(3.227.249.155) 您好!臺灣時間:2021/05/07 06:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳儒瑩
研究生(外文):Ju-Ying Chen
論文名稱:奈米磁性與半導體材料複合元件之光電特性研究
論文名稱(外文):Novel optoelectronic properties based on nanostructured magnetic materials and semiconductors composites
指導教授:陳永芳陳永芳引用關係
口試委員:張顏暉林泰源黃鶯聲蕭國瑞沈志霖
口試日期:2013-07-17
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:133
中文關鍵詞:自旋弛豫四氧化三鐵發光二極體回音廊模態垂直共振腔面射型雷射光子晶體磁電效應磁伸縮效應壓電效應
外文關鍵詞:Fe3O4LEDWhispering Gallery Mode photonic crystalmagnetoeletric effectmagnetostrictive effectpiezoelectric effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們利用不同的磁性材料與半導體材料搭配製作成樣品,並探討其光電特性及在光電元件上的應用。結合磁性材料的許多有趣特性,使半導體光電元件有更多新穎的特性、應用的價值和發展的空間。我們相信結合跨領域的知識及材料,能開發出半導體光電元件更多突破傳統的特性及應用方式。本論文共包含四個主題,其摘要如下:
1. 室溫下高效率之氮化銦鎵/氮化鎵奈米柱自旋發光二極體
過去由於快速自旋弛豫的關係,氮化銦鎵/氮化鎵的自旋發光二極體的輻射旋光度一直無法有重大的突破。我們將氮化銦鎵/氮化鎵薄膜多重量子井蝕刻為奈米柱多重量子井,減少因為晶格常數不匹配所造成的應力,進而降低量子井內的快速自旋弛豫。同時我們在奈米柱間填入四氧化三鐵奈米小球,藉由四氧化三鐵半金屬材料特殊的能帶結構,使量子井中自旋向下的電子會流入四氧化三鐵奈米小球,自旋向上的電子仍留在量子井中。由這種新的機制能有效控制量子井中電子自旋的方向,再加上由鐵磁性金屬電極自旋注入的效果,達到了極高的效率。這樣的設計同時具有許多優勢,能夠在常溫及低磁場下達到10.9 %的輻射旋光度,這個結果遠超過目前其他文獻的氮化物自旋發光二極體的表現。
2. 本身能自旋極化的紫外光旋偏振雷射
承接上個主題,我們利用結構整齊的六角形氮化鎵奈米柱製作出具有回音廊模態的共振雷射,並灑上四氧化三鐵奈米小球,藉由氮化鎵能帶和四氧化三鐵半金屬材料特殊的能帶結構相互搭配,使氮化鎵奈米柱內的電子在受到光激發時會和四氧化三鐵能階重新達到平衡,自旋向下的電子會流入四氧化三鐵奈米小球,自旋向上的電子留在氮化鎵奈米柱中,使氮化鎵奈米柱中的電子自旋方向自發性的被極化。利用這種全新的機制,我們能用非常簡單的方法做出紫外光的圓偏振雷射,這是目前主流的砷化銦鎵/砷化鎵量子井的垂直共振腔面射型雷射所做不到的。
3. 利用磁場控制鐵鈷/氧化鎳之半球殼陣列之光子晶體能隙
我們在單層、具有良好週期性排列的聚苯乙烯小球陣列上蒸鍍上鎳薄膜,再以450 的溫度做熱退火的處理。因為熱退火的溫度高於聚苯乙烯小球的沸點,熱退火處理後可以得到氧化鎳的半球殼陣列。濺鍍鍍上鐵鈷薄膜之後,成功製作出鐵鈷/氧化鎳之半球殼陣列。這個二維的磁性光子晶體陣列排列整齊、有明顯的光子晶體禁帶。我們能透過調變外加磁場的大小改變鐵鈷/氧化鎳之光子晶體禁帶。這個有趣的現象是歸因於隨著磁場變化成線性變化之鐵鈷的介電常數。我們相信這個結果開啟了光子晶體之磁光元件的可能性。
4. 可利用光學控制並偵測氮化銦鎵/氮化鎵多層量子井中的磁電效應
我們在氮化銦鎵/氮化鎵多層量子井/鐵磁性薄膜的複合材料中發現了ㄧ種新的、可由光控制並偵測的磁電效應。我們結合了鐵磁性薄膜可由磁場調變的磁伸縮特性,以及氮化銦鎵/氮化鎵多層量子井中可由光控制的的壓電效應,成功做出了一個新的具良好磁電特性的複合系統。並由於氮化銦鎵/氮化鎵多層量子井的特性,我們更進一步,使用光學的方法來控制及偵測磁電效應,我們相信這個結果對發展磁電效應的應用會有很大的幫助。


In this thesis, we have designed, fabricated, and characterized several new nanocomposites based on nanostructured semiconductors and magnetic materials. Many intriguing properties have been discovered, which does not only open new routes for academic interest, but also should be very useful for the generation of novel optoelectronic devices. The thesis contains four main topics, and the highlight of our scientific achievement is briefly described as follows.
