(18.204.227.34) 您好!臺灣時間:2021/05/17 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許世琪
研究生(外文):Shih-Chi Hsu
論文名稱:環境敏感型共聚高分子之合成與性質研究 :(I)RAFT法合成溫度/酸鹼雙重應答之三嵌段高分子 (II)磺胺類酸鹼敏感型水膠之合成
論文名稱(外文):Studies on the synthesis and characteristics of environment-sensitive copolymer: (I)Synthesis of temperature / pH sensitive tri-block copolymer by RAFT polymerization(II)Synthesis of pH-sensitive sulfonamide-based hydrogel
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
口試委員:董崇民戴宏哲王怡仁陳建中
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:113
中文關鍵詞:丙烯酸氮-異丙基丙烯醯胺自組裝磺胺類單體N-羥甲基丙烯醯胺
外文關鍵詞:RAFTPNIPAAmPAAcblock copolymerself-assembly behaviorSulfonamide-based polymerpH-sensitiveTemperature-sensitive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用環境敏感型高分子製備溫度/酸鹼雙重應答之三嵌段共聚高分子與磺胺類酸鹼敏感型水膠。研究中分為兩部份的實驗來探討,第一部分之實驗架構是利用丙烯酸(Acrylic acid,AAc)與氮-異丙基丙烯醯胺 (N-isopropylacrylamide, NIPAAm)共聚合,利用可逆型加成-分裂鏈轉移活性聚合系統(RAFT)合成Poly(AAc-b-NIPAAm-b-AAc)三嵌段共聚物。實驗第二部份,先利用Sulfamethazine(SA)與Methacryloyl chloride反應製備單體Sulfamethazine monomer(SAM),後續製程分兩部分來討論,分別為磺胺類單體SAM與N,N-二甲基丙烯醯胺(N,N-Dimethylacrylamide,DMAAm)共聚合製備隨機共聚高分子Poly(SAM-DMAAm)及引入熱可交聯單體N-羥甲基丙烯醯胺(N-methylol acrylamide, NMA)共聚合成Poly(SAM-DMAAm-NMA)後進行熱交聯,形成水膠。
實驗的第一部份討論Poly(AAc-b-NIPAAm-b-AAc)共聚高分子中,PAAc與PNIPAAm的比例對整體共聚物之影響。相關重要討論包括共聚物之溫度感應性質(最低臨界溶液溫度LCST)、自組裝微胞的成形條件、粒徑分析、形態觀察和熱性質分析。首先,使用紫外光-可見光分光光譜儀觀察不同酸鹼環境下,高分子水溶液隨著溫度變化的穿透度改變,藉此得到不同組成比例的共聚物之最低臨界溶液溫度(LCST),再藉由調控溶液的溫度與酸鹼環境來改變鏈段上不同區域的親疏水性。之後,透過動態光散射(DLS)的測試來證實此共聚物之自組裝能力,並於穿透式電子顯微鏡下觀察其自組裝型態的變化,並加以討論。熱性質的部分則是透過熱重量分析儀與熱差式掃描儀去觀察其共聚物組成對熱性質的影響。
實驗第二部份分兩部分討論,第一部份為磺胺類單體SAM與親水性單體DMAAm之共聚物合成與酸鹼敏感性討論。藉由調控單體進料量比去調控其酸鹼敏感性,將其應答酸鹼值控制在pH6.8~7.4,且敏感度介於0.2個pH值之間。第二部份則是引入熱可交聯單體NMA,比較引入NMA交聯前後的酸鹼應答行為,並討論不同的熱交聯溫度與交聯時間對水膠感應性(膨潤-收縮能力)的影響。


In this study, there are two parts of experiments. First part is about the pH/temperature sensitive tri-block copolymer poly(AAc-b-NIPAAm-b-AAc), which is synthesised by RAFT polymerization of acrylic acid and N-isopropylacrylamide .The second part of this research is about the sulfonamide-based pH-sensitive hydrogel, which is synthesized by redox copolymerization of sulfamethazine monomer(SAM) and N,N-Dimethylacrylamide (DMAAm) with the thermo-crosslinkable monomer N-methylol acrylamide(NMA) as crosslinking agent.
