|
[1] T. C. C. et al, “The CMS experiment at the CERN LHC,” Journal of Instrumentation 3 (2008), no. 08, S08004. [2] CMS Collaboration, S. Chatrchyan et al., “Commissioning of the CMS High-Level Trigger with Cosmic Rays,” JINST 5 (2010) T03005, arXiv:0911.4889. doi:10.1088/1748-0221/5/03/T03005. [3] CMS Collaboration, “Tracking and Primary Vertex Results in First 7 TeV Collisions,” CMS Physics Analysis Summary CMS-PAS-TRK-10-005 (2010). [4] “Performance of muon identification in pp collisions at s**0.5 = 7 TeV,” Technical Report CMS-PAS-MUO-10-002, CERN, 2010. Geneva, 2010. [5] CMS Collaboration, “Electron commissioning results at √s = 7 TeV,” CMS Internal Note CMS-DP-2011-003 (Mar, 2011). 97 [6] CMS Collaboration, CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and Emiss,” CMS Physics Analysis Summary T CMS-PAS-PFT-09-001, CERN, 2009. [7] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k(t) jet clustering algorithm,” JHEP 0804 (2008) 063, arXiv:0802.1189. doi:10.1088/1126-6708/2008/04/063. [8] CMS Collaboration Collaboration, S. Chatrchyan et al., “Identification of b-quark jets with the CMS experiment,” arXiv:1211.4462. [9] B. et al, “CMS Physics: Technical Design Report Volume 1: Detector Performance and Software”. Technical Design Report CMS. CERN, Geneva, 2006. There is an error on cover due to a technical problem for some items. [10] CMS Collaboration, “Review of clustering algorithms and energy corrections in ECAL,” CMS Internal Note CMS-IN-2010-008 (2010). [11] G. A. et al, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B 716 (2012), no. 1, 1 – 29. doi:10.1016/j.physletb.2012.08.020. [12] S. C. et al, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Physics Letters B 716 (2012), no. 1, 30 – 61. doi:10.1016/j.physletb.2012.08.021. [13] S. C. et al, “Search for pair produced fourth-generation up-type quarks in pp collisions at with a lepton in the final state,” Physics Letters B 718 (2012), no. 2, 307 – 328. doi:10.1016/j.physletb.2012.10.038. [14] S. C. et al, “Search for heavy, top-like quark pair production in the dilepton final state in pp collisions at √s = 7 TeV,” Physics Letters B 716 (2012), no. 1, 103 – 121. doi:10.1016/j.physletb.2012.07.059. [15] G. A. et al, “Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state at √s = 7 TeV with the ATLAS detector,” Physics Letters B 718 (2013), no. 4–5, 1284 – 1302. doi:10.1016/j.physletb.2012.11.071. √ [16] S. e. a. Chatrchyan, “Search for heavy bottom-like quarks in 4.9 fb1 of pp collisions at s = 7 TeV,” Journal of High Energy Physics 2012 (2012), no. 5, 1–30. doi:10.1007/JHEP05(2012)123. [17] “Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb−1 of pp collisions at √s = 8 TeV with the ATLAS detector,” Technical Report ATLAS-CONF-2013-051, CERN, Geneva, May, 2013. [18] S. e. a. Chatrchyan, “Search for heavy quarks decaying into a top quark and a W or Z boson using lepton + jets events in pp collisions at √s=7 TeV,” Journal of High Energy Physics 2013 (2013), no. 1, 1–30. doi:10.1007/JHEP01(2013)154. [19] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for Down-Type Fourth Generation Quarks with the ATLAS Detector in Events with One Lepton and Hadronically Decaying W Bosons,” Phys. Rev. Lett. 109 (Jul, 2012) 