(3.235.245.219) 您好!臺灣時間:2021/05/10 02:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳三和
研究生(外文):San-He Wu
論文名稱:同功群間捕食在生物防治中所扮演之角色
論文名稱(外文):The role of intraguild predation in biological control
指導教授:奧山利規
指導教授(外文):Toshinori Okuyama
口試委員:黃榮南任秀慧
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:35
中文關鍵詞:同生態功能群個體間相互捕食功能反應生物防治草蛉瓢蟲
外文關鍵詞:intraguild predationfunctional responsebiological controlgreen lacewingladybird beetle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:458
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物防治媒介 (biological control agent) 的挑選對害蟲管理的成功與否相當重要。但由於生物防治媒介之間有相互攻擊的可能性,使防治媒介的挑選變得格外困難 (即同生態功能群個體間相互捕食;intraguild predation)。根據實際研究,使用多種生物防治媒介時,與僅使用單一防治媒介相比,害蟲族群量有上升、下降或不變等情形。然而,現有的模型無法解釋為何有效果上的差異。為了讓理論研究能夠與實際研究相符,此篇論文同時使用實作與理論等研究方法。在實作方面,進行了四種常見生物防治媒介 (基徵草蛉、小十三星瓢蟲、赤星瓢蟲、錨紋瓢蟲) 的功能反應 (functional response) 實驗。在理論部份,藉由實驗數據的支持,建立了一同功群間捕食的數學模型。對新模型進行分析後發現,此模型能夠解釋實際研究時效果上的差異。且此數學模型的分析結果,也討論了生物防治媒介上的挑選。

The selection of biological control agents is a crucial decision for the success of pest management practices, which is made difficult by predation among agents (i.e., intraguild predation, IGP). Empirical studies show that the use of multiple agents can have positive, negative, or neutral effects on the control of pest populations (compared to the use of the single most efficient agent). However, current theoretical models are unable to explain the observed variation in biological control outcomes. This study combined theoretical and empirical approaches to bridge the gap between theory and observed patterns. In the empirical part, the functional responses of four common biological agents (Mallada basalis, Harmonia dimidiate, Lemnia saucia and Lemnia biplagiata) were determined. In the theoretical part, a mathematical model of IGP was developed by using the functional response model that was best supported in the experiment. The analysis of the model indicated that the model can explain the variation in biological control outcomes found in empirical studies. Biological control implications of model predictions are discussed with respect to the selection of biological control agents.

Acknowledgement i
Chinese abstract ii
Abstract iii
Table of contents iv
List of figures v
List of tables vi
1. Introduction 1
2. Functional response of biological control agents 4
2.1 Materials and Methods 4
2.1.1 Indirect method 5
2.1.1.1 Data 5
2.1.1.2 Statistical method 6
2.1.2 Direct method 8
2.1.2.1 Data 8
2.1.2.2 Statistical method 8
2.2 Results 9
3. Flexible functional response in IGP dynamics 11
3.1 The model 11
3.2 Analysis 12
3.3 Results 13
4. Discussion 15
References 19
Appendix 33


Abad-Moyano R, Urbaneja A, Hoffmann D, Schausberger P. 2010. Effects of Euseius stipulatus on establishment and efficacy in spider mite suppression of Neoseiulus californicus and Phytoseiulus persimilis in clementine. Experimental and Applied Acarology 50: 329-341.
Abrams PA. 1982. Functional responses of optimal foragers. American Naturalist 120: 382-390.
Abrams PA. 2010. Implications of flexible foraging for interspecific interactions: lessons from simple models. Functional Ecology 24: 7-17.
Agboton BV, Hanna R, Onzo A, Vidal S, von Tiedemann A. 2013. Interactions between the predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae and consequences for the suppression of their shared prey/host Mononychellus tanajoa. Experimental and Applied Acarology 60: 205-217.
Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds). Second international symposium on information theory. Akademiai Kiado, Budapest, Hungary. pp. 267-281.
Alexander ME, Dick JTA, O''Connor NE. 2013. Born to kill: predatory functional responses of the littoral amphipod Echinogammarus marinus Leach throughout its life history. Journal of Experimental Marine Biology and Ecology 439: 92-99.
Ameixa OMCC, Messelink GJ, Kindlmann P. 2013. Nonlinearities lead to qualitative differences in population dynamics of predator-prey systems. PLoS ONE 8: e62530.
Arditi R, Akçakaya HR. 1990. Underestimation of mutual interference of predators. Oecologia 83: 358-361.
Baverstock J, Clark SJ, Alderson PG, Pell JK. 2009. Intraguild interactions between the entomopathogenic fungus Pandora neoaphidis and an aphid predator and parasitoid at the population scale. Journal of Invertebrate Pathology 102: 167-172.
Beddington JR. 1975. Mutual interference between parasites or predators and its effect on searching efficiency. Journal of Animal Ecology 44: 331-340.
Bolker B, Holyoak M, Křivan V, Rowe L, Schmitz O. 2003. Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84: 1101-1114.
Bolker BM. 2008. Ecological models and data in R. Princeton University Press, New Jeresy, USA.
Briggs CJ, Borer ET. 2005. Why short-term experiments may not allow long-term predictions about intraguild predation. Ecological Applications 15: 1111-1117.
Burnham KP, Anderson DR. 2002. Model selection and multi-model inference: a practical information-theoretic approach. Springer, New York, USA.
Case TJ. 2000. An illustrated guide to theoretical ecology. Oxford University Press, New York, USA.
Chacón JM, Landis DA, Heimpel GE. 2008. Potential for biotic interference of a classical biological control agent of the soybean aphid. Biological Control 46: 216-225.
Chow A, Chau A, Heinz KM. 2010. Compatibility of Amblyseius (Typhlodromips) swirskii (Athias-Henriot) (Acari: Phytoseiidae) and Orius insidiosus (Hemiptera: Anthocoridae) for biological control of Frankliniella occidentalis (Thysanoptera: Thripidae) on roses. Biological Control 53: 188-196.
Collazo JA, Gilliam JF, Miranda-Castro L. 2010. Functional response models to estimate feeding rates of wading birds. Waterbirds 33: 33-40.
Crumrine PW. 2010. Size-structured cannibalism between top predators promotes the survival of intermediate predators in an intraguild predation system. Journal of the North American Benthological Society 29: 636-646.
Culler LE, Lamp WO. 2009. Selective predation by larval Agabus (Coleoptera: Dytiscidae) on mosquitoes: support for conservation-based mosquito suppression in constructed wetlands. Freshwater Biology 54: 2003-2014.
Cusumano A, Peri E, Vinson SB, Colazza S. 2011. Intraguild interactions between two egg parasitoids exploring host patches. BioControl 56: 173-184.
De Clercq P, Mohaghegh J, Tirry L. 2000. Effect of host plant on the functional response of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Biological Control 18: 65-70.
DeAngelis DL, Goldstein RA, O''neill RV. 1975. A model for trophic interaction. Ecology 56: 881-892.
Farhadi R, Allahyari H, Juliano SA. 2010. Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). Environmental Entomology 39: 1586-1592.
Ferreira JAM, Cunha DFS, Pallini A, Sabelis MW, Janssen A. 2011. Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology 36: 435-441.
González-Fernández JJ, de la Peña F, Hormaza JI, Boyero JR, Vela JM, Wong E, Trigo MM, Montserrat M. 2009. Alternative food improves the combined effect of an omnivore and a predator on biological pest control. A case study in avocado orchards. Bulletin of Entomological Research 99: 433-444.
Grabowski JH, Hughes AR, Kimbro DL. 2008. Habitat complexity influences cascading effects of multiple predators. Ecology 89: 3413-3422.
