(3.236.222.124) 您好!臺灣時間:2021/05/08 07:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊景明
研究生(外文):Ching-Ming Yang
論文名稱:從合金鋼及極低碳鋼之顯微結構探討硬度-強度關係因子之研究
論文名稱(外文):An Investigation on Hardness-Strength Correlation Factor with Microstructures of Alloy Steels and Super Low Carbon Steel
指導教授:楊哲人楊哲人引用關係
指導教授(外文):Jer-Ren Yang
口試委員:林東毅王星豪黃慶淵
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:降伏強度維式硬度差排密度晶粒大小回火麻田散鐵顯微組織
外文關鍵詞:Yield StrengthVickers hardnessDislocation densitygrain sizetempered martensiteMicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在前人的研究中曾以數學方法證明強度與硬度有一關係式H=k ,而k值為硬度與強度的關係因子。許多研究對此值作出分析,因強度值或應力應變圖要獲得需經由拉伸試驗,其中存在耗費時間和材料的缺點,如能夠直接從硬度得到該材料的強度特質,則較為簡便且快速。然而,材料的強度和硬度與材料的顯微結構息息相關,而顯微結構的探討也需耗費時間製備試片,尤其是電子顯微鏡試片。前人常針對k值與材料的對應關係作討論,而對其顯微結構則較少涉略。因此本研究對於其顯微結構與k值作分析研究,以期能對其顯微結構與k值的關係作探討。
本研究首先證明k值具有不確定性,且嘗試在四種材料當中找出規律性。對HT780、HT620、SS400和IF鋼作拉伸強度與硬度測試,得到HT780的k值~3.6,HT620的k值~3.7,SS400之k值~4.7,IF鋼之k值~4.5,觀察四種鋼材的金相,可以發現具有高析出物密度的k值會較小,而晶粒大小和波來鐵相對k值的影響較小。為了證明差排密度會影響k值和晶粒大小對k值的影響較小,對IF鋼板作軋延,從3mm軋延至2.5mm、2mm、1mm,分別量測其降伏強度與硬度,計算出k值,2.5mm~3.8、2mm~3.6、1mm~3.1,發現高軋延量的鋼材其k值會較小。再來利用四種厚度鋼板的TEM照片估計出差排密度,差排密度與k值會呈一負相關。比較晶粒大小與k值之關係時,先將1mm IF steel作不同溫度下的沃斯田鐵化熱處理,發現950℃之k值~2.8,1050℃之k值~4.1,1150℃之k值~5.0,而晶粒大小分別為20 、80 和40 ,證明之前的假設,晶粒大小與k值沒有趨勢關係。最後在Umemoto的研究中,記錄了麻田散鐵之k值為3.51,回火麻田散鐵之k值為3.17,與差排密度越高k值越小的實驗結果相違背,於是對SS400作淬火麻田散鐵化處理,並以200℃、400℃、600℃作回火,測定k值與觀察晶相,發現淬火後之k值為4.8,200℃回火~4.0, 400℃回火~3.5,回火600℃回火~4.2,回火後的k值下降,與Umemoto的結果相同。


In old research, there was a mathematical proof of related equation H=k for strength and hardness, and k value is the strength-hardness correlation factor. There were many analyses on k value because value of strength or stress-strain curve is obtained by tensile test, which is time-wasted and material-wasted. If we could obtain strength by hardness, the process is easy and fast. However, the hardness and strength of materials highly related to microstructures, and investigation of microstructures also needs a lot of time to prepare specimen, especially TEM specimen. Previous research usually focused on relationship between k value and specific material, and seldom involved microstructure. Therefore, the study analyzed the microstructure and k value, and investigated their relationship.
The study first proved different materials possibly with different k value, and tried to find out any regular pattern. The tensile and hardness test were done for HT780, HT620, SS400 and IF steel, whose k value was 3.6, 3.7, 4.7 and 4.5 respectively. Then by observation of optical microstructure, it shows that high precipitation density has small k value and not large enough pearlite volume fraction and grain size may not change k value sharply. Great strength effect induce low k value is our hypotheses of k value. In order to prove dislocation density influenced k value and grain size less affected k value, we rolled IF steel plate from 3mm to 2.5mm, 2mm, 1mm, and calculated k=4.5, 3.8, 3.6, 3.1, respectively. We found out high rolling capacity relating to low k value and high rolling capacity representing high dislocation density. When comparing grain size and k value, we set 950℃, 1050℃, 1150℃ for grain growth, and grain size was 20 , 80 and 40 . The final k value is 2.8, 4.1, 5.0, respectively, which prove that grain size less affected k value. Moreover, in study of Umemoto showed that tempered martensite had lower k value than martensite that conflict with previous study about dislocation density. The specimens are prepared by SS400 quenching and tempering to 200℃, 400℃, 600℃.The result of martensite ~4.8, 200℃ tempered martensite~4.0, 400℃ tempered martensite~3.5 and 600℃ tempered martensite~4.2. The k value decreased when tempering.