032001. doi:10.1103/PhysRevLett.109.032001. [20] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Combined search for the quarks of a sequential fourth generation,” Phys. Rev. D 86 (Dec, 2012) 112003. doi:10.1103/PhysRevD.86.112003. [21] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at √s = 7 TeV with the ATLAS detector,” Phys. Rev. D 86 (Jul, 2012) 012007. doi:10.1103/PhysRevD.86.012007. [22] “Search for RPV supersymmetry with three or more leptons and b-tags,” Technical Report CMS-PAS-SUS-12-027, CERN, Geneva, 2012. [23] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Search for a Vectorlike Quark with Charge 2/3 in t + Z Events from pp Collisions at √s = 7 TeV,” Phys. Rev. Lett. 107 (Dec, 2011) 271802. doi:10.1103/PhysRevLett.107.271802. [24] “Search B’ to bZ,” Technical Report CMS-PAS-EXO-11-066, CERN, Geneva, 2012. [25] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for Pair Production of a New b′ Quark that Decays into a Z Boson and a Bottom Quark with the ATLAS Detector,” Phys. Rev. Lett. 109 (Aug, 2012) 071801. doi:10.1103/PhysRevLett.109.071801. [26] G. A. et al, “Search for heavy vector-like quarks coupling to light quarks in proton–proton collisions at with the ATLAS detector,” Physics Letters B 712 (2012), no. 1–2, 22 – 39. doi:10.1016/j.physletb.2012.03.082. [27] “Search for Single Production of Vector-like Quarks Coupling to Light Generations in 4.64 i f b of Data at √s = 7 TeV,” Technical Report ATLAS-CONF-2012-137, CERN, Geneva, Sep, 2012. [28] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Search for Pair Production of Third-Generation Leptoquarks and Top Squarks in pp Collisions at √s=7 TeV,” Phys. Rev. Lett. 110 (Feb, 2013) 081801. doi:10.1103/PhysRevLett.110.081801. [29] S. e. a. Chatrchyan, “Search for third-generation leptoquarks and scalar bottom quarks in pp collisions at √s=7 TeV,” Journal of High Energy Physics 2012 (2012), no. 12, 1–42. doi:10.1007/JHEP12(2012)055. [30] G. e. a. Aad, “Search for third generation scalar leptoquarks in pp collisions at √s = 7 TeV with the ATLAS detector,” Technical Report arXiv:1303.0526. CERN-PH-EP-2012-317, CERN, Geneva, Mar, 2013. [31] “Search for Pair-production of Second generation Leptoquarks in 8 TeV proton-proton collisions.,” Technical Report CMS-PAS-EXO-12-042, CERN, Geneva, 2013. [32] G. e. a. Aad, “Search for second generation scalar leptoquarks in pp collisions at √s = 7 TeV with the ATLAS detector,” The European Physical Journal C 72 (2012), no. 9, 1–21. doi:10.1140/epjc/s10052-012-2151-6. [33] “Search for pair production of first- and second-generation scalar leptoquarks in pp collisions at √s=7 TeV,”. [34] G. A. et al, “Search for first generation scalar leptoquarks in pp collisions at with the ATLAS detector,” Physics Letters B 709 (2012), no. 3, 158 – 176. doi:10.1016/j.physletb.2012.02.004. [35] “Search for T5/3 top partners in same-sign dilepton final state,” Technical Report CMS-PAS-B2G-12-012, CERN, Geneva, 2013. [36] “Search for exotic same-sign dilepton signatures (b′ quark, T5/3 and four top quarks production) in 4.7/fb of pp collisions at √s=7 TeV with the ATLAS detector,” Technical Report ATLAS-CONF-2012-130, CERN, Geneva, Sep, 2012. [37] “Search for Narrow Resonances using the Dijet Mass Spectrum with 19.6fb-1 of pp Collisions at √s=8 TeV,” Technical Report CMS-PAS-EXO-12-059, CERN, Geneva, 2013. [38] “Search for New Phenomena in the Dijet Mass Distribution updated using 13.0 fb−1 of pp Collisions at √s = 8 TeV collected by the ATLAS Detector,” Technical Report ATLAS-CONF-2012-148, CERN, Geneva, Nov, 2012. 