(3.80.6.131) 您好!臺灣時間:2021/05/14 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:侯富中
研究生(外文):Fu-Chung Hou
論文名稱:共平面性、多元環及側鏈氰基對 Poly(3-hexylthiophene)電子能帶結構的影響
論文名稱(外文):The effects of coplanaity, fused ring and cyano side groups on the electronic band structure of Poly(3-hexylthiophene)
指導教授:趙基揚
口試委員:林唯芳鄭如忠林祥泰陳錦地
口試日期:2013-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:P3HT(poly 3-hexylthiophene)CPT(cyclopentadithiophene)高分子太陽能電池高分子共平面性
外文關鍵詞:P3HT(poly 3-hexylthiophene)CPT(cyclopentadithiophene)polymer solar cellcoplanality of polymers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以 stille coupling 合成高分子,從共平面性、主鏈上導入 fuse
ring 的 cyclopentadithiophene (CPT)、以及側鏈上修飾強拉電子的氰基(-
cyano group,CN group)三方面討論影響 poly(3-hexylthiophene) (P3HT)電子
能階與光學吸收的因素。高分子的分子量在 10000 以上,且在室溫下一般
有機溶劑中具有良好的溶解度。
P3HT 主鏈上的 head-to-tail (H-T)結構比例在 50%~98%之間,受到有規
律的 head-to-head(H-H)結構形成主鏈上的扭曲,形成不同的共平面性。光
學能隙(band gap)與電化學能隙具有同樣的規律,能隙隨共平面性的增加而
下降。隨著 H-H 比例的增加,能隙變大主要來自於最低為填滿分子軌域
(lowest unoccupied molecular oribital ,LUMO)的上升。在主鏈上的扭曲會
使 LUMO 增加 0.2~0.4eV,同時抑制旋轉塗佈薄膜的 π-π stacking。
在 P3HT 主鏈上導入 CPT 結構,形成 CPT 與 3HT 的共聚合物,其能階
與 regioregular P3HT (rr-P3HT) 相近,顯示在主鏈上導入 fuse ring 的 CPT 結
構並沒有對能帶結構產生改變。然而 CPT 結構的共平面性良好,使得高分
子在室溫溶液中形成堆疊(aggregation)。在薄膜狀態下,CPT 系列高分子的
光學吸收並沒有產生紅移,同時看不到 π-π stacking。
在高分子側鏈上修飾強拉電子的氰基,同時拉低最高填滿分子軌域
(Highest Occupied Molecular Orbital,HOMO)及 LUMO 0.2eV,然而並沒有改
變薄膜態的光學吸收與分子堆疊。

IV

Abstract
In this thesis, factors affecting the electronic energy levels and optical
absorptions of poly(3-hexylthiophene) (P3HT) are systematically studied,
including the coplanality, the introduction of fused ring on the P3HT main chain
and the strong electron withdrawing cyano (-CN) side group. All the polymers
are synthesized via Stille coupling to afford reasonably high molecular weight (>
10,000) and good solubility in common organic solvent at room temperature.
Considering the effect of coplanality, P3HT with various head-to-tail (HT)
percentages in the main chain ranging from 50% to 98% are synthesized with
regularly distribution of the twists (head-to-head, HH, configurations). The
optical band gap and the electrochemical band gap are in good agreement,
increasing with the decrement of the coplanality. The widen bad gaps are
attributed to the elevated lowest unoccupied molecular oribital (LUMO) and the
lifts are not proportional to the increment in the HH percentages. A small
amount of twists in the main chain would significantly elevate the LUMO by
0.2~0.4 eV, along with the suppression of π-π stacking in the spin-coated thin
film.
Regarding the effect of fused ring in the main chain, cyclopentadithiophene
(CPT) is introduced to the P3HT main chain and the resulting copolymers
containing CPT and 3HT exhibited energy levels similar to those of regioregular
P3HT(rr-P3HT), suggesting the fused ring in the main chain has no effect on the
electronic band structure. However, the strong coplanality of CPT enables the
formation of aggregations of CPT based copolymers in solution at room
temperature. In comparison with rr-P3HT in solid state, the introduction of CPT
would not promote the red absorption; in addition, the π-π stacking is inhibited. The employment of strong electron withdrawing CN side groups
simultaneous lower both the highest occupied molecular oribital (HOMO) and
LUMO by 0.2eV without significantly altering the optical absorption and the
molecular packing in thin films.

