跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/23 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李曙竹
研究生(外文):Shu-Chu Li
論文名稱:高溫超導雙磊晶穿隧元件之製作與特性研究
論文名稱(外文):Fabrications and Characteristics of High Temperature Superconducting Bi-epitaxial Tunneling Devices
指導教授:王立民王立民引用關係
口試委員:陳昭翰吳秋賢
口試日期:2013-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:雙磊晶人造晶界釔鋇銅氧量子穿隧元件
外文關鍵詞:bi-epitaxial structureartificial grain-boundaryYBCOJosephson junction.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究深入的探討了一種雙磊晶結構,利用釔鋇銅氧(YBCO)/二氧化鈰(CeO2)/氧化鎂(MgO)與釔鋇銅氧/氧化鎂之間的雙磊晶邊界,在高溫超導體釔鋇銅氧薄膜上製作人工晶界。實驗中使用離軸式射頻磁控濺鍍系統,以氧化鎂做為成長基板,成長二氧化鈰薄膜,經過光學微影與離子蝕刻的製程產生晶界後,再以脈衝雷射蒸鍍系統沉積釔鋇銅氧高溫超導薄膜,並嘗試利用鈦酸鍶(SrTiO3)做為緩衝層,藉此降低釔鋇銅氧薄膜與氧化鎂基板間的晶格不匹配。利用X-ray晶格繞射儀與原子力顯微鏡做薄膜的特性量測,並利用低溫電性量測系統與超導量子穿隧儀來進行其電性與磁性的探討。
我們測量了製作出來的釔鋇銅氧薄膜的臨界溫度與臨界電流密度。並量測了其元件特性且深入的研究此具有晶界之超導薄膜的性質,結果都顯示此種新型結構可能可以改進人造晶界,使元件具有很好的特性與IcRn值,也展現出此技術對於改進約瑟芬接面之製程的具有很大的可能性。


An bi-epitaxial technique for the fabrication of high temperature superconducting YBa2Cu3O7-δ (YBCO) artificial grain-boundary is researched. We have studied a bi-epitaxial structure, YBCO/CeO2/MgO and YBCO/MgO boundary. The CeO2 layers are grown on MgO substrates by using RF magnetron sputtering. Then, we define the grain boundary by optic lithography and ion-milling. YBCO films are grown by pulsed laser deposition (PLD). And try to add a SrTiO3 (STO) buffer layer to avoid the lattice mismatch between the pure YBCO film and the MgO substrate. The crystalline orientation and the surface morphology are characterized by X-ray diffraction and atomic force microscope (AFM). The electric and magnetic properties are also well studied by using low temperature measurement and superconducting quantum interference device (SQUID).
The superconducting YBCO films reveal a high transition temperature Tc (R=0), and a critical current density in a zero magnetic field Jc which is large at 77 K. By measuring the characteristics of this device, and studying the properties of this superconducting thin film with grain-boundary, we find that this new structure can improve the artificial grain-boundary, and make device reveal very good properties with a high IcRn product, showing that this technique creates an opportunity to improve the fabrication of Josephson junction applications.


致謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xi
Chapter 1 緒論 1
1.1 研究背景 1
1.1.1 高溫超導量子穿隧元件(High-Tc Superconducting Quantum Interference Device)之發展與應用 1
1.1.2 人造晶界之製作 2
1.1.3 雙磊晶穿穿隧元件之製作與改良 4
1.1.4 雙磊晶人造晶界之特性研究 5
1.2 研究動機 6
Chapter 2 理論背景與原理介紹 7
2.1 高溫超導體概述 7
2.1.1 超導體之發展背景 7
2.1.2 超導體特性 8
2.2 約瑟芬接面 11
2.2.1 直流約瑟芬效應(DC Josephson Effect) 11
2.2.2 交流約瑟芬效應(AC Josephson Effect) 13
2.2.3 RS(C)J模型 14
2.2.4 直流超導量子干涉元件(DC-SQUID) 15
2.3 超導/絕緣/超導(SIS)與超導/金屬/超導(SNS)之特性 17
2.4 Anderson-Kim磁通蠕動模型 17
Chapter 3 實驗步驟與方法 19
3.1 研究架構流程 19
3.2 薄膜成長機制 20
3.2.1 射頻磁控濺鍍法(RF-Magnetron Sputtering) 21
3.2.2 脈衝雷射蒸鍍法(Pulsed Laser Deposition) 23
3.3 基板選擇與清洗 24
3.4 二氧化鈰薄膜製程 26
3.5 光學微影製程 28
3.6 蝕刻製程 31
3.7 釔鋇銅氧/鈦酸鍶薄膜製程 33
3.8 量測系統 34
3.8.1 XRD (X-ray晶格繞射儀) 34
3.8.2 AFM (原子力顯微鏡) 35
3.8.3 電性量測系統(電阻-溫度量測系統) 36
3.8.4 SQUID量測系統 37
Chapter 4 實驗結果與討論 39
4.1 中間層二氧化鈰薄膜製作與特性 39
4.1.1 薄膜結構與表面形貌分析 39
4.1.2 二氧化鈰之蝕刻結果 44
4.2 釔鋇銅氧薄膜特性 44
4.2.1 薄膜結構與表面形貌分析 45
4.2.2 電阻-溫度量測分析 46
4.2.3 鈦酸鍶緩衝層之影響 52
4.3 穿隧元件特性分析 55
4.3.1 量測之光學顯影圖形 56
4.3.2 元件特性分析 57
Chapter 5 結論 63
REFERENCE 65

[1]B. D. Josephson, Phys. Rev. Lett., 1, 251 (1962).
[2]Y. Zhang, H. Bousack, M. Bick, A. Montsch, H.Soltner, W. Wolf, U. Steinhoff, L. Trahms, and P. Endt, Appl. Supercond., 6, 705 (1998).
[3]P. Seidel, R. Weidl, S. Brabetz, F. Schmidl, H. Nowak and U. Leder, Appl. Supercond., 6, 309 (1998).
[4]M. Haemaelaeinen, R. Hari, Risto J. Ilmoniemi, J. Kanuutila, and O. V. Lounasmaa, Rev. Mod. Phys., 65, 413 (1993).
[5]J. Kim, J. Kang, E. Lee, I.-H. Song, J. Gohng, and T. S. Hahn, IEEE. Trans. Appl. Suppercond., 9, 4389 (1999).
[6]N. Kasai, D. Suzuki, H. Takashima, and M. Koyanagi, IEEE. Trans. Appl. Suppercond., 9, 4393 (1999).
[7]C. C. Tsuei, and J. R. Kirley, Rev. Mod. Phys., 72, 969 (2000).
[8]T. S. Lee, E. Danster, and J. Clarke, Rev. Sci. Instrum., 67, 4208 (1996).
[9]H. Matz, D. Drung, S. Hartwig, H. Gros, R. Kotitz, W. Muller, A. Vass, W. Weitschies, and L. Trahms, Appl. Supercond., 6, 577 (1998).
[10]K. Char, M. S. Colough, S. M. Garrison, N. Newman, and G. Zaharchuk, Appl. Phys. Lett., 59, 733 (1991).
[11]K. Char, M. S. Colough, L. P. Lee, and G. Zaharchuk, Appl. Phys. Lett., 59, 2177 (1991).
[12]D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett., 60, 1653 (1988).
[13]J. Yashida, S. Inoue, T. Hashimoto, and T. Nagano, IEEE. Trans. Appl. Suppercond., 9, 3366 (1999).
[14]R. Dittmann, J.-K. Heinsohn, A. I. Braginski, and C. L .Jia, IEEE. Trans. Appl. Suppercond., 9, 3440 (1999).
[15]G. Matsubara, K. Eikyu, M. Miyaaki, H. Kimura, and Y. Okabe, Jpn, J. Appl. Phys., 32, L1324 (1993).
[16]T. Matsui, T. Suzuki, A. Ohi, H. Kimura, and K. Mukae, Jpn, J. Appl. Phys., 32, L1218 (1993).
[17]L. C. Ku, H. M. Cho, J. H. Lu, S. Y. Yang, W. B. Jian, H. C. Yang, and H. E Horng, Physica C., 229, 320 (1994).
[18]A. S. Katz, A. G. Sun, S. I. Woods, R. C. Dynes, Appl. Phys. Lett., 72, 2032 (1998).