誌謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章:研究目的 1
第二章:文獻回顧 3
2-1 k值的研究背景 3
2-1-1 理想k值的證明 3
2-1-2 k值的實驗證明 9
2-2 鋼材的強化機制 21
2-2-1晶粒細化 22
2-2-2固溶強化 27
2-2-3加工硬化 29
2-2-4第二相強化 29
2-2-5析出硬化 30
2-3 差排密度的量測方法 34
2-3-1雙束繞射 34
2-3-2 厚度量測 36
2-3-3 差排密度 39
第三章:研究材料與實驗介紹 44
3-1 鋼板材料介紹與成分 44
3-2實驗步驟與使用儀器 44
3-2-1 拉伸試驗機 45
3-2-2 金相顯微組織的觀察步驟 45
3-2-3微硬度分析儀 45
3-2-4金相定量分析軟體 45
3-2-5拉伸曲線分析軟體 45
3-2-6輥壓機 46
3-2-7電子顯微鏡觀察步驟 46
3-2-8 熱處理製程步驟 46
第四章:結果與討論 50
4-1 不同成份鋼材的討論 50
4-1-1不同成分鋼材應力應變圖之比較 50
4-1-2不同成分鋼材金相圖比較 52
4-1-3不同成分鋼材硬度值比較 58
4-1-4不同成分鋼材k值比較 60
4-2 同成分不同加工量的鋼材討論 63
4-2-1同成分不同加工量的鋼材應力應變圖之比較 63
4-2-2同成分不同加工量的鋼材硬度值比較 65
4-2-3同成分不同加工量的鋼材金相圖比較 66
4-2-4同成分不同加工量的鋼材k值比較 71
4-2-5同成分不同加工量的鋼材TEM觀察 72
4-2-6同成分不同加工量的鋼材的差排密度定量與k值比較。 81
4-3 同成分不同熱處理的鋼材討論 84
4-3-1同成分不同熱處理的鋼材應力應變圖之比較 84
4-3-2同成分不同熱處理的鋼材硬度值比較 86
4-3-3同成分不同熱處理的鋼材金相圖比較 87
4-3-4同成分不同熱處理的鋼材k值比較 91
4-3-5同成分不同熱處理的鋼材的晶粒大小與k值關係 92
4-4回火麻田散鐵的k值 93
4-4-1回火麻田散鐵的應力應變圖之比較 93
4-4-2回火麻田散鐵金相圖比較 95
4-4-3回火麻田散鐵硬度值比較 105
4-4-4回火麻田散鐵k值比較 106
第五章:結論 108
第六章:未來工作 109
參考文獻 110


[1]Michael F. Ashby, David R. H. Jones, Engineering Materials 1 3rd edtion, 2005, p.142.
[2] R. HILL, E. H. LEE, and S. J. TUPPER: Proc. R. Soc., London, 1947, vol.188, p.273.
[3] D. Tabor, The hardness of metals, Oxford, Clarendon Press, 1951
[4] ‘Metal handbook’, Material Park, OH, American Society for Metals. 8th edition, vol. 11, 1976, p.425
[5] YU. I. SLAVSKII and YU.G. ARTEMEV: Zavod Lab, 1989, p.88-91
[6] HENCKY. H, Z.ang.Math.Mech.3, 1923, p.250
[7]Jeremy T. Busby, Mark C. Hash, Gary S. Was, Journal of Nuclear Material, 2005, p.267-278
[8]D. Tabor, Br. J. Appl. Phys, 1956, p.159
[9] JOHN H. HOLLOMON, JUNIOR MEMBER, A .I.M.E.,1945
[10]I. Gutierrez, M.A. Altuna, Acta Mater. ,2008 ,p.4682-4690
[11]A. Nayebi, R. El Abdi*, O.Bartier,G. Mauvoisin, Material Science and Technology A, 2002 ,p.160-169
[12]J.R. CAHOON, Metalluurgical Transactions, vol.3, 1972, p.3040
[13]M. UMEMOTO, Z.G. LIU, S. SUGIMOTO, and K.TSUCHIYA, Material Science and Technology A, vol.31A, 2000, p.1785-1794
[14]O’ NEILL, H., The Hardness of Metals and Its Measurement, Chapman and Hall, London, 1934
[15]M. Umemoto, Z. G. Liu, K. Tsuchiya, S. Sugimoto, and M. M. A. Bepari, Materials Science and Technology, 2001, vol. 17, p.505.