The first part is the experiment of poly(AAc-b-NIPAAm-b-AAc) copolymer. The main discussion is about the influences of PAAc and PNIPAAm chain segments on tri-block copolymer’s chemical properties and physical properties(ex: temperature- sensitivity of copolymer (lower critical solution temperature LCST)、micelle forming conditions、granulometry、 micelle morphology 、thermal properties).
The second part is divided into two sections. The synthesis of pH-sensitive random copolymer poly (SAM-DMAAm) was discussed in first section. By regulating the monomer feed ratio, the starting point of copolymer’s pH-sensitivity can be controlled in the range of pH6.8~pH7.4. Then, the sulfonamide-based pH-sensitive hydrogel was prepared by introducing thermo-crosslinkable monomer NMA to the copolymerization system and going through the thermo-curing process. By comparing the pH-sensitive behaviors of linear random copolymers and hydrogels, the influences of crosslinking effect on the pH-sentivity and on the swelling-shrinkage capacity of hydrogel was discussed in the final section.


誌謝----------------------------------------------------- I
中文摘要-------------------------------------------------II
Abstract------------------------------------------------III
目錄-----------------------------------------------------IV
圖目錄--------------------------------------------------VII
表目錄---------------------------------------------------XI
第一章 緒論-----------------------------------------------1
1-1前言---------------------------------------------------1
第二章 文獻回顧-------------------------------------------2
2-1環境敏感型高分子材料簡介與應用-------------------------2
2-1-1環境敏感型高分子材料之簡介---------------------------2
2-1-2溫度敏感型高分子材料簡介-----------------------------3
2-1-3酸鹼(pH)敏感型高分子材料簡介-------------------------7
2-1-4其他環境敏感型高分子材料簡介------------------------11
2-2智慧型高分子水膠簡介與應用----------------------------12
2-2-1高分子水膠的定義------------------------------------12
2-2-2酸鹼應答型高分子水膠--------------------------------13
2-2-3水膠之發展與應用------------------------------------14
2-3兩親性嵌段共聚物之簡介與高分子自組裝行為--------------15
2-3-1兩親性嵌段共聚物(amphiphilic block copolymers)------15
2-3-2高分子自組裝微胞------------------------------------16
2-3-3高分子微胞之應用------------------------------------18
2-4活性自由基聚合法簡介----------------------------------20
2-4-1穩定自由基聚合反應( Stable Free Radical Polymerization)-----------------------------------------23
2-4-2原子轉移自由基聚合反應(Atom Transfer Free Radical Polymerization)------------------------24
2-4-3可逆型加成分裂鏈轉移(RAFT)活性聚合法----------------25
第三章 實驗方法------------------------------------------30
3-1實驗藥品與儀器----------------------------------------30
3-1-1實驗藥品--------------------------------------------30
3-1-2實驗儀器--------------------------------------------34
3-2實驗步驟----------------------------------------------36
3-2-1實驗流程圖------------------------------------------36
3-2-2 RAFT法合成Poly (AAc-b-NIPAAm-b-AAc) copolymer------38
3-2-3磺胺類酸鹼敏感性水膠之製備--------------------------40
3-2-4代號說明--------------------------------------------44
3-2-4-1 RAFT法合成Poly (AAc-b-NIPAAm-b-AAc) copolymer----44
3-2-4-2磺胺類酸鹼敏感性水膠之製備------------------------45
3-3性質測定----------------------------------------------47
3-3-1分子量與分子量分佈鑑定------------------------------47
3-3-2結構鑑定與組成分析----------------------------------47
3-3-3最低臨界溶液溫度(LCST)之測定------------------------48
3-3-4自組裝型態觀察 --------------------------------------48
3-3-5粒徑大小及分佈鑑定----------------------------------49
3-3-6 熱性質分析-----------------------------------------49
3-3-7 pH敏感性測試---------------------------------------50
3-3-8水膠之交聯轉化率(Gel conversion)測定----------------51
3-3-9水膠形態觀察----------------------------------------51
第四章 結果與討論----------------------------------------52
4-1 RAFT法合成Poly (AAc-b-NIPAAm-b-AAc) copolymer--------52
4-1-1分子量與分子量分佈之鑑定(GPC)-----------------------52
4-1-2結構鑑定與組成分析(NMR、FTIR)-----------------------53
4-1-3三嵌段共聚高分子之溫感性質測定 (UV-Vis)-------------55
4-1-4粒徑分析與微胞形態觀察(DLS、TEM)--------------------57
4-1-5熱性質分析(DSC、TGA)--------------------------------60
4-2磺胺類酸鹼敏感型水膠之製備----------------------------61
4-2-1磺胺類單體 (SAM) 之合成-----------------------------61
4-2-1-1結構鑑定與組成分析 (NMR 、FTIR )------------------61
4-2-2 酸鹼敏感型高分子Poly (SAM-DAAm) 之合成-------------62
4-2-2-1結構鑑定與組成分析 ( NMR )------------------------62
4-2-2-2黏度測試 (Rheometry )-----------------------------63
4-2-2-3酸鹼敏感性測試 ( UV-Vis )-------------------------64
4-2-3酸鹼敏感型Poly(SAM-DMAAm-NMA)水膠的製備-------------66
4-2-3-1元素分析 (EA )------------------------------------66
4-2-3-2交聯劑NMA引入的影響-------------------------------67
4-2-3-3 Swelling ratio & Gel conversion test-------------67
第五章 結論----------------------------------------------70
參考文獻-------------------------------------------------73


1.Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
2.Okano, T., Biorelated polymers and gels : controlled release and applications in biomedical engineering. Series in polymers, interfaces, and biomaterials1998, San Diego: Academic Press. xvi, 257 p.