[19]M. Y. Li, H. L. Kao, W. J. Chang, C. L. Lin, C. H. Li, Yunhui Xu, C. C. Chi, Weiyan Guan, and M. K. Wu, Physica C., 235, 589 (1994).
[20]S. H. Tsai, C. C. Chi, and M. K. Wu, Chinese J. Phys., 36, 355 (1998).
[21]S. H. Tsai, C. C. Chi, and M. K. Wu, Physica C., 339, 155 (2000).
[22]D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett., 61, 219 (1998).
[23]H. K. Onnes, Commun. Phys. Lab., 12, 120 (1911).
[24]J. G. Bednorz, and K. A. Mueller, Z. Phys., B64, 189 (1986).
[25]M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q. Wang, C. W. Chu, Phys Rev Lett., 58, 908 (1987).
[26]S. L. Budko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, Phys Rev Lett., 86, 1877 (2001).
[27]Yoichi Kamihara, Hidenori Hiramatsu, Masahiro Hirano, Ryuto Kawamura, Hiroshi Yanagi, Toshio Kamiya, and Hideo Hosono, Journal of American Chemical Society, 128, 10012–10013 (2006).
[28]L. N. Cooper, Phys. Rev., 104, 1189 (1956).
[29]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 106, 162 (1957).
[30]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957).
[31]W. Meissner, R. Ochsenfeld, Naturwissenschaften, 21, 787 (1993).
[32]B. D. Josephson, Rev. Mod. Phys., 36, 216 (1964).
[33]B. D. Josephson, Adv. Phys., 14, 419 (1965).
[34]John C. Gallop, and B. W. Petley, IEEE Trans. Instrum. Meas., IM-21, 310 (1972).
[35]Kluwer, “Advanced Study Institute on SQUID sensors: Fundamentals, Fabrication, and Applications”, Dordrecht, 55 (1996).
[36]M. Tinkham, “Introduction to Superconductivity”, Mc Graw-Hill, Inc. New York, pp.200-202 (1996).
[37]P. W. Anderson, and Y. B. Kim, Rev. of Mod. Phys., 36, 39 (1964).
[38]D. Litvinov, A. Rosenauer, and D.Gerthsen, Appl. Phys. Lett., 81, 640 (2002).
[39]G. Wedler, J. Walz, T. Hesjedal, E. Chilla, amd R. Koch, Surface Sci., 402, 290 (1998).
[40]M. Ohring, “Materials Science of Thin Films (2 ed.)”, Academic Press, 215 (2002).
[41]H. M. Smith, and A. F. Turner, Appl. Opt., 4, 147 (1965).
[42]S. T. Li, E. Arenholz, J. Heitz, D. Bauerle, Appl. Surf. Sci., 125, 17 (1998).
[43]Gordon Aylward and Tristan Findlay, “SI Chemical Data Book (4th ed.)”, Jacaranda Wiley, (1999).
[44]Guus J. H. M. Rijnders, G. Koster, Dave H. A. Blank, and H. Rogalla, Appl. Phys. Lett., 70, 1888 (1997).
[45]G. Koster, Guus J. H. M. Rijnders, Dave H. A. Blank, and H. Rogalla, Appl. Phys. Lett., 74, 3729 (1999).
[46]Dave H. A Blank, G. Koster, Guus J. H. M. Rijnders, Eelco van Setten, Per Slycke, and H. Rogalla, J. of Crystal Growth, 211, 98 (2000)
[47]陳坤麟, 國立台灣大學物理系碩士論文 (2001)
[48]W. L. Bragg, Proceedings of the Cambridge Philosophical Society, 17, 43 (1913).
[49]L. J. van der Pauw, Philips Research Reports, 13, 1–9 (1958).
[50]H. C. Yang, L. M. Wang, and H. E. Horng, Phys. Rev. B., 59, 8956 (1999).
[51]N. R. Werthermer, E. Helfand, and P. C. Hohenberg, Phys. Rev. B., 48, 6703 (1993).
[52]G. Ashermann, E. Friedrich, E. Justi, and J. Kramer, Z. Phys., 42, 349 (1941).
[53]E. Zeldov, N. M. Amer, G. Koren, A. Gupta, R. J. Gambino, and M. W. McElfresh, Phys. Rev. Lett., 62, 3093 (1989).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top