomography),提供材料結構更全方面的觀察。
前二章將先針對STEM與相關實驗技術進行介紹,第三、四章將利用STEM-EDS與STEM-EELS在原子解析度下對氧化物異質結構界面(oxide-heterostructure interfaces)進行研究,我們所選用的氧化物異質結構系統(Nd0.35Sr0.65)MnO3/SrTiO3,由於NSMO薄膜與STO基材間的晶格失配(lattice mismatch),隨著薄膜厚度不同,其界面將呈現契合(coherent)與非契合(incoherent)兩種不同的型態。在20 nm NSMO薄膜與STO基材所形成平坦之契合界面中,藉由原子解析度化學成分分布分析觀察到界面擴散(interdiffusion)的形況,並於進一步的EELS定量分析中,發現於界面處梯度化極性不連續(graded polar discontinuity)與局域化二維電荷密度(localized two-dimensional electron density)。而在40 nm NSMO薄膜試片所形成的非契合界面中,界面出現錯合刃差排(misfit edge dislocation),藉由Cs-STEM可清楚觀察差排核(dislocation core)的結構,並成功利用STEM-EELS技術在原子級尺度下證明了差排為電荷聚積中心。
第五章中應用STEM三維斷層影像技術分別觀察兩種不同的奈米複合材料(奈米金觸媒與有機太陽能電池光活化層),在2 nm的解析度下,清楚觀察奈米粒子尺寸、形狀與三度空間分佈。

With the rapid advances in nanotechnology, the demand for spatially-resolved nano-characterizations is greatly increasing. Recently, scanning transmission electron microscope (STEM) has gained growing attentions in the investigations of nano-materials owing to its atomic-number sensitivity in the incoherent imaging regime. Most importantly, the capability to combine STEM with various spectroscopies further allows a direct unveiling of the structural and chemical information of a local area without ambiguity.
This Ph. D. thesis has been dedicated to the developments and applications of the advanced STEM spectrum imaging techniques, STEM-EDS (EDS, energy dispersive spectroscopy) and STEM-EELS (EELS, electron energy-loss spectroscopy), and the three-dimensional (3D) STEM tomography.
A general introduction of STEM is presented in Chapter 1 and an overall experimental elucidation is documented in Chapter 2. In Chapters 3 and 4, we show the STEM-EDS and STEM-EELS investigations of the oxide-heterostructure interfaces, (Nd0.35Sr0.65)MnO3/SrTiO3, at atomic resolution. In (Nd0.35Sr0.65)MnO3/SrTiO3, the interface can have two different morphologies, coherent (defect free) and incoherent (misfit dislocations), which were dependent on lattice mismatch of NSMO thin film to STO substrate and the film thickness. In the atomically abrupt NSMO(20 nm)/STO interface, the interdiffusion across the interface was demonstrated by atomic resolved chemical mapping. Further EELS quantification revealed the graded polar discontinuity and a localized two-dimensional electron density at interface. In thicker (40 nm) NSOM film, the edge misfit dislocations with the [100] Burgers vector and A-site deficiency accordingly existed at interface. The dislocation behaves as the charge segregation center, totally undocumented atomic resolution before, and the associated implications were also discussed.
In Chapter 5, we demonstrate the 3D visualizations of silica-supported gold nanocatalyst and the TiO2-nanowires/polymer hybird solar cells using STEM tomography. The size, sharp, and spatial distribution of all these nano-materials can be nicely revealed in the corresponding tomography results with an estimated spatial resolution of slightly better than ~2 nm. Chapter 6 represents the general conclusion of this thesis with a particular focus on the future opportunities of the STEM spectrum imaging and electron tomography.

Abstract .......................................................... i

Contents ......................................................... iii

List of Figures ................................................... vi

List of Tables .................................................... xvi



Chapter 1 General Introduction .................................... 1

1.1 Introduction ................................................ 1

1.2 Why need STEM ............................................... 3

1.2.1 CTEM and STEM reciprocity ................................ 3

1.2.2 Coherent and incoherent image ............................ 4

1.2.3 The principles of HR TEM and STEM imaging ................ 6

1.3 Complex oxide films ......................................... 8

1.3.1 The crystal structure of perovskite oxides ............... 8

1.3.2 Perovskite oxide heterostructure ......................... 9

1.4 Nanocomposites .............................................. 12

Chapter 2 Experimental Techniques ................................. 19

2.1 STEM spectrum imaging ....................................... 19

2.1.1 Compositional analysis by STEM ........................... 19

2.1.2 Spherical aberration correction (Cs-corrector) ........... 22

2.1.3 Atomic resolution spectrum imaging ...................... 25

2.2 STEM tomography ............................................ 27


Chapter 3 STEM Spectrum Imaging I: Atomic-Scale Probing of Interdiffusion and a Localized Two-Dimensional Electron
Density at an Oxide Interface .... 33

