跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳晟弘
研究生(外文):Sheng-Hong Chen
論文名稱:苝四甲酸二酐有機自旋閥系統中介面特性對磁電容效應的影響
論文名稱(外文):The Influence of Interfacial Characteristics on Magnetocapacitance in PTCDA-Based Organic Spin Valve
指導教授:林敏聰林敏聰引用關係
指導教授(外文):Minn-Tsong Lin
口試委員:江文中何家驊
口試委員(外文):Wen-Chung ChiangChia-Hua Ho
口試日期:2013-06-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:54
中文關鍵詞:有機自旋閥阻抗磁電阻磁電容介面金屬-有機苝四甲酸二酐電荷累積
外文關鍵詞:Organic spin valveImpedanceMagnetoresistanceMagnetocapacitanceInterfaceMetal-organicPTCDACharge accumulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們成功地經由磁控濺鍍和熱蒸鍍的技術製備出苝四甲酸二酐(3,4,9,10-perylene-teracarboxylic dianhydride)有機自旋閥,且透過直流四點量測與交流兩點量測的分析技術對樣品做一系列的特性分析,並討論室溫之下樣品磁性與電性的性質。從 2奈米中間層厚度的有機自旋閥中得到具有14.6%磁電阻率以及-1.93%磁電容率的行為表現,並找出與以氧化鋁作為中間層的磁性穿隧元件截然不同的介面行為,也就是負數介面電容。我們推測這樣的行為表現來自於介面能階的電荷累積,而這種電荷累積是由金屬與有機介面偶極層和有機層內靠近介面邊緣處因能帶彎曲造成的擴散層所貢獻。此外,藉由分析磁阻抗頻譜以及介面電容的特性,討論有機自旋閥中不同中間層厚度的影響,並發現截止頻率會隨著有機自旋閥中中間層厚度增厚而變小,磁電容率的大小也與磁電阻率一樣會隨著厚度增厚而減少以及觀察出介面電容具有厚度依賴性的電荷累積情形。簡單地說,透過磁電容的量測分析技術,我們展示了介面電容與中間層特性及厚度的關係並提供了許多關於有機自旋閥系統中電容以及介面特性的相關資訊。

Organic spin valves (OSVs) with a thin organic semiconductor (OSC) spacer of 3,4,9,10-perylene-teracarboxylic dianhydride (PTCDA) were fabricated using magneto-sputtering and thermal evaporating technique, and characterized by DC four-probe sensing, AC two-terminal measuring analysis technique to discuss the magnetic and electric properties at room temperature. The magnetoresistance ratio of 14.6% and the magnetocapacitance of -1.93% were demonstrated in the OSV with 2nm-PTCDA spacer at room temperature. To figure out the negative interfacial capacitances, we speculate that the behavior is attributed to the charge accumulation at the metal-organic interfacial dipole layer and the diffusion layer induced by band bending. The capacitive property is different to the Al2O3-based magnetic tunnelling junction. Furthermore, the influence of spacer thickness to magnetoimpedance and interfacial capacitance in OSVs with three different thickness spacers are investigated. Working out that the cut-off frequency is got smaller as the OSV spacer became thicker in magnetoimpedance spectrum. The influence of spacer thickness to magnetocapacitance performance is decay with the same to magnetoresistance, and that charge accumulation at the interface states can be affected by the thickness of the PTCDA-spacer. Briefly, the interfacial capacitance related to the spacer thickness and characteristic using the analysis technique of magnetocapacitance is demonstrated, which provide the information about the capacitive and interfacial properties in PTCDA-OSV system.

1 Introduction 1
2 Basic Concepts 3
2.1 Introduction of Magnetoresistance . . . . . . . . . . . . . . . . . . . . 3
2.1.1 Giant Magnetoresistance . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Tunneling Magnetoresistance . . . . . . . . . . . . . . . . . . 6
2.2 Dielectric Properties and Capacitance . . . . . . . . . . . . . . . . . . 8
2.2.1 Parallel-Plate Capacitor . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Impedance based on the RC equivalent parallel model . . . . . 10
2.2.3 Interfacial capacitance . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Magnetocapacitance E ect . . . . . . . . . . . . . . . . . . . . 13
2.3 Organic Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Organic Semiconductor . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Metal-Organic electronic structure . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Metal-Organic Interfacial dipole layer . . . . . . . . . . . . . . 14
2.4.2 Band bending in organic layer . . . . . . . . . . . . . . . . . . 18
3 Experimental Fabrication and Apparatus 20
3.1 Fabrication Instrument . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.1 Multi-functional deposition chamber . . . . . . . . . . . . . . 21
3.1.2 Sample Controlled mechanism . . . . . . . . . . . . . . . . . . 22
3.1.3 Magnetron Sputtering System . . . . . . . . . . . . . . . . . . 24
3.1.4 Thermal Evaporation System . . . . . . . . . . . . . . . . . . 25
3.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Magneto-Transport Characterization Tools . . . . . . . . . . . . . . . 31
3.3.1 Direct current (DC) four-terminal sensing . . . . . . . . . . . 31
3.3.2 Alternating current (AC) Impedance Measurement . . . . . . 32
4 Experimental Results and Discussion 33
4.1 DC Bias Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.1 Magneto-transport property . . . . . . . . . . . . . . . . . . . 33
4.2 AC Bias Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Magnetocapacitive characteristic and model simulation . . . . 34
4.2.2 Interfacial capacitive property . . . . . . . . . . . . . . . . . . 40
4.2.3 Capacitive properties at di erent spacer thickness . . . . . . . 41
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5 Conclusion 49
Bibliography 51

[1] M. Johnson and R. H. Silsbee,Phys. Rev. Lett. 55, 1790 (1985).
[2] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn,Phys. Rev. B 39, 4828
(1989).
[3] C. Tsang, R. Fontana, T. Lin, D. Heim, V. Speriosu, B. Gurney, and
M.Williams, Magnetics,IEEE Transactions on 30, 3801 (1994).
[4] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey,Phys. Rev. Lett.
74, 3273 (1995).
[5] T. Miyazaki and N. Tezuka,Journal of Magnetism and Magnetic Materials
139, 231 (1995).
[6] Z. Xiong, D. Wu, Z. V. Vardeny, and J. Shi,Nature 427, 821 (2004).
[7] K. S. Li, Y. M. Chang, S. Agilan, J. Y. Hong, J. C. Tai, W. C. Chiang, K.
Fukutani, P. A. Dowben, and M. T. Lin, Phys. Rev. B 83, 172404 (2011).
[8] J. B. Youssef, K. Bouziane, O. Koshkina, H. Le Gall, M. El Harfaoui, M.
El Yamani, J. Desvignes, and A. Fert, Journal of Magnetism and Magnetic
Materials 165, 288 (1997).
[9] S. Zhang, Phys. Rev. Lett. 83, 640 (1999).
[10] P. Hammar, B. Bennett, M. Yang, and M. Johnson,Phys. Rev. Lett. 83, 203
(1999).
[11] C. Tang and S. VanSlyke,Appl. Phys. Lett. 51, 913 (1987).
[12] R. Friend, et al.,Nature 397, 121 (1999).
[13] C. D. Dimitrakopoulos and P. R. Malenfant,Adv. Mater. 14, 99 (2002).
[14] P. Peumans, S. Uchida, and S. R. Forrest, Materials for Sustainable Energy:
A Collection of Peer-Reviewed Research and Review Articles from Nature
Publishing Group, 94 (2010).
[15] V. Dediu, M. Murgia, F. Matacotta, C. Taliani, and S. Barbanera,Solid State
Comm. 122, 181 (2002).
[16] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petro ,Phys.
Rev. B 61 3672 (1988)
[17] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petro , P. Etienne,
G. Creuzet, A. Friederich, and J. Chazelas,Phys. Rev. Lett. 61, 2472 (1988).
[18] N. Mott,Proceeding of the Royal Society of London. Series A, Mathematical
and Physical Sciences 153, 699 (1936).
[19] M. Julli ere, Phys. Lett. A 54, 225 (1975).
[20] C. Mead, Phys. Rev. Lett. 6, 545 (1961).
[21] H. Y. Ku and F. G. Ullman, J. Appl. Phys. 35, 265 (1964).
[22] D. New, N. Lee, H. Tan, and T. Castner, Phys. Rev. Lett. 48, 1208 (1982).
[23] K. T. McCarthy, A. F. Hebard, and S. B. Arnason, Phys. Rev. Lett. 90, 117201
(2003).
[24] K. Kim and B. Min, J. Appl. Phys. 101, 09G507 (2007).
[25] H. Ishii, K. Sugiyama, E. Ito, and K. Seki,Adv. Mater. 11, 605 (1999).
[26] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.,Wiley, New York 1981.
[27] K. C. Kao,W. Hwang,Electrical Transport in Solids, Pergamon, Oxford 1981.
[28] M. Schott, in Organic Conductors: Fundamentals and Applications (Ed: P.
Farges ), Marcel Dekker, New York 1994, pp. 539-646.
[29] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. Forrest,
Phys. Rev. B 54, 13748 (1996).
[30] H. J. Freund, H. Kuhlenbeck,in Application of Synchrotorn Radiation (Ed:
W. Eberhardt), Springer, Berlin 1995, pp. 9-60.
[31] Richard J. Murdey and William R. Salaneck Jpn. J. Appl. Phys. 44 (2005)
pp. 3751-3756
[32] K. Wandelt, J. E. Hulse,J. Chem. Phys. 80, 1340, (1984).
[33] H. Ishii, K. Seki,IEEE Trans. Electron Dev.44, 1295 (1997).
[34] K. Seki, T. Tani, H. Ishii,Thin Solid Films 273, 20 (1996).
[35] K. Seki, H. Yanagi, Y. Kobayashi, T. Ohta, and T. Tani,Phys. Rev. B 49,
2760 (1994).
[36] D. Song, J. Nowak, and M. Covington, J. Appl. Phys. 87, 5197 (2000).
[37] C. Barraud et al., Nature Phys. 6, 615 (2010).
[38] Y. M. Chang, K. S. Li, H. Huang, M. J. Tung, S. Y. Tong, and M. T. Lin, J.
Appl. Phys. 107, 093904 (2010).
[39] K. T. McCarthy, S. B. Arnason, and A. F. Hebard,Appl. Phys. Lett. 74, 302
(1999).
[40] G. Landry, Y. Dong, J. Du, X. Xiang, and J. Q. Xiao,Appl. Phys. Lett. 78,
501 (2001).
[41] J. Bisquert, G. Garcia-Belmonte, A. Pitarch, and H. J. Bolink,Chem. Phys.
Lett. 422, 184 (2006)
[42] I. Mora-Sero, et al.,Nano Lett. 6, 640 (2006).
[43] P. Padhan, P. LeClair, A. Gupta, K. Tsunekawa, and D. Djayaprawira,Appl.
Phys. Lett. 90, 142105 (2007).
[44] K. T. McCarthy, A. F. Hebard, and S. B. Arnason, Phys. Rev. Lett. 90, 117201
(2003).
[45] H. Kaiju, S. Fujita, T. Morozumi, and K. Shiiki, J. Appl. Phys. 91, 7430
(2002).
[46] H. Miesenbock and M. Tosi,Z. Phy. B : Condens. Matter 78, 255 (1990).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