3.Kikuchi, A. and T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Progress in Polymer Science, 2002. 27(6): p. 1165-1193.
4.Hoffman, A.S., et al., Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research, 2000. 52(4): p. 577-586.
5.Jeong, B. and A. Gutowska, Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology, 2002. 20(7): p. 305-311.
6.Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews, 2001. 53(3): p. 321-339.
7.Chilkoti, A., et al., Targeted drug delivery by thermally responsive polymers. Advanced Drug Delivery Reviews, 2002. 54(5): p. 613-630.
8.Fleige, E., M.A. Quadir, and R. Haag, Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: Concepts and applications. Advanced drug delivery reviews, 2012. 64(9): p. 866-884.
9.Ougizawa, T. and T. Inoue, UCST and LCST behavior in polymer blends and its thermodynamic interpretation. Polymer journal, 1986. 18(7): p. 521-527.
10.Schild, H.G., Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
11.Aoyagi, T., et al., Novel bifunctional polymer with reactivity and temperature sensitivity. Journal of Biomaterials Science-Polymer Edition, 2000. 11(1): p. 101-110.
12.Pei, Y., et al., The effect of pH on the LCST of poly (N-isopropylacrylamide) and poly (N-isopropylacrylamide-co-acrylic acid). Journal of Biomaterials Science, Polymer Edition, 2004. 15(5): p. 585-594.
13.Chen, G.H. and A.S. Hoffman, Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph. Nature, 1995. 373(6509): p. 49-52.
14.Zhang, K. and A. Khan, Phase Behavior of Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Copolymers in Water. Macromolecules, 1995. 28(11): p. 3807-3812.
15.Glatter, O., et al., Characterization of a Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymer (EO27-PO39-EO27) in Aqueous Solution. Macromolecules, 1994. 27(21): p. 6046-6054.
16.Wang, Q., L. Li, and S. Jiang, Effects of a PPO-PEO-PPO triblock copolymer on micellization and gelation of a PEO-PPO-PEO triblock copolymer in aqueous solution. Langmuir, 2005. 21(20): p. 9068-9075.
17.Kuijpers, A.J., et al., Characterization of the Network Structure of Carbodiimide Cross-Linked Gelatin Gels. Macromolecules, 1999. 32(10): p. 3325-3333.
18.Liu, Y., et al., Thermo and pH sensitive fluorescent polymer sensor for metal cations in aqueous solution. Polymers for Advanced Technologies, 2008. 19(2): p. 137-143.
19.Bae, Y.H., et al., Thermo‐sensitive polymers as on‐off switches for drug release. Die Makromolekulare Chemie, Rapid Communications, 1987. 8(10): p. 481-485.
20.Ju, H.K., S.Y. Kim, and Y.M. Lee, pH/temperature-responsive behaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer, 2001. 42(16): p. 6851-6857.
21.Dutta, P.K., J. Dutta, and V.S. Tripathi, Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 2004. 63(1): p. 20-31.
22.Ito, Y., et al., pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. Journal of the American Chemical Society, 1997. 119(7): p. 1619-1623.
