(3.238.96.184) 您好!臺灣時間:2021/05/15 07:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王大維
研究生(外文):Ta-Wei Wang
論文名稱:在8TeV質心能量的質子對撞機實驗中透過頂夸克和膠子 事件尋找頂夸克激發態
論文名稱(外文):Search for an excited quark decaying to a top quark plus gluon
指導教授:侯維恕
指導教授(外文):Wei-Shu Hou
口試委員:熊怡陳俊瑋張寶棣陳凱風
口試委員(外文):Yee HsiungJiunn-Wei ChenPao-Ti ChangKai-Feng Chen
口試日期:2013-06-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:104
中文關鍵詞:頂夸克激發態自旋二分之三噴流加上輕子頂夸克加上膠子費 米子激發態弦共振
外文關鍵詞:excited top quarkspin 3/2 quarktop plus gluontglepton plus jetsexcited fermionstring resonance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藉由在大強子對撞機上的緊湊渺子線圈偵測器, 我們採用質心能量為8 TeV的質子對撞 事件來尋找成對出現的頂夸克激發態。 我們研究頂夸克激發態的半輕子衰變至頂夸克以 及膠子的事件。 在這種事件中,兩個頂夸克激發態將會衰變至頂夸克以及膠子。 我們分 析兩個頂夸克衰變到底夸克加上W玻色子, 其中一個W玻色子衰變到輕子加上微中子, 而另一W玻色子衰變到兩個夸可作為觀測訊號事件。 我們考慮輕子為電子以及渺子的衰 變鏈。 使用19.6 fb−1統一光度的緊湊渺子線圈偵測器所記錄的數據, 觀測到的事件數和 標準模型預測是一致的。 我們假設100%的頂夸克激發態會衰變到頂夸克以及膠子, 則 在95%的信心水準下, 質量小於794GeV/c2的自旋二分之三頂夸克激發態不存在。

We perform a search for a pair-produced–excited top quark, t∗, that decays exclusively to a top quark and a gluon using data collected by the CMS detector from pp collisions at √s = 8 TeV. The search is performed using events consistent with the semi-leptonic decay of the t∗t∗ system, that is events having a single isolated muon or electron, missing energy, and at least six well-reconstructed jets, one of which must be identified as originating from the fragmentation of a b quark. The data ana- lyzed corresponds to an integrated luminosity of 19.6 fb−1. No significant excess over expectations is observed and we set a lower limit on the t∗-quark mass of 794 GeV/c2 at 95% confidence level.

口試委員會審定書 i
Acknowledgments iii
中文摘要 v
Abstract vii
Table of Contents ix
Chapter I Introduction 1
I.1 Experimental viewpoint:Quest for Exotics...................... 1
I.2 Theoretical motivation:0,1/2and1,Why not3/2?....................... 4
I.3 Brief Summary....................... 4
Chapter II Experimental Apparatus 7
II.1 The Large Hadron Collider........................ 7
II.2 The Compact muon solenoid....................... 9
II.2.1 Superconducting Solenoid and Return Yoke....................... 10
II.2.2 Tracking System.......................... 10
II.2.3 Electromagnetic Calorimeter (ECAL) and Preshower Detector (ES)....................... 13
II.2.4 Hadronic Calorimeter(HCAL).................. 16
II.2.5 Muon System........................... 18
II.3 Trigger System.............................. 20
II.3.1 Level-1Trigger(L1)........................ 20
II.3.2 High Level Trigger(HLT)..................... 21
Chapter III Event Reconstruction 25
III.1 Track Reconstruction........................... 25
III.1.1 Hit reconstruction......................... 26
III.1.2 Seed generation.......................... 26
III.1.3 Trajectory building......................... 26
III.1.4 Ambiguity resolution....................... 27
III.1.5 Track fit.............................. 27
III.2 Vertex Reconstruction........................... 27
III.2.1 Vertex Finding........................... 28
III.2.2 Vertex Fitting............................ 28
III.2.3 Secondary Vertex Reconstruction................. 29
III.3 Muon Reconstruction........................... 29
III.3.1 Regional Reconstruction...................... 29
III.3.2 Standalone Muon......................... 30
III.3.3 Global Muon............................ 30
III.3.4 Tracker Muon........................... 30
III.4 ECAL clustering............................. 30
III.5 HCAL cluserting............................. 33
III.6 Particle-Flow Algorithm......................... 33
III.6.1 Muon Reconstruction....................... 34
III.6.2 Electron Reconstruction...................... 34
III.6.3 Charged Hadron, Neutral Hadron and Photon Reconstruction .......................35
III.7 Jet Reconstruction & the Anti-kt Algorithm...................... 36
III.8 Missing transverse energy(MET)...................37