VI

目 錄
口試委員審訂書............................... I
誌 謝 ............................... II
中文摘要 .................................. III
Abstract ................................... IV
目 錄 ............................... VI
圖索引 ....................................VIII
表索引 .................................... XII
第一章 緒論 .................................1
第二章 文獻回顧 .............................4
2.1 高分子太陽能電池的發展與工作原理 ........4
2.2 太陽能電池的能量轉化效率 ................7
2.3 高分子能隙 ..............................8
2.4 P3HT 簡介與能隙調整方法 ................ 10
2.4.1 共平面性(coplanality)................ 11
2.4.2 fuse ring 結構 ....................... 13
2.4.3 側鏈修飾推、拉電子基效應 ............ 15
(1) 推電子基 .............................. 16
(2) 拉電子基 .............................. 17
2.5 研究目的與架構 ........................ 18
第三章 研究方法 ........................... 23
3.1 實驗藥品 .............................. 23
3.1.1 有機藥品 ............................ 23
3.1.2 無機藥品 ............................ 24
3.1.3 溶劑 ................................ 25
3.1.4 催化劑 .............................. 25
3.2 實驗儀器 .............................. 26
3.3 實驗步驟 .............................. 26
3.3.1 單體合成 ............................ 26
3.4 高分子聚合 ............................ 46
第四章 結果與討論 ......................... 47
4.1 聚合單體鑑定 .......................... 47
4.2 高分子鑑定 ............................ 61
4.2.1 高分子 1 H NMR 鑑定 ................. 62
4.2.2 高分子分子量 ........................ 69
4.2.3 高分子熱穩定性 ...................... 70
4.3 高分子光電性質 ........................ 72
4.3.1 共平面性對 P3HT 光電性質的影響 ...... 72
4.3.2 CPT 系列高分子的光電性質 ............. 75
4.3.3 CPT 系列高分子的光電性質 ............. 79
第五章 結論與未來展望 ..................... 82
附錄 ....................................... 83
參考文獻 .................................. 101