99 [39] C. et al technical report. [40] “Search for Heavy Resonances Decaying into bb and bg Final States in pp Collisions at √s = 8 TeV,” Technical Report CMS-PAS-EXO-12-023, CERN, Geneva, 2013. [41] “Search for single-quark production with the ATLAS detector at √s = 7 TeV,” Physics Letters B 721 (2013), no. 4–5, 171 – 189. doi:10.1016/j.physletb.2013.03.016. [42] “Search for New Physics in the Paired Dijet Mass Spectrum,” Technical Report CMS-PAS-EXO-11-016, CERN, Geneva, 2012. [43] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for resonant top quark plus jet production in tt+jets events with the ATLAS detector in pp collisions at √s=7 TeV,” Phys. Rev. D 86 (Nov, 2012) 091103. doi:10.1103/PhysRevD.86.091103. [44] ATLAS Collaboration Collaboration, G. e. a. Aad, “Search for Production of Resonant States in the Photon-Jet Mass Distribution Using pp Collisions at √s = 7 TeV Collected by the ATLAS Detector,” Phys. Rev. Lett. 108 (May, 2012) 211802. doi:10.1103/PhysRevLett.108.211802. [45] H. Georgi, et al., “Effects of top compositeness,” Phys.Rev. D51 (1995) 3888–3894, arXiv:hep-ph/9410307. doi:10.1103/PhysRevD.51.3888. [46] E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton Substructure,” Phys.Rev.Lett. 50 (1983) 811–814. doi:10.1103/PhysRevLett.50.811. [47] B. Lillie, J. Shu, and T. M. Tait, “Top Compositeness at the Tevatron and LHC,” JHEP 0804 (2008) 087, arXiv:0712.3057. doi:10.1088/1126-6708/2008/04/087. [48] A. Pomarol and J. Serra, “Top Quark Compositeness: Feasibility and Implications,” Phys.Rev. D78 (2008) 074026, arXiv:0806.3247. doi:10.1103/PhysRevD.78.074026. [49] K. Kumar, T. M. Tait, and R. Vega-Morales, “Manifestations of Top Compositeness at Colliders,” JHEP 0905 (2009) 022, arXiv:0901.3808. doi:10.1088/1126-6708/2009/05/022. [50] U. Baur, M. Spira, and P. Zerwas, “EXCITED QUARK AND LEPTON PRODUCTION AT HADRON COLLIDERS,” Phys.Rev. D42 (1990) 815–824. doi:10.1103/PhysRevD.42.815. [51] R. M. Harris, “Discovery mass reach for excited quarks at hadron colliders,” eConf C960625 (1996) NEW164, arXiv:hep-ph/9609319. [52] J. Ku ̈hn, H. Tholl, and P. Zerwas, “Signals of excited quarks and leptons,” Physics Letters B 158 (1985), no. 3, 270 – 275. doi:10.1016/0370-2693(85)90969-4. [53] J. Ku ̈hn and P. Zerwas, “Excited quarks and leptons,” Physics Letters B 147 (1984), no. 1–3, 189 – 196. doi:10.1016/0370-2693(84)90618-X. [54] C. Burges and H. J. Schnitzer, ““Virtual effects of excited quarks as probes of a possible new hardonic mass scale”,” Nuclear Physics B 228 (1983), no. 3, 464 – 500. doi:10.1016/0550-3213(83)90555-2. [55] J. Taylor, “A model of composite quarks and leptons,” Physics Letters B 88 (1979), no. 3–4, 291 – 293. doi:10.1016/0370-2693(79)90470-2. [56] J. Taylor, “Spin-32 quarks in deep inelastic scattering,” Physics Letters B 90 (1980), no. 1–2, 143 – 144. doi:10.1016/0370-2693(80)90069-6. [57] B. Moussallam and V. Soni, “PRODUCTION OF HEAVY SPIN 3/2 FERMIONS IN COLLIDERS,” Phys.Rev. D39 (1989) 1883–1891. doi:10.1103/PhysRevD.39.1883. [58] D. A. Dicus, S. Gibbons, and S. Nandi, “Collider production of spin 3/2 quarks,” arXiv:hep-ph/9806312. [59] W. Rarita and J. Schwinger, “On a theory of particles with half integral spin,” Phys.Rev. 60 (1941) 61. doi:10.1103/PhysRev.60.61. [60] B. Hassanain, J. March-Russell, and J. Rosa, “On the possibility of light string resonances at the LHC and Tevatron from Randall-Sundrum throats,” JHEP 0907 (2009) 077, arXiv:0904.4108. doi:10.1088/1126-6708/2009/07/077. [61] L. Randall and R. Sundrum, “A Large mass hierarchy from a small extra dimension,” Phys.Rev.Lett. 83 (1999) 3370–3373, arXiv:hep-ph/9905221. doi:10.1103/PhysRevLett.83.3370. [62] L. Randall and R. Sundrum, “An Alternative to compactification,” Phys.Rev.Lett. 83 (1999) 4690–4693, arXiv:hep-th/9906064. doi:10.1103/PhysRevLett.83.4690. [63] W. Stirling and E. Vryonidou, “Effect of spin-3/2 top quark excitation on tt ̄ production at the LHC,” JHEP 1201 (2012) 055, arXiv:1110.1565. doi:10.1007/JHEP01(2012)055. [64] O. S. Bruning, (Ed. ) et al., “LHC design report. Vol. I: The LHC main ring,”. CERN-2004-003-V-1. [65] CMS Collaboration, C. collaboration et al, “CMS, the Compact Muon Solenoid: Technical proposal,” CERN/LHCC 94-38 (1994). [66] ATLAS Collaboration, W. W. Armstrong et al., “ATLAS: Technical proposal for a general-purpose pp experiment at the Large Hadron Collider at CERN,”. CERN-LHCC-94-43. [67] LHCb Collaboration, S. Amato et al., “LHCb technical proposal,”. CERN-LHCC-98-04. [68] ALICE Collaboration, A. collaboration et al, “ALICE: Technical proposal for a large ion collider experiment at the CERN LHC,”. CERN-LHCC-95-71. [69] TOTEM Collaboration, V. Berardi et al., “TOTEM: Technical design report. Total cross section, elastic scattering and diffraction dissociation at the Large Hadron Collider at CERN,”. CERN-LHCC-2004-002. [70] LHCf Collaboration, O. Adriani et al., “Technnical proposal for the CERN LHCf experiment: Measurement of photons and neutral pions in the very forward region of LHC,”. CERN-LHCC-2005-032. [71] J. Pinfold, et al., “Technical Design Report of the MoEDAL Experiment,” Technical Report CERN-LHCC-2009-006. MoEDAL-TDR-001, CERN, Geneva, Jun, 2009. [72] J. Schwinger, “A Magnetic Model of Matter,” Science 165 (1969) 757–761. doi:10.1126/science.165.3895.757. [73] CMS Collaboration, CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector,” CMS Physics Analysis Summary CMS-PAS-PFT-10-001, CERN, 2010. [74] CMS Collaboration, CMS Collaboration, “Commissioning of the Particle-Flow Reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-PFT-10-002, CERN, 2010. [75] CMS Collaboration, CMS Collaboration, “Commissioning of the particle-flow event reconstruction with leptons from J/Ψ and W decays at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-PFT-10-003, CERN, 2010. [76] CMS Collaboration, “Track Reconstruction in the CMS tracker,” CMS Note CMS-NOTE-2006-041 (2006). [77] CMS Collaboration, “Track reconstruction, primary vertex finding and seed generation with the Pixel Detector,” CMS Note CMS-NOTE-2006-026 (2006). [78] CMS Collaboration, CMS Collaboration, “CMS Tracking Performance Results from early LHC Operation,” arXiv:1007.1988. doi:10.1140/epjc/s10052-010-1491-3. [79] S. Cucciarelli, et