23.Benns, J.M., et al., pH-Sensitive Cationic Polymer Gene Delivery Vehicle:  N-Ac-poly(l-histidine)-graft-poly(l-lysine) Comb Shaped Polymer. Bioconjugate Chemistry, 2000. 11(5): p. 637-645.
24.Philippova, O.E., et al., pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid). Macromolecules, 1997. 30(26): p. 8278-8285.
25.Torres-Lugo, M. and N.A. Peppas, Molecular Design and in Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin. Macromolecules, 1999. 32(20): p. 6646-6651.
26.Tonge, S.R. and B.J. Tighe, Responsive hydrophobically associating polymers: a review of structure and properties. Advanced Drug Delivery Reviews, 2001. 53(1): p. 109-122.
27.Murthy, N., et al., The design and synthesis of polymers for eukaryotic membrane disruption. Journal of Controlled Release, 1999. 61(1-2): p. 137-143.
28.Lee, A.S., et al., Structure of pH-Dependent Block Copolymer Micelles:  Charge and Ionic Strength Dependence. Macromolecules, 2002. 35(22): p. 8540-8551.
29.Gohy, J.-F., et al., Stimuli-Responsive Aqueous Micelles from an ABC Metallo-Supramolecular Triblock Copolymer. Macromolecules, 2002. 35(26): p. 9748-9755.
30.Sutton, R.C., et al., Microdomain characterization of styrene-imidazole copolymers. Macromolecules, 1988. 21(8): p. 2432-2439.
31.Chu, S.T., et al., Wavelength trimming of a microring resonator filter by means of a UV sensitive polymer overlay. Photonics Technology Letters, IEEE, 1999. 11(6): p. 688-690.
32.Irvin, D.J., S.H. Goods, and L.L. Whinnery, Direct Measurement of Extension and Force in Conductive Polymer Gel Actuators. Chemistry of Materials, 2001. 13(4): p. 1143-1145.
33.Filipcsei, G., J. Fehér, and M. Zrínyi, Electric field sensitive neutral polymer gels. Journal of Molecular Structure, 2000. 554(1): p. 109-117.
34.Zrínyi, M., Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science, 2000. 278(2): p. 98-103.
35.Satarkar, N.S. and J.Z. Hilt, Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. Journal of Controlled Release, 2008. 130(3): p. 246-251.
36.Traitel, T., Y. Cohen, and J. Kost, Characterization of glucose-sensitive insulin release systems in simulated in vivo conditions. Biomaterials, 2000. 21(16): p. 1679-1687.
37.You, L.-C., et al., Glucose-Sensitive Aggregates Formed by Poly(ethylene oxide)-block-poly(2-glucosyl- oxyethyl acrylate) with Concanavalin A in Dilute Aqueous Medium. Macromolecules, 2002. 36(1): p. 1-4.
38.Wichterle, O. and D. Lim, Hydrophilic gels for biological use. 1960.
39.Samchenko, Y., Z. Ulberg, and O. Korotych, Multipurpose smart hydrogel systems. Advances in colloid and interface science, 2011. 168(1): p. 247-262.
40.Hoffman, A.S., Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. Journal of Controlled Release, 1987. 6(1): p. 297-305.
41.Brøndsted, H. and J. Kopeček, pH-sensitive hydrogels, 1992, ACS Publications.
42.Kim, S.J., et al., Behavior in electric fields of smart hydrogels with potential application as bio-inspired actuators. Smart materials and structures, 2005. 14(4): p. 511.
43.Kim, S.Y., et al., Properties of electroresponsive poly (vinyl alcohol)/poly (acrylic acid) IPN hydrogels under an electric stimulus. Journal of applied polymer science, 1999. 73(9): p. 1675-1683.
44.Ding, Z., et al., Synthesis of glucose-sensitive self-assembled films and their application in controlled drug delivery. Polymer, 2009. 50(17): p. 4205-4211.
45.Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880.
46.Ta, H.T., C.R. Dass, and D.E. Dunstan, Injectable chitosan hydrogels for localised cancer therapy. Journal of Controlled Release, 2008. 126(3): p. 205-216.
47.Gupta, P., K. Vermani, and S. Garg, Hydrogels: from controlled release to pH-responsive drug delivery. Drug discovery today, 2002. 7(10): p. 569-579.