Grez AA, Zaviezo T, Mancilla A. 2011. Effect of prey density on intraguild interactions among foliar- and ground-foraging predators of aphids associated with alfalfa crops in Chile: a laboratory assessment. Entomologia Experimentalis et Applicata 139: 1-7.
Hastings A. 1997. Population biology: concepts and models. Springer, New York, USA.
Herrick NJ, Reitz SR, Carpenter JE, O’Brien CW. 2008. Predation by Podisus maculiventris (Hemiptera: Pentatomidae) on Plutella xylostella (Lepidoptera: Plutellidae) larvae parasitized by Cotesia plutellae (Hymenoptera: Braconidae) and its impact on cabbage. Biological Control 45: 386-395.
Hilborn R. 1997. The ecological detective: confronting models with data. Princeton University Press, New Jeresy, USA.
Hogg BN, Daane KM. 2011. Diversity and invasion within a predator community: impacts on herbivore suppression. Journal of Applied Ecology 48: 453-461.
Hogg BN, Wang XG, Levy K, Mills NJ, Daane KM. 2013. Complementary effects of resident natural enemies on the suppression of the introduced moth Epiphyas postvittana. Biological Control 64: 125-131.
Holling CS. 1959. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist 91: 293-320.
Holt RD, Huxel GR. 2007. Alternative prey and the dynamics of intraguild predation: theoretical perspectives. Ecology 88: 2706-2712.
Hosseini M, Ashouri A, Enkegaard A, Weisser WW, Goldansaz SH, Mahalati MN, Moayeri HRS. 2010. Plant quality effects on intraguild predation between Orius laevigatus and Aphidoletes aphidimyza. Entomologia Experimentalis et Applicata 135: 208-216.
Janssen A, Montserrat M, HilleRisLambers R, de Roos AM, Pallini A, Sabelis MW. 2006. Intraguild predation usually does not disrupt biological control trophic and guild in biological interactions control. In: Brodeur J, Boivin G (eds). Trophic and guild interactions in biological control. Springer, Netherlands. pp. 21-44.
Janssen A, Sabelis MW, Magalhães S, Montserrat M, Van der Hammen T. 2007. Habitat structure affects intraguild predation. Ecology 88: 2713-2719.
Johnson JB, Omland KS. 2004. Model selection in ecology and evolution. Trends in Ecology & Evolution 19: 101-108.
Kishida O, Trussell GC, Nishimura K. 2009. Top-down effects on antagonistic inducible defense and offense. Ecology 90: 1217-1226.
Kratina P, Vos M, Bateman A, Anholt BR. 2009. Functional responses modified by predator density. Oecologia 159: 425-433.
Křivan V, Diehl S. 2005. Adaptive omnivory and species coexistence in tri-trophic food webs. Theoretical Population Biology 67: 85-99.
Law YH, Rosenheim JA. 2011. Effects of combining an intraguild predator with a cannibalistic intermediate predator on a species-level trophic cascade. Ecology 92: 333-341.
Lee JH, Kang TJ. 2004. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) to Aphis gossypii Glover (Homoptera: Aphididae) in the laboratory. Biological Control 31: 306-310.
Médoc V, Spataro T, Arditi R. 2013. Prey: predator ratio dependence in the functional response of a freshwater amphipod. Freshwater Biology 58: 858-865.
Madadi H, Enkegaard A, Brødsgaard HF, Kharrazi-Pakdel A, Ashouri A, Mohaghegh-Neishabouri J. 2009. Interactions between Orius albidipennis (Heteroptera: Anthocoridae) and Neoseiulus cucumeris (Acari: Phytoseiidae): effects of host plants under microcosm condition. Biological Control 50: 137-142.
Messelink GJ, Bloemhard CMJ, Sabelis MW, Janssen A. 2013. Biological control of aphids in the presence of thrips and their enemies. BioControl 58: 45-55.
Moreno CR, Lewins SA, Barbosa P. 2010. Influence of relative abundance and taxonomic identity on the effectiveness of generalist predators as biological control agents. Biological Control 52: 96-103.
Mylius SD, Klumpers K, de Roos AM, Persson L. 2001. Impact of intraguild predation and stage structure on simple communities along a productivity gradient. American Naturalist 158: 259-276.
Noppe C, Michaud JP, De Clercq P. 2012. Intraguild predation between lady beetles and lacewings: outcomes and consequences vary with focal prey and arena of interaction. Annals of the Entomological Society of America 105: 562-571.
Ofuya TI. 1986. Predation by Cheilomenes Vicina [Coleoptera: Coccinellidae] on the cowpea aphid, Aphis craccivora [Homoptera: Aphididae] : effect of prey stage and density. Entomophaga 31: 331-335.
Okuyama T. 2009. Intraguild predation in biological control: consideration of multiple resource species. BioControl 54: 3-7.
Okuyama T. 2012. Flexible components of functional responses. Journal of Animal Ecology 81: 185-189.
Okuyama T. 2013. On selection of functional response models: Holling’s models and more. BioControl 58: 293-298.
Okuyama T, Bolker BM. 2012. Model-based, response-surface approaches to quantifying indirect interactions. In: Ohgushi T, Schmitz O, Holt RD (eds). Trait-mediated indirect interactions: ecological and evolutionary perspectives. Cambridge University Press, Cambridge, UK. pp. 186-206.
Okuyama T, Ruyle RL. 2011. Solutions for functional response experiments. Acta Oecologica 37: 512-516.
Paull CA, Schellhorn NA, HilleRisLambers R, Austin AD. 2012. Escape from parasitoids leave larvae vulnerable to predators and has unexpected outcomes for pest suppression. Basic and Applied Ecology 13: 542-550.
Pervez A, Omkar. 2005. Functional responses of coccinellid predators: an illustration of a logistic approach. Journal of Insect Science 5: 1-6.
R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing Vienna, Austria. URL. http://www.R-project.org.
Rahman T, Spafford H, Broughton S. 2011. Single versus multiple releases of predatory mites combined with spinosad for the management of western flower thrips in strawberry. Crop Protection 30: 468-475.
Reigada C, Godoy WAC. 2012. Direct and indirect top‐down effects of previous contact with an enemy on the feeding behavior of blowfly larvae. Entomologia Experimentalis et Applicata 142: 71-77.
Rogers D. 1972. Random search and insect population models. Journal of Animal Ecology 41: 369-383.
Rosenzweig ML, MacArthur RH. 1963. Graphical representation and stability conditions of predator-prey interactions. American Naturalist 97: 209-223.
Rudolf VHW. 2008. Consequences of size structure in the prey for predator–prey dynamics: the composite functional response. Journal of Animal Ecology 77: 520-528.
Ruxton GD, Gurney WSC. 1994. Deriving the functional response without assuming homogeneity. American Naturalist 144: 537-541.
Saha N, Aditya G, Banerjee S, Saha GK. 2012. Predation potential of odonates on mosquito larvae: implications for biological control. Biological Control 63: 1-8.
Schmitt RJ, Holbrook SJ, Brooks AJ, Lape JCP. 2009. Intraguild predation in a structured habitat: distinguishing multiple-predator effects from competitor effects. Ecology 90: 2434-2443.
Seko T, Miura K. 2008. Functional response of the lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) on the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Applied Entomology and Zoology 43: 341-345.
Shakya S, Coll M, Weintraub PG. 2010. Incorporation of intraguild predation into a pest management decision-making tool: the case of thrips and two pollen-feeding predators in strawberry. Journal of Economic Entomology 103: 1086-1093.
Spataro T, Bacher S, Bersier LF, Arditi R. 2012. Ratio-dependent predation in a field experiment with wasps. Ecosphere 3: art. 124.