al., “Track-Parameter Evaluation and Primary-Vertex Finding with the Pixel Detector,” Technical Report CMS-NOTE-2003-026, CERN, Geneva, Sep, 2003. [80] Pierre and Billoir, “Progressive track recognition with a Kalman-like fitting procedure,” Computer Physics Communications 57 (1989), no. 1-3, 390 – 394. doi:10.1016/0010-4655(89)90249-X. [81] T. Speer, et al., “Vertex Fitting in the CMS Tracker,” Technical Report CMS-NOTE-2006-032, CERN, Geneva, Feb, 2006. [82] R. Frhwirth, et al., “Vertex reconstruction and track bundling at the LEP collider using robust algorithms,” Computer Physics Communications 96 (1996), no. 2-3, 189 – 208. doi:10.1016/0010-4655(96)00040-9. [83] J. D’Hondt, et al., “Sensitivity of robust vertex fitting algorithms,” IEEE Trans. Nucl. Sci. 51 (2004) 2037–2044. doi:10.1109/TNS.2004.832296. [84] R. Fru ̈hwirth, W. Waltenberger, and P. Vanlaer, “Adaptive Vertex Fitting,” Technical Report CMS-NOTE-2007-008, CERN, Geneva, Mar, 2007. [85] W. Waltenberger, “Adaptive Vertex Reconstruction,” Technical Report CMS-NOTE-2008-033, CERN, Geneva, Jul, 2008. [86] W. Adam, et al., “Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at LHC,” ECONF C0303241 (2003) TULT009, arXiv:physics/0306087. [J.Phys.G31:N9,2005]. doi:10.1088/0954-3899/31/9/N01. [87] M. Pioppi, “A pre-identification for electron reconstruction in the CMS particle-flow algorithm,” Journal of Physics: Conference Series 119 (2008), no. 3, 032039. [88] S. D. Ellis and D. E. Soper, “Successive combination jet algorithm for hadron collisions,” Phys.Rev. D48 (1993) 3160–3166, arXiv:hep-ph/9305266. doi:10.1103/PhysRevD.48.3160. [89] G. P. Salam and G. Soyez, “A Practical Seedless Infrared-Safe Cone jet algorithm,” JHEP 0705 (2007) 086, arXiv:0704.0292. doi:10.1088/1126-6708/2007/05/086. [90] “The Jet Plus Tracks Algorithm for Calorimeter Jet Energy Corrections in CMS,” Technical Report CMS-PAS-JME-09-002, 2009. [91] Y. L. Dokshitzer, et al., “Better jet clustering algorithms,” JHEP 9708 (1997) 001, arXiv:hep-ph/9707323. [92] “Measurement of btagging efficiency using ttbar events,” Technical Report CMS-PAS-BTV-11-003, CERN, Geneva, 2012. [93] F. Maltoni and T. Stelzer, “MadEvent: Automatic event generation with MadGraph,” JHEP 02 (2003) 027, arXiv:0208156. [94] J. Pumplin, et al., “New generation of parton distributions with uncertainties from global QCD analysis,” JHEP 0207 (2002) 012, arXiv:hep-ph/0201195. [95] T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” JHEP 05 (2006) 026, arXiv:0603175. [96] J. A. et al., “Geant4 developments and applications,” IEEE Trans. Nucl. Sci. 53 (2006) 270. doi:10.1109/TNS.2006.869826. [97] CMS Collaboration, CMS Collaboration, “Measurement of the top dilepton cross section using b-tagging at √s = 7 TeV with 882 pb−1 in pp collisions,” CMS Physics Analysis Summary CMS-PAS-TOP-12-007, 2012. [98] CMS Collaboration, CMS Collaboration, “Measurement of inclusive W and Z boson cross sections in pp collisions at √s = 8 TeV,” CMS Physics Analysis Summary CMS-PAS-SMP-12-011, 2012. [99] https://twiki.cern.ch/twiki/bin/viewauth/CMS/ StandardModelCrossSectionsat8TeV. [100] J. Campbell and R. Ellis, “MCFM for the Tevatron and the LHC,” Nucl. Phys. Proc. Suppl. (2010) arXiv:1007.3492. doi:10.1016/j.nuclphysbps.2010.08.011. [101] J. Campbell