III.9 b-jet Identification...........................38
III.9.1 Combined Secondary Vertex (CSV) algorithm...................... 39
Chapter IV Data and Simulated Samples 41
Chapter V Event Selection 43
V.1 Triggers................................ 44
V.2 Primary Vertex Selection......................... 44
V.3 Muon Selection.............................. 44
V.4 Electron Selection............................. 45
V.5 Jet Selection................................ 46
V.6 b-Jet Selection............................... 47
V.7 Scaling Factors.............................. 47
V.7.1 Pile-up Reweighting........................ 47
V.7.2 b-tag Scaling Factor........................ 48
V.7.3 Jet Energy Smearing........................ 49
V.7.4 Trigger efficiency ......................... 50
V.7.5 Lepton ID efficiency........................ 50
V.8 Event Selection .............................. 50
Chapter VI Analysis Strategy 55
VI.1 Mass Reconstruction........................... 55
VI.2 Tool Validation.............................. 56
VI.3 Mass Reconstruction Optimization and Cross Check........................... 56
VI.3.1 Mass spectrum by a χ2 weighting................. 57
VI.3.2 Number of Input Jets and B Parton Assignment................. 59
VI.3.3 χ2 Sorting Algorithm.................61
VI.4 HitFit Top Mass Constraint................. 61
Chapter VII Background Estimation by MC Template 65
VII.1 Checks of Background Estimation.................... 65
VII.2 Normalization Issue............................ 68
VII.2.1 b-Jet Energy Correction...................... 68
VII.2.2 Q2-Scale Effect........................... 70
VII.2.3 MC Modeling........................... 71
VII.3 Systematic Uncertainties for the Template Method........................... 73
VII.4 Limit Calculation using MC templates.................. 78
VII.5 Limit Calculation Cross Checks..................... 78
VII.5.1 Energetic Gluon Selection..................... 78
VII.5.2 Limit Setting On Other Kinematic Spectra..................... 80
VII.5.3 Effect of signal JES........................ 81
Chapter VIII Data-Driven Background Estimation 83
VIII.1 Global fitting............................... 83
VIII.2 Systematic Uncertainties......................... 84
VIII.3 Limit Calculation............................. 85
VIII.4 Signal injection cross check........................ 86
VIII.5 Background Estimation Using Sideband Method........................ 87
VIII.5.1 Sideband Fitting.......................... 88
VIII.5.2 Pull distribution from pseudo-experiments for the sideband method.......................... 91
VIII.5.3 Systematic Uncertainties for the Sideband Method.......................... 92
VIII.5.4 Limit setting for the Sideband Method.......................... 92
Chapter IX Results and Conclusions 95
Bibliography 97

[1] T. C. C. et al, “The CMS experiment at the CERN LHC,” Journal of Instrumentation 3
(2008), no. 08, S08004.
[2] CMS Collaboration, S. Chatrchyan et al., “Commissioning of the CMS High-Level Trigger with Cosmic Rays,” JINST 5 (2010) T03005, arXiv:0911.4889. doi:10.1088/1748-0221/5/03/T03005.
[3] CMS Collaboration, “Tracking and Primary Vertex Results in First 7 TeV Collisions,” CMS Physics Analysis Summary CMS-PAS-TRK-10-005 (2010).
[4] “Performance of muon identification in pp collisions at s**0.5 = 7 TeV,” Technical Report CMS-PAS-MUO-10-002, CERN, 2010. Geneva, 2010.
[5] CMS Collaboration, “Electron commissioning results at √s = 7 TeV,” CMS Internal Note CMS-DP-2011-003 (Mar, 2011).
97
[6] CMS Collaboration, CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and Emiss,” CMS Physics Analysis Summary
T CMS-PAS-PFT-09-001, CERN, 2009.
[7] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 0804 (2008) 063, arXiv:0802.1189. doi:10.1088/1126-6708/2008/04/063.
[8] CMS Collaboration Collaboration, S. Chatrchyan et al., “Identification of b-quark jets with the CMS experiment,” arXiv:1211.4462.
