(3.92.96.236) 您好!臺灣時間:2021/05/09 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張學文
研究生(外文):Hsueh-Wen Chang
論文名稱:運用多尺度糾纏重整化方法研究保有對稱性的拓樸態
論文名稱(外文):Detection of Symmetry Protected Topological Phases with MERA
指導教授:高英哲高英哲引用關係
指導教授(外文):Ying-Jer Kao
口試委員:林豐利陳柏中
口試委員(外文):Feng-Li LinPo-Chung Chen
口試日期:2013-05-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:43
中文關鍵詞:多尺度糾纏重整化方法保有對稱性的拓樸態鏡射對稱
外文關鍵詞:MERAsymmetry protected topological phaseinversion symmetry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Traditionally, we understand phases of matter by spontaneous symmetry breaking and therefore we have order parameters to characterize different phases. However, there are states of matter which fall beyond this type of characterization, we call these phases topological phases. The first experimental discovery of topological phase was at 1980s, however, we still do not have a clear understanding of topological phase nor do we know exactly what the topological orders are for characterizing these phases (in contrast with normal orders).
Recently, using the ideas based on local unitary transformations, it is shown that an topological order is associated with the pattern of long-range entanglement in gapped quantum systems with finite topological entanglement entropy. On the other hand, several nonlocal string-order parameters are proposed for characterizing symmetry-protected topological states for different kinds of symmetries in 1D base on infinite-size matrix product state (iMPS) calculation .
iMPS is a powerful tool to represent ground state of 1D gapped system. However, accuracy decrease near critical point. Multiscale entanglement renormalization ansatz (MERA) on the other hand, is more accurate near critical point. MERA is a numerical method that use the concept of entanglement renormalization, with the help of inserting disentanglers into the system so that short-range entanglement can be removed before renormalization. This prevents the accumulation of degrees of freedom during the renormalization so that this method can be addressed to large size of 1D or 2D system even at quantum critical points. Therefore, if one can use MERA to calculate the nonlocal string-order parameters proposed, not only will it be a confirmation, but also better results could be get.
However, calculation of these parameters with MERA turned out to be highly nontrivial because the operator is nonlocal and it breaks the causal cone property of MERA, which makes the calculation exponentially hard. Nevertheless, we found that we can reduce the calculation by using symmetric MERA. We need Z_2 and inversion symmetry. The former is already proposed but there''s no method to do inversion symmetry in any kind of tensor network until now. By inspecting the geometry of MERA, we successfully find the method to incorporate inversion symmetry in MERA with a brick-and-rope representation. These enable people to calculate the inversion string-order parameter with MERA. We calculate the proposed parameters and confirmed that the Haldane phase is protected by both inversion and time reversal symmetry.
This thesis is structured as follows: In Chap. 1, we give a brief introduction to topological phase, including historical review and its relation with quantum entanglement and symmetry. Followed by the review of S = 1 Haldane chain. In Chap. 2, we review different kinds of tensor network methods and focus onMERA, with a detailed explanation and interpretation of the tensors in it. In Chap. 3, we discuss how to implement a Z2 symmetric MERA and introduce our algorithm on spatial inversion symmetric MERA based on
a brick-and-rope representation. In Chap. 4, we present the results of stringorder parameters using both time-reversal and inversion symmetric MERA. We also observe the RG flow in the 2 phase goes to 2 different fixed point. We conclude our work in Chap. 5.

致謝i
中文摘要iii
Abstract v
1 Introduction to Symmetry-Protected Topological Phase 1
1.1 Historical overview of topological phases . . . . . . . . . . . . . . . . . 1
1.2 Topological phases and long-range quantum entanglement . . . . . . . . 2
1.3 Detection of symmetry-protected topological phases in 1D . . . . . . . . 4
1.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Multiscale Entanglement Renormalization Ansatz 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Tensor network and entanglement . . . . . . . . . . . . . . . . . . . . . 7
2.3 Algorithm of MERA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Incorporating symmetry in MERA 17
3.1 Symmetry in tensor networks . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Z2 symmetric MERA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Spatial inversion symmetric MERA . . . . . . . . . . . . . . . . . . . . 23
4 Detecting Symmetry-Protected Topological Phases with MERA 31
4.1 String-order parameter in the presence of inversion symmetry . . . . . . . 31
4.2 String-order parameter in the presence of time-reversal symmetry . . . . 35
4.3 Symmetry-Protected Renormalization Group Flow . . . . . . . . . . . . 35
5 Summary 39
Bibliography 41

[1] X. Chen, Z.-C. Gu, and X.-G.Wen, “Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order,” Phys.