1. Efficient spin light emitting diodes arising from InGaN/GaN quantum disks at room temperature: A new self-polarized paradigm
A well-behaved spin light emitting diode (LED) device composed of InGaN/GaN multiple quantum disks (MQDs), ferromagnetic contact and Fe3O4 nanoparticles has been designed, fabricated and characterized. The electroluminescence (EL) spin polarization can achieve a high value of 10.9% at room temperature in a low magnetic field of 0.35 T, which overcomes the difficulty of very low efficiency of spin injection in nitride semiconductors. Several underlying mechanisms play a significant role simultaneously in the new designed device for the achievement of such a high performance. The internal strain in the planar InGaN/GaN MQWs structure is relaxed in the nanodisk formation process. Additionally, the vacancy between nanodisks can be filled by magnetic nanoparticles with suitable energy band alignment for spin up and spin down electrons, which enables the transfer of selected spin between nanodisks and nanoparticles. Unlike previously reported mechanisms, this new process leads to a weak dependence of spin relaxation on temperature. Our approach can open up a new route for the further research and development of semiconductor spintronics.
2. Self-polarized ultraviolet spin-nanolasers
Self-polarized ultraviolet spin-nanolaser has been demonstrated based on periodic GaN nanorods arrays and Fe3O4 nanoparticles. The hexagonal crosssection of GaN nanorods forms natural laser cavities. The self-polarized spin laser action arises from the unique energy band between GaN nanorods and Fe3O4 nanoparticles for spin up and spin down electrons, which enables the transfer of electrons with a particular spin orientation from nanorods to nanoparticles. It therefore spontaneously generates the population unbalance of spin down and spin up electrons in GaN nanorods. This new mechanism does not require electrical pumping by magnetic electrode or optical pumping by circularly polarized light source shown in all previous reports, so that the rigorous restriction of spin-lasers on material selection can be relaxed. A high degree of circular polarization of spin-nanolasers up to 28.2 % can be achieved at room temperature in a low magnetic field of 0.35 T. These efficient spin-nanolasers could have myriad applications, including quantum information, optical communication, and spin optoelectronics.
3. Magnetic Field Modulation of Photonic Band Gap on FeCo/NiO Half-Shell Array
FeCo/NiO half-shell arrays were fabricated based on the periodic monolayer polystyrene spheres. The two dimensional magnetic periodic arrays form well-defined photonic crystals with pronounced stop bands. Quite interestingly, it is found that the stop bands can be tuned by an external magnetic field. The underlying mechanism is attributed to the controllable dielectric constant of the magnetic FeCo film under an applied magnetic field. The results shown here may open up an avenue for magnetically tunable photonic crystal stop bands, which may be useful for the creation of new magneto-optical devices.
4. Optically tunable and detectable magnetoelectric effects in the composite consisting of magnetic thin films and InGaN/GaN multiple quantum wells
An optically tunable and detectable magnetoeletric (ME) effect has been discovered in the composite consisting of InGaN/GaN multiple quantum wells and magnetostrictive ferromagnetic Ni or FeCo thin films at room temperature. Due to the interactively optical and piezoelectric properties of nitride semiconductors, this composite provides an intriguing optically accessible system, in which the magnetoelectric effect can be both easily tuned and detected. The underlying mechanism can be well accounted for by the interplay among magnetostrictive, piezoelectric and optical transition. It thus offers a new paradigm to generate artificial material systems with magnetic/electric/optical inter-related/controllable properties.