[9] B. et al, “CMS Physics: Technical Design Report Volume 1: Detector Performance and Software”. Technical Design Report CMS. CERN, Geneva, 2006. There is an error on cover due to a technical problem for some items.
[10] CMS Collaboration, “Review of clustering algorithms and energy corrections in ECAL,” CMS Internal Note CMS-IN-2010-008 (2010).
[11] G. A. et al, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B 716 (2012), no. 1, 1 – 29. doi:10.1016/j.physletb.2012.08.020.
[12] S. C. et al, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Physics Letters B 716 (2012), no. 1, 30 – 61. doi:10.1016/j.physletb.2012.08.021.
[13] S. C. et al, “Search for pair produced fourth-generation up-type quarks in pp collisions at with a lepton in the final state,” Physics Letters B 718 (2012), no. 2, 307 – 328. doi:10.1016/j.physletb.2012.10.038.
[14] S. C. et al, “Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at √s = 7 TeV,” Physics Letters B 716 (2012), no. 1, 103 – 121. doi:10.1016/j.physletb.2012.07.059.
[15] G. A. et al, “Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at √s = 7 TeV with the ATLAS detector,” Physics Letters B 718 (2013), no. 4–5, 1284 – 1302. doi:10.1016/j.physletb.2012.11.071.

[16] S. e. a. Chatrchyan, “Search for heavy bottom-like quarks in 4.9 fb1 of pp collisions at s = 7 TeV,” Journal of High Energy Physics 2012 (2012), no. 5, 1–30. doi:10.1007/JHEP05(2012)123.
[17] “Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb−1 of pp collisions at √s = 8 TeV with the ATLAS detector,” Technical Report ATLAS-CONF-2013-051, CERN, Geneva, May, 2013.
[18] S. e. a. Chatrchyan, “Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at √s=7 TeV,” Journal of High Energy Physics 2013 (2013), no. 1, 1–30. doi:10.1007/JHEP01(2013)154.
[19] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for Down-Type Fourth Generation Quarks with the ATLAS Detector in Events with One Lepton and Hadronically Decaying W Bosons,” Phys. Rev. Lett. 109 (Jul, 2012) 032001. doi:10.1103/PhysRevLett.109.032001.
[20] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Combined search for the quarks of a sequential fourth generation,” Phys. Rev. D 86 (Dec, 2012) 112003. doi:10.1103/PhysRevD.86.112003.
[21] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at √s = 7 TeV with the ATLAS detector,” Phys. Rev. D 86 (Jul, 2012) 012007. doi:10.1103/PhysRevD.86.012007.
[22] “Search for RPV supersymmetry with three or more leptons and b-tags,” Technical Report CMS-PAS-SUS-12-027, CERN, Geneva, 2012.
[23] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Search for a Vectorlike Quark with Charge 2/3 in t + Z Events from pp Collisions at √s = 7 TeV,” Phys. Rev. Lett. 107 (Dec, 2011) 271802. doi:10.1103/PhysRevLett.107.271802.
[24] “Search B’ to bZ,” Technical Report CMS-PAS-EXO-11-066, CERN, Geneva, 2012.
[25] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for Pair Production of a New b′ Quark that Decays into a Z Boson and a Bottom Quark with the ATLAS Detector,” Phys. Rev. Lett. 109 (Aug, 2012) 071801. doi:10.1103/PhysRevLett.109.071801.
[26] G. A. et al, “Search for heavy vector-like quarks coupling to light quarks in proton–proton collisions at with the ATLAS detector,” Physics Letters B 712 (2012), no. 1–2, 22 – 39. doi:10.1016/j.physletb.2012.03.082.
[27] “Search for Single Production of Vector-like Quarks Coupling to Light Generations in 4.64 i f b of Data at √s = 7 TeV,” Technical Report ATLAS-CONF-2012-137, CERN, Geneva, Sep, 2012.
[28] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in pp Collisions at √s=7 TeV,” Phys. Rev. Lett. 110 (Feb, 2013) 081801. doi:10.1103/PhysRevLett.110.081801.
[29] S. e. a. Chatrchyan, “Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at √s=7 TeV,” Journal of High Energy Physics 2012 (2012), no. 12, 1–42. doi:10.1007/JHEP12(2012)055.
[30] G. e. a. Aad, “Search for third generation scalar leptoquarks in pp collisions at √s = 7 TeV with the ATLAS detector,” Technical Report arXiv:1303.0526. CERN-PH-EP-2012-317, CERN, Geneva, Mar, 2013.