[16]J.R.CAHOON, W.H. BROUGHTON, A.R. KUTZAK, Metallurgical transaction, vol.2, 1971, p.1979
[17]G.E. Dieter, Mechanical Metallurgy 3rd edition, Mc Graw-Hill Book Company, New York, 1986
[18]J. Lis, B. Gajda, A. Lis, Achievement in Mechanical and Materials Engineering, 12th International Scientific Conference,p.605
[19]E.J. Pavlina, C.J. Van Tyne, Journal of Materials Engineering and Performance, vol. 7, 2008, p.888
[20]M.R. Sridhar, M.M. Yovanovich, Wear, vol.193, 1996, p.91-98
[21]P. Zhang, S.X. Li, Z.F. Zhang, Material Science and Engineering A, vol.529, 2011, p.62-73
[22] Jitendra Patel, Christian Klinkenberg, Klaus Hulka, Nobium 2001 Limited, 2001, p.647.
[23] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, and E.T. Maeda, ISIJ Int., 2004, vol. 44, p.1945.
[24] T. Gladman, The Physical Metallurgy of Microalloyed Steels, The Institude of Materials, London, 1997.
[25] N. J. Petch, JISI, 1953, vol.174, p.25
[26]Hall EO., Proc Phys Soc, London, 1951, p.747
[27]A. Lasalmonie, J.L. Struel, Journal of Materials Science, vol.21, 1986, p.1837-1852
[28]S. Takaki, K. Kawasaki, Y. Kimura: Journal of Materials Processing Technology, vol.117, p.359, 2001
[29]K. TAKEDA, N. NAKADA, T. TSUCHIYAMA, S. TAKAKI, ISIJ International, vol. 48, 2008, p.1122-1125
[30]R.W. ARMSTRONG, Metallurgical Transaction, vol.1, 1970, p.1169
[31] R. W. K. Honeycombe and R. F. Mehl Medalist, Metallurgial Transaction A, 1976, vol. 7A, p.915.
[32]D.K. Felbeck,A.G. Atkins: Strength and fracture of engineering solids, Prentice-Hall, Eaglewood Cliffs, NJ, 1984
[33]A.H. Cottrel:Dislocation and Plastic Flow in Crystals, Oxford University Press, London, 1953
[34]F.B Pickering : Physical Metallurgy and the Design of Steels, Applied Science Publishers LTD,London,1978
[35] T. Galdman, Mater. Sci. Tech., 1999, vol.15, p.30.
[36]W. Saikaly, X. Bano, C. Issartel, G. Rigaut, L. Charrin, and A. Charai, Metallurgcal and Materials Transactions A, 2001, vol. 32A, p.1939.
[37]M. F. Ashby, Oxide dispersion Strengthening, Gordon and Breach, NewYork, 1958, p.143.
[38] 黃慶淵,顏鴻威,潘永村,楊哲人,鑛冶, 2009, vol. 53, p.45-60.
[39] A. T. Davenport, R.W.K. Honeycombe, Proceedings of the Royal Society of London. Series A, 1971, vol. 322, p.191
[40]F. G. Berry, R.W.K. Honeycombe, Metallurgial Transactions A, vol. 1, 1970, p.3279.
[41]顏鴻威,先進超高強度高奈米碳化物介面析出之穿透式電子顯微鏡分析研究,博士論文, 2011
[42] H. W. Yen, P.Y Chen, C. Y. Huang, J. R. Yang, Acta Materialia, 2011, vol. 59
[43]鮑忠興、劉思謙, 近代穿透式電子顯微鏡實務,2008
[44] David Bernard Williams,C. Barry Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2009, p.353
[45] D. Alloyeau et al. , Ultramicroscopy , vol.109, 2009, p.788–796
[46]C.S. SMITH and L. GUTTMAN, Trans. Amer. Inst. Mining, Met Petrol. Eng. Vol.197, 1953, p.81
[47]R.K. Ham; N.G. Sharpe, Philosophical Magazine, vol.6, Issue69,1961, p.1193-1194
[48]J.E. Bailey, P.B. Hirsch, Philosophical Magazine, vol.5, Issue 553, 1960, p.485-497
[49]R.K. Ham, The determination of dislocation density in this foils, Phil. Mag.,vol.6, 1961, p.1183-1184
[50]P. Hirsch, A. Howie, R.B. Nichlson, D.W. Phashley, M.J. Whelan, Electron Microscopy of Thin Crystals, N.Y., 1977, p.416-425
[51]Edington, J.W., Practical Electron Microscopy in Materials Science, MacMillan, London, 1975, p.119
[52]J.R. Yang, L.C. Chang, Materials Science and Engineering, vol.A223, 1997, p.158-167
[53]J.R.Yang and H.K.D.H. Bhadeshia: Welding Research Supplement, p.305-307
[54]M.R. STAKER and D.L. HOLT, Acta Metallurgica, vol.20, 1972, p.569-579
[55]黃柏銘,含鈮鋼筋顯微組織與無降伏現象之探討,碩士論文,台大材料,2008
[56]R.W.K. Honeycombe, H.K.D.H Bhadehia, Steels:Microstructure and Properties,1995
[57]Hardy Mohrbacher, Mo 在高強度低合金鋼(HSLA)中的主要作用及與微合金元素的交互作用, 鉬在鋼中的應用國際研討會, 北京, 2010



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