Chapter 1 Introduction……………1
Chapter 2 Theoretical Background……………5
2.1 Spin-orbit interaction in semiconductors……………5
2.2 Spin relaxation in semiconductors……………12
2.3 The Rashba interaction……………18
2.4 Half-metal……………19
2.5 Magneto-optics……………21
2.6 Photonic crystal……………24
2.7 Magnetoelectric effect……………29
Reference……………33
Chapter 3 Experimental details……………36
3. 1 Scanning Electron Microscopy……………36
3. 2 Photoluminescence……………40
3. 3 Raman Scattering……………43
3. 4 Time-resolved photoluminescence……………46
3. 5 Thermal evaporation deposition……………47
3. 6 Magneto-optical Kerr effect measurement……………50
Reference……………53
Chapter 4 Efficient spin light emitting diodes arising from InGaN/GaN quantum disks at room temperature: A new self-polarized paradigm……………55
4. 1 Introduction……………55
4. 2 Experiment……………58
4. 3 Results and discussion……………60
4. 4 Summary……………67
Reference……………74
Chapter 5 Self-polarized ultraviolet spin-nanolasers……………78
5. 1 Introduction……………78
5. 2 Experiment……………80
5. 3 Results and discussion……………81
5. 4 Summary……………87
Reference……………94
Chapter 6 Magnetic field modulation of photonic band gap on FeCo/NiO half-Shell Array……………96
6. 1 Introduction……………96
6. 2 Experiment……………101
6. 3 Results and discussion……………98
6. 4 Summary……………103
Reference……………106
Chapter 7 Optically tunable and detectable magnetoelectric effects in the composite consisting of magnetic thin films and InGaN/GaN multiple quantum wells……………109
7. 1 Introduction……………109
7. 2 Experiment……………111
7. 3 Results and discussion……………112
7. 4 Summary……………120
Reference……………127
Chapter 8 Conclusion……………131

chapter 1
[1]H. Ohno, Science, 281, 951 (1998).
[2]S. D. Sarma, American Scientist, 89, 516 (2001).
[3]G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn: Phys. Rev. B. 39, 4828 (1989)
[4]M.N. Baibich, J.M.Broto, A.Fert, F.N.Vandau, F.Petroff, P.Eitenne, G.Creuzet, A.Friederich, J.Chazelas: Phys. Rev. Lett. 61, 2472 (1988)
[5]S. Maekawa: Nature Materials 8, 777 (2009)

chapter 2
[1] J. J. Sakurai: Advanced Quantum Mechanics, Addison-Wesley, Reading, MA (1967)
[2] J. C. Slater: Quantum Theory of Atomic Structure, McGrew-Hill, New York (1960)
[3] J. M. Luttinger: Phys. Rev. 102, 1030 (1956)
[4] M. I. Dymnikov, M. I. Perel, Z. Eksp: Teor. Fiz. 71, 2371 (1971)
[5] M. I. Dymnikov, M. I. Perel, Z. Eksp: Sov. Phys. JEPT. 33, 1053 (1971)
[6] P. Y. Yu, M. Cardona: Fundamental of Semiconductor, Springer, Berlin (2001)
[7] Z. G. Yu, S. Krishnamurthy, M. van Schilfgaarde, N. Newman: Phys. Rev. B. 71, 245312 (2005)
[8] R.J. Elliot: Phys. Rev. 96, 266 (1954)
[9] Y. Yafet: Solid State Physics-Advances in Research and Application. 14, 1 (1963)
[10] M. I. Dymnikov, M. I. Perel: Fiz. Tverd. Tela. 13, 3581 (1971)
[11] M. I. Dymnikov, M. I. Perel: Sov. Phys. Solid State. 13, 3032 (1976)
[12] G. L. Bir, A.G. Aronov, G.E. Pikus: Sov. Phys. JETP. 42, 705 (1976)
[13] E.I. Rashba: Sov. Phys. Solid State. 2, 1109 (1960)
[14] J. M. D. Coey and M. Venkatesan, J. Appl. Phys. 91, 8346 (2002)
[15] Z. Q. Qiu and S. D. Bader, J. Magn. Magn. Mater. 200, 664 (1999).