3.1 Introduction ............................................... 33

3.2 Experimental procedure ..................................... 36

3.2.1 Crystal structure of Nd0.35Sr0.65MnO3 and SrTiO3 ........ 36

3.2.2 Film growth ............................................. 40

3.2.3 STEM analysis ........................................... 41

3.3 Results and discussion ..................................... 42

3.3.1 Epilayer and interface structure ........................ 42

3.3.2 Interdiffusion at Nd0.35Sr0.65MnO3/SrTiO3 interface ..... 44

3.3.3 Charge transfer at Nd0.35Sr0.65MnO3/SrTiO3
interface ... 52

3.4 Conclusion ................................................. 60

Chapter 4 STEM Spectrum Imaging II: Misfit Dislocation at
the Interface of Complex Oxide heterostructure .... 61

4.1 Introduction ............................................... 61

4.2 Experimental procedure ..................................... 63

4.3 Results and discussion ..................................... 64

4.3.1 Structure of misfit dislocation core .................... 64

4.3.2 Electron trapping in misfit dislocations ................ 67

4.4 Conclusion ................................................. 75

Chapter 5 STEM Tomography: 3D Morphology of Nanocomposites ....... 77
5.1 Gold nano-catalyst in mesoporous silica .................... 77

5.1.1 Experimental Procedure .................................. 79

5.1.2 Results and Discussion .................................. 80

5.1.3 Conclusion .............................................. 83

5.2 Polymer/TiO2 bulk heterojunction solar cells ............... 84

5.2.1 Experimental procedure .................................. 87

5.2.2 Results and discussion .................................. 88

5.2.3 Conclusion .............................................. 93


Chapter 6 General Conclusions and Perspectives ................... 95

Appendix 1 STEM Cross-section Sample Preparation ................. 98


Appendix 2 Specimen Thickness Measurement by EELS ................ 100

Reference ......................................................... 102

[1] E. Roduner, Chemical Society Reviews 35, 583 (2006).
[2] G. Q. Lu, and G. X. S. Zhao, Nanoporous materials: science and engineering, edited by G. Q. Lu, and G. X. S. Zhao (Imperial College Press, 2004).
[3] D. Shindō, and T. Oikawa, Analytical electron microscopy for materials science (Springer, 2002).
[4] D. B. Williams, and C. B. Carter, Transmission electron microscopy: a textbook for materials science. (Springer, 2009).
[5] J. M. Cowley, Applied Physics Letters 15, 58 (1969).
[6] S. Pennycook, and P. Nellist, Impact of electron and scanning probe microscopy on materials research, edited by D. G. Rickerby, G. Valdrè, and U. Valdrè (Kluwer Academic Publishers, 1999), p. 161.
[7] E. Abe, and A. P. Tsai, JEOL News 36, 18 (2001).
[8] L. M. Feng et al., Journal of Physics and Chemistry of Solids 69, 967 (2008).
[9] B. Raveau, Progress in Solid State Chemistry 35, 171 (2007).
[10] M. A. Pena, and J. L. G. Fierro, Chemical Reviews 101, 1981 (2001).
[11] G. H. Jonker, and J. H. V. Santen, Physica 16, 337 (1950).
[12] R. J. H. Voorhoeve et al., Science 195, 827 (1977).
[13] Y. Tokura, and N. Nagaosa, Science 288, 462 (2000).
[14] K. Kimoto et al., Nature 450, 702 (2007).
[15] S. B. Ogale, Thin Films and Heterostructures for Oxide Electronics (Springer, 2005).