48.Adams, M.L., A. Lavasanifar, and G.S. Kwon, Amphiphilic block copolymers for drug delivery. Journal of pharmaceutical sciences, 2003. 92(7): p. 1343-1355.
49.Wolfert, M.A., et al., Characterization of vectors for gene therapy formed by self-assembly of DNA with synthetic block co-polymers. Human gene therapy, 1996. 7(17): p. 2123-2133.
50.Mukerjee, P. and K.J. Mysels, Critical micelle concentrations of aqueous surfactant systems, 1971, DTIC Document.
51.Soga, O., et al., Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Journal of Controlled Release, 2005. 103(2): p. 341-354.
52.Skrabania, K., The multifarious self-assembly of triblock copolymers: From multi-responsive polymers and multi-compartment micelles, 2009, Universitätsbibliothek.
53.Elworthy, P.H., A.T. Florence, and C.B. Macfarlane, Solubilization by surface-active agents and its applications in chemistry and the biological sciences1968: Chapman and Hall London.
54.Gao, Z. and A. Eisenberg, A model of micellization for block copolymers in solutions. Macromolecules, 1993. 26(26): p. 7353-7360.
55.Winnik, F.M., et al., Amphiphilic poly (N-isopropylacrylamides) prepared by using a lipophilic radical initiator: synthesis and solution properties in water. Macromolecules, 1992. 25(7): p. 1876-1880.
56.Alexandridis, P., et al., Surface activity of poly (ethylene oxide)-block-poly (propylene oxide)-block-poly (ethylene oxide) copolymers. Langmuir, 1994. 10(8): p. 2604-2612.
57.Cao, L., I. Manners, and M.A. Winnik, Synthesis and self-assembly of the organic-organometallic diblock copolymer poly (isoprene-b-ferrocenylphenylphosphine): Shell cross-linking and coordination chemistry of nanospheres with a polyferrocene core. Macromolecules, 2001. 34(10): p. 3353-3360.
58.Zhang, L. and A. Eisenberg, Multiple morphologies and characteristics of “crew-cut” micelle-like aggregates of polystyrene-b-poly (acrylic acid) diblock copolymers in aqueous solutions. Journal of the American Chemical Society, 1996. 118(13): p. 3168-3181.
59.Chen, Z., et al., Unique toroidal morphology from composition and sequence control of triblock copolymers. Journal of the American Chemical Society, 2005. 127(24): p. 8592-8593.
60.Jain, S. and F.S. Bates, On the origins of morphological complexity in block copolymer surfactants. Science, 2003. 300(5618): p. 460-464.
61.Dreiss, C.A., Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter, 2007. 3(8): p. 956-970.
62.Na, K., K.H. Lee, and Y.H. Bae, pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. Journal of Controlled Release, 2004. 97(3): p. 513-525.
63.Hiemenz, P.C. and R. Rajagopalan, Principles of Colloid and Surface Chemistry, revised and expanded. Vol. 14. 1997: CRC Press.
64.Pack, D.W., D. Putnam, and R. Langer, Design of imidazole‐containing endosomolytic biopolymers for gene delivery. Biotechnology and bioengineering, 2000. 67(2): p. 217-223.
65.Jones, M.-C. and J.-C. Leroux, Polymeric micelles–a new generation of colloidal drug carriers. European journal of pharmaceutics and biopharmaceutics, 1999. 48(2): p. 101-111.
66.Flory, P.J., The mechanism of vinyl polymerizations. Journal of the American Chemical Society, 1937. 59: p. 241-253.
67.Flory, P.J., Principles of polymer chemistry. The George Fisher Baker non-resident lectureship in chemistry at Cornell University1953, Ithaca,: Cornell University Press. 672 p.
68.Odian, G.G., Principles of polymerization. 3rd ed1991, New York: Wiley. xxii, 768 p.
69.Shipp, D.A., Living radical polymerization: Controlling molecular size and chemical functionality in vinyl polymers. Journal of Macromolecular Science-Polymer Reviews, 2005. C45(2): p. 171-194.
70.Hawker, C.J., A.W. Bosman, and E. Harth, New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews, 2001. 101(12): p. 3661-3688.
71.Chiefari, J., et al., Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): p. 5559.
72.Rizzardo, E., et al., Tailored polymer architectures by reversible addition-fragmentation chain transfer. Macromolecular Symposia, 2001. 174: p. 209-212.