[31] “Search for Pair-production of Second generation Leptoquarks in 8 TeV proton-proton collisions.,” Technical Report CMS-PAS-EXO-12-042, CERN, Geneva, 2013.
[32] G. e. a. Aad, “Search for second generation scalar leptoquarks in pp collisions at
√s = 7 TeV with the ATLAS detector,” The European Physical Journal C 72 (2012), no. 9, 1–21. doi:10.1140/epjc/s10052-012-2151-6.
[33] “Search for pair production of first- and second-generation scalar leptoquarks in pp collisions at √s=7 TeV,”.
[34] G. A. et al, “Search for first generation scalar leptoquarks in pp collisions at with the ATLAS detector,” Physics Letters B 709 (2012), no. 3, 158 – 176. doi:10.1016/j.physletb.2012.02.004.
[35] “Search for T5/3 top partners in same-sign dilepton final state,” Technical Report CMS-PAS-B2G-12-012, CERN, Geneva, 2013.
[36] “Search for exotic same-sign dilepton signatures (b′ quark, T5/3 and four top quarks production) in 4.7/fb of pp collisions at √s=7 TeV with the ATLAS detector,” Technical Report ATLAS-CONF-2012-130, CERN, Geneva, Sep, 2012.
[37] “Search for Narrow Resonances using the Dijet Mass Spectrum with 19.6fb-1 of pp Collisions at √s=8 TeV,” Technical Report CMS-PAS-EXO-12-059, CERN, Geneva, 2013.
[38] “Search for New Phenomena in the Dijet Mass Distribution updated using 13.0 fb−1 of pp Collisions at √s = 8 TeV collected by the ATLAS Detector,” Technical Report ATLAS-CONF-2012-148, CERN, Geneva, Nov, 2012.
99
[39] C. et al technical report.
[40] “Search for Heavy Resonances Decaying into bb and bg Final States in pp Collisions at
√s = 8 TeV,” Technical Report CMS-PAS-EXO-12-023, CERN, Geneva, 2013.
[41] “Search for single-quark production with the ATLAS detector at √s = 7 TeV,” Physics
Letters B 721 (2013), no. 4–5, 171 – 189. doi:10.1016/j.physletb.2013.03.016.
[42] “Search for New Physics in the Paired Dijet Mass Spectrum,” Technical Report
CMS-PAS-EXO-11-016, CERN, Geneva, 2012.
[43] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for resonant top quark plus jet production in tt+jets events with the ATLAS detector in pp collisions at √s=7 TeV,” Phys. Rev. D 86 (Nov, 2012) 091103. doi:10.1103/PhysRevD.86.091103.
[44] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for Production of Resonant States in the Photon-Jet Mass Distribution Using pp Collisions at √s = 7 TeV Collected by the ATLAS Detector,” Phys. Rev. Lett. 108 (May, 2012) 211802. doi:10.1103/PhysRevLett.108.211802.
[45] H. Georgi, et al., “Effects of top compositeness,” Phys.Rev. D51 (1995) 3888–3894, arXiv:hep-ph/9410307. doi:10.1103/PhysRevD.51.3888.
[46] E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton Substructure,” Phys.Rev.Lett. 50 (1983) 811–814. doi:10.1103/PhysRevLett.50.811.
[47] B. Lillie, J. Shu, and T. M. Tait, “Top Compositeness at the Tevatron and LHC,” JHEP 0804 (2008) 087, arXiv:0712.3057. doi:10.1088/1126-6708/2008/04/087.
[48] A. Pomarol and J. Serra, “Top Quark Compositeness: Feasibility and Implications,” Phys.Rev. D78 (2008) 074026, arXiv:0806.3247. doi:10.1103/PhysRevD.78.074026.
[49] K. Kumar, T. M. Tait, and R. Vega-Morales, “Manifestations of Top Compositeness at Colliders,” JHEP 0905 (2009) 022, arXiv:0901.3808. doi:10.1088/1126-6708/2009/05/022.
[50] U. Baur, M. Spira, and P. Zerwas, “EXCITED QUARK AND LEPTON PRODUCTION AT HADRON COLLIDERS,” Phys.Rev. D42 (1990) 815–824. doi:10.1103/PhysRevD.42.815.