Rev. B, vol. 82, p. 155138, Oct 2010.
[2] F. Pollmann and A.M. Turner, “Detection of symmetry-protected topological phases in one dimension,” Phys. Rev. B, vol. 86, p. 125441, Sep 2012.
[3] P. Corboz and G. Vidal, “Fermionic multiscale entanglement renormalization ansatz,” Phys. Rev. B, vol. 80, p. 165129, Oct 2009.
[4] G. Vidal, “Entanglement renormalization,” Phys. Rev. Lett., vol. 99, p. 220405, Nov 2007.
[5] X. G. Wen, “Topological orders in rigid states,” Int. J. Mod. Phys. B, vol. 4, p. 239, 1990.
[6] V. Kalmeyer and R. B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum hall states,” Phys. Rev. Lett., vol. 59, pp. 2095–2098, Nov 1987.
[7] X. G.Wen, F.Wilczek, and A. Zee, “Chiral spin states and superconductivity,” Phys. Rev. B, vol. 39, pp. 11413–11423, Jun 1989.
[8] X. G. Wen, “Vacuum degeneracy of chiral spin states in compactified space,” Phys. Rev. B, vol. 40, pp. 7387–7390, Oct 1989.
[9] E. Witten, “Quantum field theory and the jones polynomial,” Comm. Math. Phys., vol. 121, p. 351, 1989.
[10] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett., vol. 48, pp. 1559–1562, May 1982.
[11] R. B. Laughlin, “Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations,” Phys. Rev. Lett., vol. 50, pp. 1395–1398,May
1983.
[12] X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-dimensional spin systems,” Phys. Rev. B, vol. 83, p. 035107, Jan 2011.
[13] Z.-C. Gu and X.-G. Wen, “Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order,” Phys. Rev. B, vol. 80, p. 155131, Oct 2009.
[14] F. D.M. Haldane, “Nonlinear field theory of large-spin heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis n’eel state,”
Phys. Rev. Lett., vol. 50, pp. 1153–1156, Apr 1983.
[15] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, “Entanglement spectrum of a topological phase in one dimension,” Phys. Rev. B, vol. 81, p. 064439, Feb 2010.
[16] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, “Rigorous results on valence-bond ground states in antiferromagnets,” Phys. Rev. Lett., vol. 59, pp. 799–802, Aug 1987.
[17] M. den Nijs and K. Rommelse, “Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains,” Phys. Rev. B, vol. 40, pp. 4709–4734, Sep 1989.
[18] T. Kennedy and H. Tasaki, “Hidden z2×z2 symmetry breaking in haldane-gap antiferromagnets,” Phys. Rev. B, vol. 45, pp. 304–307, Jan 1992.
[19] M. den Nijs and K. Rommelse, “Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains,” Phys. Rev. B, vol. 40, pp. 4709–4734, Sep 1989.
[20] P. Corboz, R. Or’us, B. Bauer, and G. Vidal, “Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states,”
Phys. Rev. B, vol. 81, p. 165104, Apr 2010.
[21] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992.
[22] M. Troyer and U.-J.Wiese, “Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations,” Phys. Rev. Lett., vol. 94, p. 170201, May 2005.
[23] S. R. White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett., vol. 69, pp. 2863–2866, Nov 1992.
[24] D. Gottesman and M. B. Hastings, “Entanglement versus gap for one-dimensional spin systems,” New Journal of Physics, vol. 12, no. 2, p. 025002, 2010.
[25] P. Zanardi and L. C. Venuti, “Entanglement susceptibility: Area laws and beyond.” arXiv:1205.2507, 2012.
[26] G. Evenbly and G. Vidal, “Algorithms for entanglement renormalization,” Phys. Rev. B, vol. 79, p. 144108, Apr 2009.
[27] S. Singh, R. N. C. Pfeifer, and G. Vidal, “Tensor network decompositions in the presence of a global symmetry,” Phys. Rev. A, vol. 82, p. 050301, Nov 2010.
[28] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, “Entanglement renormalization, scale invariance, and quantum criticality,” Phys. Rev. A, vol. 79, p. 040301, Apr 2009.
[29] S. Singh and G. Vidal, “Symmetry protected entanglement renormalization.” Arxiv:1303.6716, 2013.
[30] C.-Y. Huang, X. Chen, and F.-L. Lin, “Symmetry protected quantum state renormalization.” arXiv:1303.4190, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