73.Smith, A.E., X.W. Xu, and C.L. Mccormick, Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Progress in Polymer Science, 2010. 35(1-2): p. 45-93.
74.Chiefari, J., et al., Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules, 2003. 36(7): p. 2273-2283.
75.Barner-Kowollik, C., et al., Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate. Macromolecules, 2001. 34(22): p. 7849-7857.
76.Kwak, Y., et al., A kinetic study on the rate retardation in radical polymerization of styrene with addition-fragmentation chain transfer. Macromolecules, 2002. 35(8): p. 3026-3029.
77.王于誠. 環境敏感型磁性奈米顆粒之研製與藥物釋放性質研究I.以無乳化劑乳化聚合法合成中空磁性奈米顆粒II.以活性聚合法合成自組裝奈米顆粒. 台灣大學材料科學暨工程學研究所 碩士論文 (2011.7).
78.Schilli, C.M., et al., A new double-responsive block copolymer synthesized via RAFT polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004. 37(21): p. 7861-7866.
79.Schilli, C.M., Novel Precursors for Polymer-Protein-Conjugate Synthesis via Reversible Addition-Fragmentation Chain Transfer Polymerization
Neuartige Precursor zur Synthese von Polymer-Protein-Konjugaten über Reversible Additions-Fragmentierungs-Transfer-Polymerisation, 2003.
80.Govender, T., et al., Complex Formation Between The Anionic Polymer (PAA) and a Cationic Drug (Procaine HC1): Characterization by Microcalorimetric Studies. Pharmaceutical Research, 1999. 16(7): p. 1125-1131.
81.Park, S.Y. and Y.H. Bae, Novel pH‐sensitive polymers containing sulfonamide groups. Macromolecular rapid communications, 1999. 20(5): p. 269-273.
82.Kang, S.I. and Y.H. Bae, pH-induced solubility transition of sulfonamide-based polymers. Journal of Controlled Release, 2002. 80(1): p. 145-155.
83.United States Patent Patent number:6,103,865 Date of patent: Aug.15,2000
84.Huh, K.M., et al., pH-sensitive polymers for drug delivery. Macromolecular Research, 2012. 20(3): p. 224-233.
85.Wen-Ju Chuanga, Thermally crosslinkable poly(N-isopropylacrylamide) copolymers: Synthesis and characterization of temperature-responsive hydrogel. Materials Chemistry and Physics, 15 June 2012. Volume 134,( Issues 2–3, ): p. 1208-1213.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 新型無乳化劑乳化聚合技術開發:製備活性共聚乳膠及均一粒徑有機/無機混成乳膠
2. 具溫度感應性質之 PEDOT:PSS/PNIPAAm 透明導電薄膜合成及性質研究
3. 環境敏感型高分子奈米材料製備(PNIPAAm/chitosan)及其於藥物釋放與金屬離子吸附之應用
4. 具溫感性、熱可交聯性聚(異丙基丙烯醯胺)共聚物及其導電碳黑複合材料之製備,靜電紡纖維,性質與形態分析
5. 高折射率奈米二氧化鋯/矽樹脂複合材料之製備及其在LED封裝材料的應用
6. 環境敏感型磁性奈米顆粒之研製與藥物釋放性質研究I.以無乳化劑乳化聚合法合成中空磁性奈米顆粒II.以活性聚合法合成自組裝奈米顆粒
7. 酸鹼敏感型聚葡萄糖水膠:丙烯酸對水膠製備與膨潤性質影響
8. 共軛高分子/富勒烯衍生物之高分子太陽能電池熱穩定性質探討
9. 芯鞘型溫感性導電複合纖維之製備與其形態性質分析
10. 新型發光二極體封裝材料之開發:無機顆粒/矽樹脂複合材料之製備
11. 以異質吸引法製備高分子/碳黑複合顆粒及其性質與應用研究
12. 以水性聚胺酯為基底引入壓克力多元醇及二氧化矽合成可熱交聯之抗腐蝕塗料
13. 不同交聯度PNIPAAm感溫性水膠之機械及膨潤收縮性質探討
14. 以環境敏感型高分子:幾丁聚醣與聚(氮-異丙基丙烯醯胺)製備奈米顆粒於藥物釋放的研究
15. 新穎性光可交聯樹脂在黑色矩陣之運用:合成、製備、與動力學研究