[51] R. M. Harris, “Discovery mass reach for excited quarks at hadron colliders,” eConf C960625 (1996) NEW164, arXiv:hep-ph/9609319.
[52] J. Ku ̈hn, H. Tholl, and P. Zerwas, “Signals of excited quarks and leptons,” Physics Letters B 158 (1985), no. 3, 270 – 275. doi:10.1016/0370-2693(85)90969-4.
[53] J. Ku ̈hn and P. Zerwas, “Excited quarks and leptons,” Physics Letters B 147 (1984), no. 1–3, 189 – 196. doi:10.1016/0370-2693(84)90618-X.
[54] C. Burges and H. J. Schnitzer, ““Virtual effects of excited quarks as probes of a possible new hardonic mass scale”,” Nuclear Physics B 228 (1983), no. 3, 464 – 500. doi:10.1016/0550-3213(83)90555-2.
[55] J. Taylor, “A model of composite quarks and leptons,” Physics Letters B 88 (1979), no. 3–4, 291 – 293. doi:10.1016/0370-2693(79)90470-2.
[56] J. Taylor, “Spin-32 quarks in deep inelastic scattering,” Physics Letters B 90 (1980), no. 1–2, 143 – 144. doi:10.1016/0370-2693(80)90069-6.
[57] B. Moussallam and V. Soni, “PRODUCTION OF HEAVY SPIN 3/2 FERMIONS IN COLLIDERS,” Phys.Rev. D39 (1989) 1883–1891. doi:10.1103/PhysRevD.39.1883.
[58] D. A. Dicus, S. Gibbons, and S. Nandi, “Collider production of spin 3/2 quarks,” arXiv:hep-ph/9806312.
[59] W. Rarita and J. Schwinger, “On a theory of particles with half integral spin,” Phys.Rev. 60 (1941) 61. doi:10.1103/PhysRev.60.61.
[60] B. Hassanain, J. March-Russell, and J. Rosa, “On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats,” JHEP 0907 (2009) 077, arXiv:0904.4108. doi:10.1088/1126-6708/2009/07/077.
[61] L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension,” Phys.Rev.Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221. doi:10.1103/PhysRevLett.83.3370.
[62] L. Randall and R. Sundrum, “An Alternative to compactification,” Phys.Rev.Lett. 83 (1999) 4690–4693, arXiv:hep-th/9906064. doi:10.1103/PhysRevLett.83.4690.
[63] W. Stirling and E. Vryonidou, “Effect of spin-3/2 top quark excitation on tt ̄ production at the LHC,” JHEP 1201 (2012) 055, arXiv:1110.1565. doi:10.1007/JHEP01(2012)055.
[64] O. S. Bruning, (Ed. ) et al., “LHC design report. Vol. I: The LHC main ring,”. CERN-2004-003-V-1.
[65] CMS Collaboration, C. collaboration et al, “CMS, the Compact Muon Solenoid: Technical proposal,” CERN/LHCC 94-38 (1994).
[66] ATLAS Collaboration, W. W. Armstrong et al., “ATLAS: Technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN,”. CERN-LHCC-94-43.
[67] LHCb Collaboration, S. Amato et al., “LHCb technical proposal,”. CERN-LHCC-98-04.
[68] ALICE Collaboration, A. collaboration et al, “ALICE: Technical proposal for a large ion
collider experiment at the CERN LHC,”. CERN-LHCC-95-71.
[69] TOTEM Collaboration, V. Berardi et al., “TOTEM: Technical design report. Total cross section, elastic scattering and diffraction dissociation at the Large Hadron Collider at CERN,”. CERN-LHCC-2004-002.
[70] LHCf Collaboration, O. Adriani et al., “Technnical proposal for the CERN LHCf experiment: Measurement of photons and neutral pions in the very forward region of LHC,”. CERN-LHCC-2005-032.
[71] J. Pinfold, et al., “Technical Design Report of the MoEDAL Experiment,” Technical Report CERN-LHCC-2009-006. MoEDAL-TDR-001, CERN, Geneva, Jun, 2009.
[72] J. Schwinger, “A Magnetic Model of Matter,” Science 165 (1969) 757–761. doi:10.1126/science.165.3895.757.
[73] CMS Collaboration, CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector,” CMS Physics Analysis Summary CMS-PAS-PFT-10-001, CERN, 2010.
[74] CMS Collaboration, CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-PFT-10-002, CERN, 2010.