and R. Ellis, “An update on vector boson pair production at hadron colliders,” Phys. Rev. D60 (1999) arXiv:9905386. doi:10.1103/PhysRevD.60.113006. [102] CMS Collaboration, CMS Collaboration, “Measurement of the WW production cross section in pp collisions at √s = 8 TeV,” CMS Physics Analysis Summary CMS-PAS-SMP-12-013, 2012. [103] CMS Collaboration, CMS Collaboration, “Measurement of ZZ production cross section in ZZ → 2l2l′ decay channel in pp collisions at √s = 8 TeV,” CMS Physics Analysis Summary CMS-PAS-SMP-12-014, 2012. [104] “Top pair cross section in e/mu+jets at 8 TeV,” Technical Report CMS-PAS-TOP-12-006, CERN, Geneva, 2012. [105] “b-Jet Identification in the CMS Experiment,” Technical Report CMS-PAS-BTV-11-004, CERN, Geneva, 2012. [106] e. a. Chatrchyan, “Identification of b-quark jets with the CMS experiment,” Technical Report arXiv:1211.4462. CMS-BTV-12-001. CERN-PH-EP-2012-262, CERN, Geneva, Nov, 2012. Comments: Submitted to the Journal of Instrumentation. [107] e. a. Chatrchyan, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS,” J. Instrum. 6 (Jul, 2011) P11002. 67 p. [108] “Measurement of the single-top t-channel charge ratio at 8 TeV,” Technical Report CMS-PAS-TOP-12-038, CERN, Geneva, 2013. [109] H. Sumowidagdo, “Programming documentation of HitFit: A Kinematic Fitter for top quark-antiquark pair lepton+jets events,” CMS Note 2011/171, 2011. [110] CMS Collaboration, CMS Collaboration, “Measurement of jet multiplicity in top pair events,” CMS Physics Analysis Summary CMS-PAS-TOP-12-018, 2012. [111] “CMS Luminosity Based on Pixel Cluster Counting - Summer 2012 Update,” Technical Report CMS-PAS-LUM-12-001, CERN, Geneva, 2012. [112] M. R. Whalley, D. Bourilkov, and R. C. Group, “The Les Houches Accord PDFs(LHAPDF) and LHAGLUE,” arXiv:0508110. [113] “Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel,” Technical Report CMS-PAS-HIG-13-001, CERN, Geneva, 2013. [114] “Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s =7 and 8 TeV,” Technical Report CMS-PAS-HIG-13-002, CERN, Geneva, 2013. [115] “Evidence for a particle decaying to W+W- in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC,” Technical Report CMS-PAS-HIG-13-003, CERN, Geneva, 2013. [116] “Search for the Standard-Model Higgs boson decaying to tau pairs in proton-proton collisions at √s = 7 and 8 TeV,” Technical Report CMS-PAS-HIG-13-004, CERN, Geneva, 2013. [117] “Search for the standard model Higgs boson in the Z boson plus a photon channel in pp collisions at sqrt-s = 7 and 8 TeV,” Technical Report CMS-PAS-HIG-13-006, CERN, Geneva, 2013. [118] “Search for SM Higgs in WH to WWW to 3l 3nu,” Technical Report CMS-PAS-HIG-13-009, CERN, Geneva, 2013. [119] L. Moneta, et al., “The RooStats project,” in Proceedings of the 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research. February 22-27, 2010, Jaipur, India, p.57. 2010. arXiv:1009.1003. [120] A. L. Read, “Presentation of search results: the CL s technique,” Journal of Physics G: Nuclear and Particle Physics 28 (2002), no. 10, 2693. [121] E. G. O. V. Glen Cowan, Kyle Cranmer, “Asymptotic formulae for likelihood based tests of new physics,” European Physical Journal C 7 (February, 2011) 1544. doi:10.1140/epjc/s10052-011-1554-0.
|