[16] G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th.
Rasing, I. I. Smolyaninov, and A. V. Zayats, New J. Phys. 10, 105012 (2008).
[17] V. Ivanov and D. I. Sementsov, Crystallogr. Rep. 40, 78 (1995).
[18] K. Sakoda, in Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, (2005).
[19] W. C. Rontgen, Ann. Phys. 35, 264 (1888).
[20] H. A. Wilson, Phil. Trans. R. Soc. A 204, 129 (1905).
[21] P. Curie, J. Physique 3, 393 (1894).
[22] L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).
[23] D. N. Astrov, Sov. Phys. JETP 11, 708 (1960).
[24] D. N. Astrov, Sov. Phys. JETP 13, 729 (1961).
[25] G. T. Rado and V. J. Folen, Phys. Rev. Lett. 7, 310 (1961).
[26] V. J. Folen, G. T. Rado and E. W. Stalder, Phys. Rev. Lett. 6, 607 (1961).
[27] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
[28] F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, Nano Lett. 5, 1793 (2005).
[29] Y. Zhang, C. Y. Deng, J. Ma, Y. H. Lin, C. W. Nan, Appl. Phys. Lett. 92, 062911 (2008).
[30] Y. C. Chen, C. L. Cheng, S. C. Liou, and Y. F. Chen, Nanotechnology 19, 485709 (2008).
[31] M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005).
[32] D. N. Astrov, Soviet Phys. JEPT 13, 729 (1961).
[33] J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972).
[34] G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B 64, 214408 (2001).
[35] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).
[36] F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, Nano Lett. 5, 1793 (2005).
[37] Y. Zhang, C. Y. Deng, J. Ma, Y. H. Lin, C. W. Nan, Appl. Phys. Lett. 92, 062911 (2008).

chapter 3
[1] Online resource, http://en.wikipedia.org/wiki/Scanning_electron_microscope.
[2] R. A. Stradling and P. C. Klipstein, Growth and Characterisation of Semiconductors, published by Hilger (1990).
[3] S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy, published by Academic Press (1993).
[4] Goldberg: Luminescence of Inorganic Solids. Academic Press, New York (1966)
[5] K. D. Mielenz: Optical Radiation Measurement. Academic Press, New York (1982)
[6] B. Gerald: Wave Mechanics applied to Semiconductor Heterostructures. Halsted Press, New York (1984)
[7] A.H. Kitai: Solid State Luminescence. Chapman & Hill, New York (1993)
[8] P. Sidney: Optical Characterization of Semiconnductor. Academic Press, New York (1993)
[9] J. H. Simmons, K. S. Potter: Optical Materails. Academic Press, San Diego (2000)
[10] J. Wagner: Phys. Rev. B. 4, 2002 (1984)
[11] M. A. Herman, D. Bimberg, J. Christen: J. Appl. Phys. 70, R1 (1991)
[12] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, published by Springer (2001).
[13] L. Holland: Vacuum Deposition of Thin Film. Chapman & Hall (1963)
[14] K. L. Chopra: Thin Film Phenomena. McGrew-Hill (1969)
[15] G. Gunther: Z. Naturforshung. 13a, 1018 (1958)
[16] Y. Yoshida: CRC critical Rev. 11, 287 (1984)

chapter 4
[1]M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
[2]G. Binasch, P. Gr‥ nberg, F. Saurenbach, and W. Zinn, Phys.u Rev. B 39, 4828 (1989).
[3]G. A. Prinz, Science 282, 1660 (1998).
[4]D. Awschalom, D. Loss, and N. Samarth, Semiconductor spintronics and quantum computation (Springer Verlag, 2002).
[5]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnr, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).
[6]J. Bao, A. V. Bragas, J. K. Furdyna, and R. Merlin, Nat Mater 2, 175 (2003).
[7]B. Jonker, IEEE Proc. 91, 727 (2003).
[8]C. Adelmann, X. Lou, J. Strand, C. J. Palmstrom, and P. A. