(3.238.96.184) 您好!臺灣時間:2021/05/08 04:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇怡瑄
研究生(外文):Yi-Hsuan Su
論文名稱:三元稀土合金R8CoGa3(R = 釔及稀土元素)之結構、電性與磁性研究
論文名稱(外文):Structure, Electrical and Magnetic Properties of the R8CoGa3 (R = Y and rare earth atoms) compounds
指導教授:陳政維陳政維引用關係
指導教授(外文):Jenq-Wei Chen
口試委員:張慶瑞周方正林金福
口試委員(外文):Ching-Ray ChangF.C. ChouKing-Fu Lin
口試日期:2013-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:稀土元素三元合金AlB2結構近藤效應超導
外文關鍵詞:rare earthternary alloyAlB2 structureKondo effectsuperconductivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三元稀土合金R8CoGa3(R = 釔及稀土元素),結構為六角晶系,空間群為P63mc 與Space No. 186。晶格常數由La8CoGa3的a = 11.05 A and c = 7.064 A隨著稀土元素的原子量增加減少。
這個系列R8CoGa3的電阻率量測範圍由室溫的300 K量測到低溫約4~5 K。La8CoGa3這個樣品在6 K顯示典型的超導相轉換。而對於R = Ce, Pr, Nd, Gd, Dy, Ho的樣品們,電阻率隨著溫度下降而上升,分別在不同的溫度顯現出電阻極大值。而Y8CoGa3這個樣品則在溫度為155 K時顯示出電阻極小值。部分的樣品的雌性電阻在某些溫度區間有「-lnT」¬的傾向,這可能與「近藤效應(Kondo effect)」有關。¬
在磁化率的量測部分,量測了R = La, Ce, Pr, Nd的樣品。在La8CoGa3的部分,量測出來發現磁化率在4 K的部分有超導的現象,和電阻量測的6 K超導溫度並不相同。Ce8CoGa3和Pr8CoGa3顯示出反鐵磁性,Nd8CoGa3而則是顯示出鐵磁性。

These R8CoGa3 (R = Y and rare earth atoms) compounds crystallize in the hexagonal structure with space group P63mc (Space No. 186). The obtained values of the lattice parameters are a = 11.05 A and c = 7.064 A for La8CoGa3. Both the values of a and c are found decreasing monotonically with increasing atomic number of the rare earth ions.
The temperature dependence of electrical resistivity ρ(T) below room temperature of the R8CoGa3 have been investigated. The ρ(T) curve of La8CoGa3 shows a typical superconducting phase transition at 6 K. The electrical resistivity of R8CoGa3 (for R = Ce, Pr, Nd, Gd, Dy, Ho) are found increasing with decreasing temperature T from room temperature and reveal local maximum. The ρ(T) of Y8CoGa3 shows a local minimum at 155 K. The magnetic resistivity of some compounds show “-lnT” dependence which may due to the Kondo effect.
The susceptibility measurements are done for R = La, Ce, Pr, Nd. For La8CoGa3, superconducting transition is observed but at 4 K which differs from 6 K. It shows the antiferromagnetic correlation in the paramagnetic state for Ce8CoGa3 and Pr8CoGa3 While for Nd8CoGa3, it shows the ferromagnetic correlation in the paramagnetic state.

Table of Contents

誌謝…………………………………………………………………………………...i
摘要………………………………………………………...........................................ii
Abstract..........................................................................................................................iii
Table of Contents...........................................................................................................iv
List of figures ................................................................................................................vi
List of tables ..................................................................................................................x
Chapter1 Introduction ……………………………………………………………….1
1.a Superconductivity ………………………………………………………….1
1.b The superconductivity of MgB2 ………………….....................................3
1.c AlB2 structure and R8CoGa3 series ……………….........................................5
Chapter2 Theoretical Model ……………………………………..…………………..13
2.a The electrical resistivity of metals ……………………………….………...13
2.b Kondo Effect …………………………………………………….......…….18
2.c Magnetic susceptibility ..........................................................……………..21
2.d Spin glass ….............................................................………………………...23
Chapter 3 Experimental Detail ...............................................................………….25
3.a Sample Preparation .......................................................................………….25
3.b X-ray diffraction ........................................................................................27
3.c Electrical Resistivity Measurement …............................................…………28
3.d Susceptibility and magnetization measurement ......................…………..29
3.e 3He cryostat ………...............................................................…………….30
Chapter 4 Results and Discussion ................................................................…………33
4.a. La8CoGa3 ......................................................………………………………..34
4.b. Ce8CoGa3 ...................................................………………………………….37
4.c. Pr8CoGa3 ..................................................…………………………………..43
4.d. Nd8CoGa3 ....................................................…………………………………48
4.e. Sm8CoGa3...................................................................……………………….53
4.f. Gd8CoGa3…………........................................................................………….55
4.g. Dy8CoGa3……………………………............................................................58
4.h. Ho8CoGa3………………................................................................................61
4.i. Y8CoGa3………………...................................................................................64
Chapter 5 Summary …...........……………….........................................................67
5.a. Crystal structure …………………………………………………………67
5.b. Electrical resistivity …………………………………………………………69
5.c. Susceptibility ………………………………………………………………73
Reference ………………........................................................................................74

[1] Jun Nagamatsu, Norimasa Nakagawa, Takahiro Muranaka, Yuji Zenitani and Jun Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature 410, 63 (2001).
[2] M. Xu, H. Kitazawa, Y. Takano, J. Ye, K. Nishida, H. Abe, A. Matsushita and G.Kido, Single crystal MgB2 with anisotropic superconducting properties, cond-mat/0105271 (2001)
[3] Cristina Buzea and Tsutomu Yamashita, Review of superconducting properties of MgB2, cond-mat/0108265 (2001)
[4] S. L. Bud’ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson and P. C. Canfield, Boron Isotope Effect in Superconducting MgB2, Phys. Rev. Lett. 86, 1877 (2001)
[5] D. G. Hinks, H. Claus and J. D. Jorgensen, The complex nature of superconductivity in MgB2 as revealed by the reduced total isotope effect, Nature 411, 457 (2001)
[6] C. Panagopoulos, B. D. Rainford, T. Xiang, C. A. Scott, M. Kambara and I. H. Inoue, Penetration depth measurements in MgB2: Evidence for unconventional superconductivity, Phys. Rev. B 64, 094514 (2001)
[7] A. V. Pronin, A. Pimenov1, A. Loidl and S. I. Krasnosvobodtsev, Optical conductivity and penetration depth in MgB2, Phys. Rev. Lett. 87, 097003 (2001)
[8] T. Muranaka, Y. Zenitani, J. Shimoyama and J. Akimitsu, Frontiers in Superconducting Materials, Superconductivity in MgB2, Springer, p.948 ( 2005)
[9] A. Schilling, M. Cantoni, J. D. Guo and H. R. Ott, Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system, Nature 363, 56 (1993)
[10] J. Kortus, I. I. Mazin, K. D. Belashchenko, V. P. Antropov and L. L. Boyer, Superconductivity of Metallic Boron in MgB2, Phys. Rev. Lett. 86, 4656 (2001)
[11] R. D. Hoffmann and R. Pottgen, AlB2 related intermetallic compounds – a comprehensive view based on group-subgroup relations, Crystalline Materials 216, 127 (2001)
[12] Yu. N. Grin, O. M. Sichevich, R. E. Gladyshevskii and Ya. P. Yarmolyuk, The crystal structure of the compounds R8Ga3Co (R = Ce, Pr, Nd, Sm. Tb, Dy, Ho, Er, Tm), Sov. Phys. Crystallogr. 29, 419 (1984)
[13] J.M.Ziman, Electrons and Phonons, Clarendon Press, Oxford, (1960)
[14] James C. Garland and R. Bowers, Evidence For Electron-Electron Scattering In The Low-Temperature Resistivity Of Simple Metals, Phys. Rev. Lett. 21, 1007 (1968)
[15] N. V. Volkenshteivn, P. Dyakina and V. E. Starts, Scattering Mechanisms of Conduction Electrons in Transition Metals at Low Temperatures, Phys. Stat. Sol.(b) 57, 9 (1973)
[16] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, (2005)
[17] N. F. Mott, The Resistance and Thermoelectric Properties of the Transition Metals, Proc. Roy. Soc. A. 156,368 (1936)
[18] V. Yu. Irkhin, Yu. P. Irkhin, Electronic structure, correlation effects and properties of d- and f-metals and their compounds, Cambridge International Science Publishing, Cambridge, (2007) arXiv:cond-mat/9812072
[19] A. H. Wilson, The Theory of Metals, 2nd edition, Cambridge, New York, (1965)
[20] Jun Kondo, Resistance Minimum in Dilute Magnetic Alloys, Progress of Theoretical Physics 32, 37 (1964)
[21] F. Zimmer and J.S. Schilling, Pressure-Induced Magnetic Phase Transition (Spinglass -> Kondo) in La-Ce Alloys, Journal of Magnetism and Magnetic Materials 9, 37 (1978)
[22] A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, (1993)
[23] M. Divis, E. Gratz, R. Cerny, and L. Dobiasova, Susceptibility and magnetization of SmCu5, Phys. Stat. Sol. A 123, K149 (1991)
[24] J. A. Mydosh, Spin Glasses: An Experimental Introduction, Taylor & Francis, London (1993)
[25] Toshio Mizushima, Yosikazu Isikawa, Akihiro Maeda, Kazunori Oyabe, Katsunori Mori, Kiyoo Sato and Kazuo Kamigaki, A New Dense-Kondo Compound CeNiAl4, J. Phys. Soc. Jpn., 60 753 (1991)
[26] W. H. Lee, K. S. Kwan, P. Klavins and R. N. Shelton, Crystal structure, resistivity, magnetic susceptibility and heat capacity of a new dense Kondo system: CePtSi2, Phys. Rev. B, 42 6542 (1990)
[27] K. H. J. Buschow, H. J. van Daal, F. E. Maranzana, and P. B. van Aken, Kondo Sidebands in CeA13 and Related Pseudobinary Compounds, Phys. Rev. B, 3 1662 (1971)
[28] Noriaki Sato, Akihiko Sumiyama, Satoru Kunii, Hiroshi Nagano and Tadao Kasuya, Interaction between Kondo States and the Hall Effect of Dense Kondo System CexLa1-xB6, Journal of the Physical Society of Japan, 54 1923 (1985)
[29] S. K. Malik, and D. T. Adroja, CePdSb: A possible ferromagnetic Kondo-lattice system, Phys. Rev. B 43 6295 (1991)
[30] Yuji Muro, Naoya Takeda, Masayasu Ishikawa, Magnetic and transport Properties of dense Kondo systems, CeTSb2(T=Ni, Cu, Pd and Ag), Journal of Alloys and Compounds 257 23 (1997)
[31] A. Blalse, J.M. Collard, J.M. Fournier, J. Rebizant, J.C. Spirlet and O. Vogt, Electrical Resistivity of PuSb Single Crystals, Physica B+C 130 99 (1985)
[32] A. Yatskar, W.P. Beyermann, R. Movshovich and P.C. Canfield, Possible Correlated-Electron Behavior from Quadrupolar Fluctuations in PrInAg2, Phys. Rev. Lett. 77 3637 (1996)
[33] P. Lethuillier and P. Haen, First Observation of a Kondo Effect from Praseodymium Excited Crystal-Field Levels in La1-xPrxSn3 Compounds, Phys. Rev. Lett. 35 1391 (1975)
[34] B. Cornut and B. Coqblin, Influence of the Crystalline Field on the Kondo Effect of Alloys and Compounds with Cerium Impurities, Phys. Rev. B 5 4541 (1972)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