[75] CMS Collaboration, CMS Collaboration, “Commissioning of the particle-flow event reconstruction with leptons from J/Ψ and W decays at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-PFT-10-003, CERN, 2010.
[76] CMS Collaboration, “Track Reconstruction in the CMS tracker,” CMS Note CMS-NOTE-2006-041 (2006).
[77] CMS Collaboration, “Track reconstruction, primary vertex finding and seed generation with the Pixel Detector,” CMS Note CMS-NOTE-2006-026 (2006).
[78] CMS Collaboration, CMS Collaboration, “CMS Tracking Performance Results from early LHC Operation,” arXiv:1007.1988. doi:10.1140/epjc/s10052-010-1491-3.
[79] S. Cucciarelli, et al., “Track-Parameter Evaluation and Primary-Vertex Finding with the Pixel Detector,” Technical Report CMS-NOTE-2003-026, CERN, Geneva, Sep, 2003.
[80] Pierre and Billoir, “Progressive track recognition with a Kalman-like fitting procedure,” Computer Physics Communications 57 (1989), no. 1-3, 390 – 394. doi:10.1016/0010-4655(89)90249-X.
[81] T. Speer, et al., “Vertex Fitting in the CMS Tracker,” Technical Report CMS-NOTE-2006-032, CERN, Geneva, Feb, 2006.
[82] R. Frhwirth, et al., “Vertex reconstruction and track bundling at the LEP collider using robust algorithms,” Computer Physics Communications 96 (1996), no. 2-3, 189 – 208. doi:10.1016/0010-4655(96)00040-9.
[83] J. D’Hondt, et al., “Sensitivity of robust vertex fitting algorithms,” IEEE Trans. Nucl. Sci. 51 (2004) 2037–2044. doi:10.1109/TNS.2004.832296.
[84] R. Fru ̈hwirth, W. Waltenberger, and P. Vanlaer, “Adaptive Vertex Fitting,” Technical Report CMS-NOTE-2007-008, CERN, Geneva, Mar, 2007.
[85] W. Waltenberger, “Adaptive Vertex Reconstruction,” Technical Report CMS-NOTE-2008-033, CERN, Geneva, Jul, 2008.
[86] W. Adam, et al., “Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at LHC,” ECONF C0303241 (2003) TULT009, arXiv:physics/0306087. [J.Phys.G31:N9,2005]. doi:10.1088/0954-3899/31/9/N01.
[87] M. Pioppi, “A pre-identification for electron reconstruction in the CMS particle-flow algorithm,” Journal of Physics: Conference Series 119 (2008), no. 3, 032039.
[88] S. D. Ellis and D. E. Soper, “Successive combination jet algorithm for hadron collisions,” Phys.Rev. D48 (1993) 3160–3166, arXiv:hep-ph/9305266. doi:10.1103/PhysRevD.48.3160.
[89] G. P. Salam and G. Soyez, “A Practical Seedless Infrared-Safe Cone jet algorithm,” JHEP 0705 (2007) 086, arXiv:0704.0292. doi:10.1088/1126-6708/2007/05/086.
[90] “The Jet Plus Tracks Algorithm for Calorimeter Jet Energy Corrections in CMS,” Technical Report CMS-PAS-JME-09-002, 2009.
[91] Y. L. Dokshitzer, et al., “Better jet clustering algorithms,” JHEP 9708 (1997) 001, arXiv:hep-ph/9707323.
[92] “Measurement of btagging efficiency using ttbar events,” Technical Report CMS-PAS-BTV-11-003, CERN, Geneva, 2012.
[93] F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph,” JHEP 02 (2003) 027, arXiv:0208156.
[94] J. Pumplin, et al., “New generation of parton distributions with uncertainties from global QCD analysis,” JHEP 0207 (2002) 012, arXiv:hep-ph/0201195.
[95] T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” JHEP 05 (2006) 026, arXiv:0603175.
[96] J. A. et al., “Geant4 developments and applications,” IEEE Trans. Nucl. Sci. 53 (2006) 270. doi:10.1109/TNS.2006.869826.
[97] CMS Collaboration, CMS Collaboration, “Measurement of the top dilepton cross section using b-tagging at √s = 7 TeV with 882 pb−1 in pp collisions,” CMS Physics Analysis Summary CMS-PAS-TOP-12-007, 2012.