[16] D. A. Muller et al., Nature 430, 657 (2004).
[17] M. W. Chu et al., Nature Materials 3, 87 (2004).
[18] S. C. Jain, A. H. Harker, and R. A. Cowley, Philosophical Magazine A 75, 1461 (1997).
[19] J. Q. He et al., Physical Review B 73 (2006).
[20] H. P. Sun et al., Applied Physics Letters 84, 3298 (2004).
[21] E. Vigueras et al., Philosophical Magazine A 81, 667 (2001).
[22] T. Kiguchi et al., Science and Technology of Advanced Materials 12, 034413 (2011).
[23] O. I. Lebedev et al., Philosophical Magazine A 80, 673 (2000).
[24] L. S. J. Peng et al., Applied Physics Letters 83, 4592 (2003).
[25] A. J. Millis, Thin Films and Heterostructures for Oxide Electronics, edited by S. B. Ogale (Springer Science+Business Media, Incorporated, 2005).
[26] H. Yamada et al., Science 305, 646 (2004).
[27] X. L. Li et al., Applied Physics Letters 87, 222905 (2005).
[28] FEI Technical Note: Functional Description of Tecnai Tomgraphy Software (FEI Company, 2003).
[29] D. J. Derosier, and A. Klug, Nature 217, 130 (1968).
[30] U. Ziese, K. P. de Jong, and A. J. Koster, Applied Catalysis a-General 260, 71 (2004).
[31] J. Gelb et al., Microscopy and Microanalysis 15, 618 (2009).
[32] W. L. Chao et al., Nature 435, 1210 (2005).
[33] T.-Y. Chen et al., Optics Express 19, 19919 (2011).
[34] H. N. Chapman et al., Journal of the Optical Society of America a-Optics Image Science and Vision 23, 1179 (2006).
[35] M. K. Miller, Atom probe tomography: analysis at the atomic level (Kluwer Academic / Plenum Publishers, 2000).
[36] R. Magerle, Physical Review Letters 85, 2749 (2000).
[37] L. Holzer et al., Journal of Microscopy-Oxford 216, 84 (2004).
[38] K. M. Harris et al., Journal of Neuroscience 26, 12101 (2006).
[39] Y. Chen et al., Ultramicroscopy 103, 173 (2005).
[40] C. M. Mahoney, Mass Spectrometry Reviews 29, 247 (2010).
[41] B.-Y. Yu et al., Acs Nano 4, 833 (2010).
[42] O. Medalia et al., Science 298, 1209 (2002).
[43] P. W. Hawkes, Electron Tomography: Three-Dimensional Imaging With the Transmission Electron Microscope, edited by J. Frank (Plenum Press, 1992).
[44] A. H. Janssen et al., Journal of Physical Chemistry B 107, 10552 (2003).
[45] J. Loos et al., Macromolecules 42, 2581 (2009).
[46] J. M. Thomas et al., Angew Chem Int Ed Engl 43, 6745 (2004).
[47] I. Arslan et al., Science 309, 2195 (2005).
[48] P. A. Midgley et al., Chemical Communications, 907 (2001).
[49] G. Botton, Science of microscopy, edited by P. W. Hawkes, and J. C. H. Spence (Springer Science+Business Media, LLC, 2007).
[50] C. Jeanguillaume, and C. Colliex, Ultramicroscopy 28, 252 (1989).
[51] G. Balossier et al., Microscopy Microanalysis Microstructures 2, 531 (1991).
[52] J. Hunt, EELS Imaging and Analysis School, 2006).
[53] P. E. Batson, Nature 366, 727 (1993).
[54] N. D. Browning, M. F. Chisholm, and S. J. Pennycook, Nature 366, 143 (1993).
[55] O. Scherzer, Optik 2, 114 (1947).
[56] M. Haider et al., J. Electron Microsc. 47, 395 (1998).
[57] M. Haider et al., Ultramicroscopy 75, 53 (1998).
[58] M. Haider et al., Nature 392, 768 (1998).
[59] N. Dellby et al., Microscopy and Microanalysis 9, 924 (2003).
[60] K. W. Urban et al., Physical Review Letters 110, 185507 (2013).
[61] P. A. Midgley, and M. Weyland, Ultramicroscopy 96, 413 (2003).
[62] C. Kubel et al., Microscopy and Microanalysis 11, 378 (2005).
[63] R. A. Crowther, D. J. Derosier, and A. Klug, Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 317, 319 (1970).