Turchin P. 2003. Complex population dynamics: a theoretical/empirical synthesis. Princeton University Press, Princeton, New Jersey, USA.
Vacari AM, De Bortoli SA, Torres JB. 2012. Relationship between predation by Podisus nigrispinus and developmental phase and density of its prey, Plutella xylostella. Entomologia Experimentalis et Applicata 145: 30-37.
Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A. 2007. The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88: 2689-2696.
Vieira LC, Salom SM, Kok LT. 2012. Functional and numerical response of Laricobius spp. predators (Coleoptera: Derodontidae) on hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae). Biological Control 61: 47-54.
Vonesh JR, Bolker BM. 2005. Compensatory larval responses shift trade-offs associated with predator-induced hatching plasticity. Ecology 86: 1580-1591.
Vucetich JA, Peterson RO, Schaefer CL. 2002. The effect of prey and predator densities on wolf predation. Ecology 83: 3003-3013.
Wells ML, McPherson RM. 1999. Population dynamics of three coccinellids in flue-cured tobacco and functional response of Hippodamia convergens (Coleoptera: Coccinellidae) feeding on tobacco aphids (Homoptera: Aphididae). Environmental Entomology 28: 768-773.
Wells PM, Baverstock J, Majerus MEN, Jiggins FM, Roy HE, Pell JK. 2011. The effect of the coccinellid Harmonia axyridis (Coleoptera: Coccinellidae) on transmission of the fungal pathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae). European Journal of Entomology 108: 87-90.
Whitehouse MEA, Mansfield S, Barnett MC, Broughton K. 2011. From lynx spiders to cotton: behaviourally mediated predator effects over four trophic levels. Austral Ecology 36: 687-697.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江明修,2000,〈政權移轉與文官體制的改革〉,《國策專刊》,15:12-14。
2. 朱楠賢,2005,《新治理模式下的政府組織設計》,游於藝電子報第50期。
3. 朱立倫,2011,〈雙子城治理之規劃與發展—大臺北黃金雙子城計畫〉,《研考雙月刊》,35(6):112-118。
4. 李衍儒,2009,〈中央與地方政府對地方人事制度的視框衝突〉,《文官制度季刊考試院八十周年慶特刊》:55-91。
5. 宋餘俠、謝偉智,2009,〈行政組織改造設計原則與實務〉,《研考雙月刊》,33(3):58-71。
6. 呂育誠,2004b,〈中央與地方夥伴關係的省思與展望〉,《中國行政》,75:29- 56。
7. 陳金貴,1995,〈人力資源管理應用在公共部門的探討(上)(中)(下)〉,《人事月刊》,121:33-37、122:20-25、123:18-23。
8. 陳朝建,2011,〈改制直轄市後區公所功能業務調整及其治理能力提升策略〉,《研考雙月刊》35(6):71-87。
9. 黃富源、王崇斌,2012,〈行政院政府組織改造人力資源管理的重點與展望〉,《國家菁英》,8(3):1-19。
10. 黃榮志、陳瑋玲,2012,〈行政組織理論與實務探討─以行政院新機關組織架構為例〉,《研考雙月刊》36(2):67-80。
11. 彭錦鵬,2001,〈行政院再造宜設十五個部〉,《國家政策論壇》,1(10):124。
12. 趙永茂,1997b,〈縣市政府的組織定位與組織調整〉,《理論與政策》夏季號:30-42。
13. 趙永茂,2003,〈台灣府際關係與跨域管理:文獻回顧與策略途徑初探〉,《政治科學論叢》,18:53-70。
14. 趙永茂、陳銘顯,2010,〈我國地方與新都會發展的挑戰與回應〉,《研考雙月刊》34(6):23-32。
15. 蔡茂寅,2000,〈當前地方自治重大問題及其因應之道的探討—政黨輪替下的省思〉,《月旦法學雜誌》,61:61-68。
 
系統版面圖檔 系統版面圖檔