[98] CMS Collaboration, CMS Collaboration, “Measurement of inclusive W and Z boson cross sections in pp collisions at √s = 8 TeV,” CMS Physics Analysis Summary CMS-PAS-SMP-12-011, 2012.
[99] https://twiki.cern.ch/twiki/bin/viewauth/CMS/ StandardModelCrossSectionsat8TeV.
[100] J. Campbell and R. Ellis, “MCFM for the Tevatron and the LHC,” Nucl. Phys. Proc. Suppl. (2010) arXiv:1007.3492. doi:10.1016/j.nuclphysbps.2010.08.011.
[101] J. Campbell and R. Ellis, “An update on vector boson pair production at hadron colliders,” Phys. Rev. D60 (1999) arXiv:9905386. doi:10.1103/PhysRevD.60.113006.
[102] CMS Collaboration, CMS Collaboration, “Measurement of the WW production cross section in pp collisions at √s = 8 TeV,” CMS Physics Analysis Summary CMS-PAS-SMP-12-013, 2012.
[103] CMS Collaboration, CMS Collaboration, “Measurement of ZZ production cross section in ZZ → 2l2l′ decay channel in pp collisions at √s = 8 TeV,” CMS Physics Analysis Summary CMS-PAS-SMP-12-014, 2012.
[104] “Top pair cross section in e/mu+jets at 8 TeV,” Technical Report CMS-PAS-TOP-12-006, CERN, Geneva, 2012.
[105] “b-Jet Identification in the CMS Experiment,” Technical Report CMS-PAS-BTV-11-004, CERN, Geneva, 2012.
[106] e. a. Chatrchyan, “Identification of b-quark jets with the CMS experiment,” Technical Report arXiv:1211.4462. CMS-BTV-12-001. CERN-PH-EP-2012-262, CERN, Geneva, Nov, 2012. Comments: Submitted to the Journal of Instrumentation.
[107] e. a. Chatrchyan, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS,” J. Instrum. 6 (Jul, 2011) P11002. 67 p.
[108] “Measurement of the single-top t-channel charge ratio at 8 TeV,” Technical Report CMS-PAS-TOP-12-038, CERN, Geneva, 2013.
[109] H. Sumowidagdo, “Programming documentation of HitFit: A Kinematic Fitter for top quark-antiquark pair lepton+jets events,” CMS Note 2011/171, 2011.
[110] CMS Collaboration, CMS Collaboration, “Measurement of jet multiplicity in top pair events,” CMS Physics Analysis Summary CMS-PAS-TOP-12-018, 2012.
[111] “CMS Luminosity Based on Pixel Cluster Counting - Summer 2012 Update,” Technical Report CMS-PAS-LUM-12-001, CERN, Geneva, 2012.
[112] M. R. Whalley, D. Bourilkov, and R. C. Group, “The Les Houches Accord PDFs(LHAPDF) and LHAGLUE,” arXiv:0508110.
[113] “Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel,” Technical Report CMS-PAS-HIG-13-001, CERN, Geneva, 2013.
[114] “Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s =7 and 8 TeV,” Technical Report CMS-PAS-HIG-13-002, CERN, Geneva, 2013.
[115] “Evidence for a particle decaying to W+W- in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC,” Technical Report CMS-PAS-HIG-13-003, CERN, Geneva, 2013.
[116] “Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at √s = 7 and 8 TeV,” Technical Report CMS-PAS-HIG-13-004, CERN, Geneva, 2013.
[117] “Search for the standard model Higgs boson in the Z boson plus a photon channel in pp collisions at sqrt-s = 7 and 8 TeV,” Technical Report CMS-PAS-HIG-13-006, CERN, Geneva, 2013.
[118] “Search for SM Higgs in WH to WWW to 3l 3nu,” Technical Report CMS-PAS-HIG-13-009, CERN, Geneva, 2013.
[119] L. Moneta, et al., “The RooStats project,” in Proceedings of the 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research. February 22-27, 2010, Jaipur, India, p.57. 2010. arXiv:1009.1003.
[120] A. L. Read, “Presentation of search results: the CL s technique,” Journal of Physics G: Nuclear and Particle Physics 28 (2002), no. 10, 2693.
[121] E. G. O. V. Glen Cowan, Kyle Cranmer, “Asymptotic formulae for likelihood based tests of new physics,” European Physical Journal C 7 (February, 2011) 1544. doi:10.1140/epjc/s10052-011-1554-0.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top