1 K. Ardani, R. Margolis, “2010 Solar Technologies Market Report,” National Renewable Energy Laboratory, accessed on August 22, 2012.
2 http://www.konarka.com (Konarka Technologies, Inc.).
3 K. M. Coakley, M. D. McGehee, “Conjugated Polymer Photovoltaic Cells.” Chemistry of Materials 2004, 16, 4533.
4 T. A. Skothrim,“ Handbook of Conducting Polymers ”, New York:.Dekker ,1986, 2, 1195.
5 Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.;Waldauf, C.; Heeger, A. J.; Brabec, C. J. “Design rules for donors in bulk-heterojunction solar cells— towards 10% energyconversion efficiency.” Adv. Mater. 2006, 18 (6), 789.
6 R. B. Seymour, New York: Plenum Press, Conductive polymers, 171.
7 Tom J. Savenije. Delft Chem Tech, Faculty of Applied Sciences. Delft University of Technology.
8 D. Bimberg, E. H. Bottcher, K. Ketterer, H. P. Vollmer, H. Beneking, and P. Roentgen, ”Generation and detection of 15‐ps light pulses in the 1.2–1.3‐μm wavelength range by semiconductor lasers and detectors.” Appl. Phys. Lett., 1986, 48, 83.
9 O. Carp, C.L. Huisman, A. Reller, “Photoinduced reactivity of titanium dioxide” Progress in Solid State Chemistry 2004, 32, 33.
10 S. B. Darling, “Block Copolymers for Photovoltaics” Energy Environm. Sci., 2009, 2, 1266.
11 S.Karg, W. Riess, V. Dyakonov, and M. Schwoerer, “Electrical and optical characterization ofpoly(phenylene-vinylene) light emitting diodes” Synth. Met.,1993, 54, 427.
12 G. Yu, J. Gao, J. Hummelen, F. Wudl, A. J. Heeger, “Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions” Science. 1995, 270, 1789.
13 F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effects of Postproduction Treatment on Plastic Solar Cells.” Adv. Funct. Mater., 2003, 13, 85.
14 Green MA, Emery K, Hishikawa Y, Warta W. “Solar cell efficiency tables (Version33).” Research and pplications 2009, 17, 85.
15 Green MA, Emery K, Hishikawa Y, Warta W. Solar cell efficiency tables (Version 37).” Research and Applications 2011, 19, 84.
16 Perez, M. D.; Borek, C.; Forrest, S. R.; Thompson, M. E. “Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices” J. Am. Chem. Soc. 2009, 131 (26), 9281.
17 Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganas, O.; Manca, J. V. “On the origin of the open-circuit voltage of polymer–fullerene solar cells.” Nature Mater. 2009, 8
(11), 904.
18 Yang, L.; Zhou, H.; You, W. “Quantitatively Analyzing the Influence of Side Chains on Photovoltaic Properties of Polymer-Fullerene Solar Cells.” J. Phys. Chem. C 2010, 114 (39), 16793.
19 Moliton, A.; Nunzi, J.-M. “How to model the behaviour of organic photovoltaic cells.” Polymer International 2006, 55 (6), 583.
20 Thompson, B. C.; Fre chet, J. M. J. Angew. Chem., Polymer-fullerene composite solar cells.” Int. Ed. 2008, 47 (1), 58.
21 H. Spanggaard, F. C. Krebs, ”A brief history of the development of organic and polymeric photovoltaics.” Solar Energy Materials & Solar Cells 2004, 83,125.
22 http://www.pveducation.org/pvcdrom/
23 H.A.M. van Mullekom, J.A.J.M. Vekemansb, E.E. Havingab, E.W. Meijerb, “Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers.” Materials Science and Engineering 2001, 32, 1.
24 C. Winder, N. S. Sariciftci, “Low bandgap polymers for photon harvesting in bulk heterojunction solar cells.” Journal of Materials Chemistry 2004, 14, 1077.
25 T. A. Skotheim, J. R. Reynolds, Handbook of Conducting Polymers, 3rded., Taylor & Francis Group: Boca Raton, 2006
26 Jen K. Y.; Oboodi, R.; Elsenbaumer, R. L., Processible and environmentally stable conducting polymers.” Abstracts of Papers of The American Chemical Society 1985, 190, 17.
27 M. C. Iovu, E. E. Sheina, R. R. Gil, and R. D. cCullough, "Experimental Evidence for the Quasi-"Living" Nature of the Grignard Metathesis Method for the Synthesis
of Regioregular Poly(3-alkylthiophenes)" Macromolecules 2005, 38, 8649.
28 Q. Shi, H. Fan, Y. Liu, J. Chen, L. Ma, W. Hu, Z. huai, Y. Li, and X. Zhan, “Side Chain Engineering of Copolymers Based on Bithiazole and Benzodithiophene for Enhanced Photovoltaic Performance” Macromolecules 2011, 44, 4230.
29 McCullough, R. D., “The chemistry of conducting olythiophenes.” Advanced Materials 1998, 10(2), 93.
30 McCullough, R. D., “Method of forming poly-(3-ubstituted) thiophenes.” United States Patent 2000, 6, 166, 172.
31 Muhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; aller, D.; Gaudiana, R.; Brabec, C. “High Photovoltaic Performance of a Low-Bandgap Polymer “Adv. Mater. 2006, 18 (21), 2884.
32 Y.J. Cheng, S.H. Yang, and C.S. Hsu., “Synthesis of Conjugated Polymers for Organic Solar Cell Applications.” Chem. Rev. 2009, 109, 5868.
33 Zhang, Q. T.; Tour, J. M. “Alternating Donor/Acceptor Repeat Units in Polythiophenes. Intramolecular Charge Transfer for Reducing Band Gaps in Fully Substituted Conjugated Polymers.” J. Am. Chem. Soc. 1998, 120, 5355.
34 B. Carsten., et. al., “Examining the Effect of the Dipole Moment on Charge Separationin Donor_Acceptor Polymers for Organic Photovoltaic Applications.” J.
Am. Chem. Soc. 2011, 133, 20468.
35 Shi, C.; Yao, Y.; Yang, Y.; Pei, Q. J. Am. Chem. Soc. 2006, 114, 8980. 36 C. L. Chochos, et. al., “Synthesis of a Soluble n-Type Cyano Substituted Polythiophene Derivative: A PotentialElectron Acceptor in Polymeric Solar Cells.” J. Phys. Chem. C 2007, 111, 10732.
37 H. Zhou, L. Yang, W. You, “Rational Design of High Performance Conjugated Polymers for Organic Solar Cells”Macromolecules 2012, 45, 607.
38 A. Krasovskiy, P. Knochel, “A LiCl-Mediated Br/Mg Exchange Reaction for the Preparation of Functionalized Aryl- and Heteroarylmagnesium Compounds from Organic Bromides” Angewandte Chemie International Edition 2004, 43, 3333.
39 http://www.organic-chemistry.org/namedreactions/stille-coupling.shtm
40 R. Mondal., et. al., “Synthesis of Acenaphthyl and henanthrene Based Fused-Aromatic Thienpyrazing Copolymers for Photovoltaic and Thin Film Transistor Applications.” Chemistry of Materials, 2009. 21(15), 3618.
41 J. Roncali, “Synthetic Prinspiles For Bandgap Control In Linear Pi-Conjugated Systems.” Chemical Reviews 1997, 97, 173-205.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