[64] P. D. Nellist, Scanning Transmission Electron Microscopy : Imaging and Analysis (Springer, 2011).
[65] U. Ziese et al., Journal of Microscopy 205, 187 (2002).
[66] S. S. van Bavel, and J. Loos, Advanced Functional Materials 20, 3217 (2010).
[67] M. Weyland, P. A. Midgley, and J. M. Thomas, Journal of Physical Chemistry B 105, 7882 (2001).
[68] P. A. Midgley et al., Journal of Microscopy 223, 185 (2006).
[69] A. Ohtomo, and H. Y. Hwang, Nature 427, 423 (2004).
[70] A. Ohtomo et al., Nature 419, 378 (2002).
[71] N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nature Materials 5, 204 (2006).
[72] J. L. Maurice et al., Epl 82 (2008).
[73] P. R. Willmott et al., Physical Review Letters 99 (2007).
[74] T. Susaki, A. Makishima, and H. Hosono, Physical Review B 84 (2011).
[75] Y. Hikita et al., Physical Review B 79 (2009).
[76] S. A. Pauli et al., Physical Review Letters 106 (2011).
[77] A. S. Kalabukhov et al., Physical Review Letters 103 (2009).
[78] H. Y. Hwang et al., Nature Materials 11, 103 (2012).
[79] M. Basletic et al., Nature Materials 7, 621 (2008).
[80] A. Brinkman et al., Nature Materials 6, 493 (2007).
[81] G. Herranz et al., Physical Review Letters 98 (2007).
[82] A. J. Millis, Nature Physics 7, 749 (2011).
[83] S. A. Chambers et al., Physical Review Letters 107 (2011).
[84] D. A. Muller et al., Science 319, 1073 (2008).
[85] R. Kajimoto et al., Physical Review B 60, 9506 (1999).
[86] S. Xu et al., Physical Review B 66 (2002).
[87] J. Mannhart, and D. G. Schlom, Science 327, 1607 (2010).
[88] M. Stengel, and D. Vanderbilt, Physical Review B 80 (2009).
[89] M. Huijben et al., Nature Materials 5, 556 (2006).
[90] M. Sing et al., Physical Review Letters 102 (2009).
[91] C. M. Foster et al., Journal of Applied Physics 79, 1405 (1996).
[92] P. D. Robb, and A. J. Craven, Ultramicroscopy 109, 61 (2008).
[93] M. Abbate et al., Physical Review B 44, 5419 (1991).
[94] H. W. Jang et al., Science 331, 886 (2011).
[95] W. A. Harrison et al., Physical Review B 18, 4402 (1978).
[96] J. Biscaras et al., Nature Communications 1 (2010).
[97] S. Yunoki et al., Physical Review B 76 (2007).
[98] E. Dagotto, Science 318, 1076 (2007).
[99] K. Tobe, T. Kimura, and Y. Tokura, Physical Review B 67 (2003).
[100] R. D. Shannon, Acta Crystallographica Section A 32, 751 (1976).
[101] M. S. Kim et al., Physical Review B 71 (2005).
[102] S. W. Robey et al., Physical Review B 52, 2395 (1995).
[103] Z. S. Popovic, S. Satpathy, and R. M. Martin, Physical Review Letters 101 (2008).
[104] P. Gumbsch et al., Physical Review Letters 87 (2001).
[105] I. Arslan, and N. D. Browning, Physical Review Letters 91 (2003).
[106] C. L. Jia, A. Thust, and K. Urban, Physical Review Letters 95 (2005).
[107] K. Szot et al., Nature Materials 5, 312 (2006).
[108] P. E. Batson, Physical Review B 61, 16633 (2000).
[109] S. Thiel et al., Physical Review Letters 102 (2009).
[110] M. M. McGibbon et al., Science 266, 102 (1994).
[111] M. Kim et al., Physical Review Letters 86, 4056 (2001).
[112] Z. L. Zhang, W. Sigle, and M. Ruhle, Physical Review B 66 (2002).
[113] R. F. Klie et al., Physical Review B 68 (2003).
[114] L. Fittinga et al., Ultramicroscopy 106, 9 (2006).
[115] H. Kurata et al., Journal of Microscopy 236, 4 (2009).
[116] C. P. Chang et al., Physical Review B 87 (2013).
[117] M. W. Chu et al., Physical Review Letters 104 (2010).
[118] Z. Wang et al., Nature 479, 380 (2011).
[119] J. Chakhalian et al., Science 318, 1114 (2007).
[120] F. Hoffmann et al., Angew Chem Int Ed Engl 45, 3216 (2006).
[121] J. J. Schneider, Beilstein Journal of Nanotechnology 2, 2 (2011).
[122] J. Rouquerol et al., Pure and Applied Chemistry 66, 1739 (1994).
[123] D. Y. Zhao et al., Science 279, 548 (1998).
[124] Y. Wang et al., Catalysis Today 68, 3 (2001).
[125] L. Cao, T. Man, and M. Kruk, Chemistry of Materials 21, 1144 (2009).
[126] Y. S. Chi, H. P. Lin, and C. Y. Mou, Applied Catalysis a-General 284, 199 (2005).
[127] G. Prieto et al., Nature Materials 12, 34 (2013).
[128] P. A. Midgley et al., Chemical Society Reviews 36, 1477 (2007).
[129] https://picasaweb.google.com/116866661890853318595/STEMTomography_AuNPSBA15?authuser=0&authkey=Gv1sRgCMLP48entr6sLg&feat=directlink
[130] W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, Science 295, 2425 (2002).
[131] G. Li et al., Nature Materials 4, 864 (2005).
[132] K. M. Coakley et al., Advanced Functional Materials 15, 1927 (2005).
[133] Y. Zhou, M. Eck, and M. Krüger, Energy & Environmental Science 3, 1851 (2010).
[134] J. J. M. Halls et al., Nature 376, 498 (1995).
[135] G. Yu et al., Science 270, 1789 (1995).
[136] S. A. Carter et al., Applied Physics Letters 70, 2067 (1997).
[137] C. Jonda et al., Journal of Materials Science 35, 5645 (2000).
[138] S. E. Gledhill, B. Scott, and B. A. Gregg, Journal of Materials Research 20, 3167 (2005).
[139] B. Kippelen, and J. L. Bredas, Energy & Environmental Science 2, 251 (2009).
[140] Y. Liang et al., Advanced Materials 22, E135 (2010).
[141] Y.-Y. Lin et al., Journal of the American Chemical Society 131, 3644 (2009).
[142] S. D. Oosterhout et al., Nature Materials 8, 818 (2009).
[143] P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, Advanced Materials 20, 3516 (2008).
[144] K. Lu et al., Macromolecules 43, 1444 (2010).
[145] Https://picasaweb.google.com/116866661890853318595/STEMTomography_TiO2NPsP3HT?authuser=0&authkey=Gv1sRgCLSDkvnb2rWF1gE&feat=directlink
[146]Https://picasaweb.google.com/116866661890853318595/STEMTomography_TiO2NRsP3HT?authuser=0&authkey=Gv1sRgCIre-IXtteTWkQE&feat=directlink
[147] E. Eberg et al., J. Electron Microsc. 57, 175 (2008).
[148] P. M. Voyles, J. L. Grazul, and D. A. Muller, Ultramicroscopy 96, 251 (2003).
[149] J. P. McCaffrey, M. W. Phaneuf, and L. D. Madsen, Ultramicroscopy 87, 97 (2001).
[150] A. Barna, B. Pecz, and M. Menyhard, Micron 30, 267 (1999).
[151] R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, 1996).
[152] T. Malis, S. C. Cheng, and R. F. Egerton, Journal of Electron Microscopy Technique 8, 193 (1988).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 張育珍,2007,〈試論政事型特種基金與普通基金之分野〉,《主計月刊》,614:19-25。
2. 張育珍,2004,〈特別公課、專款專用與特種基金之關聯〉,主計月刊,587:26-34。
3. 張育珍,2004,〈特別公課、專款專用與特種基金之關聯〉,主計月刊,587:26-34。
4. 陳玉清,2003,〈國家科學技術發展基金九十二年度預算未依立法院決議編列之適法性分析〉,立法院院聞,31,4:125-132。
5. 施炳煌,2008,〈靈活非營業特種基金財務管理〉,主計月刊,628:15-19。
6. 陳玉清,2003,〈國家科學技術發展基金九十二年度預算未依立法院決議編列之適法性分析〉,立法院院聞,31,4:125-132。
7. 施炳煌,2008,〈靈活非營業特種基金財務管理〉,主計月刊,628:15-19。
8. 施炳煌,2007,〈特種基金預算管理制度之變革與展望〉,主計月刊,616:15-19。
9. 施炳煌,2006,〈建立政事型特種基金中程計畫預算制度之探討〉,主計月刊,604:15-19。
10. 施炳煌,2007,〈特種基金預算管理制度之變革與展望〉,主計月刊,616:15-19。
11. 施炳煌,2006,〈建立政事型特種基金中程計畫預算制度之探討〉,主計月刊,604:15-19。
12. 施炳煌,2005,〈非營業特種基金預算及績效管理〉,主計月刊,592:16-19。
13. 施炳煌,2005,〈非營業特種基金預算及績效管理〉,主計月刊,592:16-19。
14. 邱幼惠,2008,〈就業安定基金預算執行檢討與改進〉,主計月刊,630:77-83。
15. 邱幼惠,2008,〈就業安定基金預算執行檢討與改進〉,主計月刊,630:77-83。
 
系統版面圖檔 系統版面圖檔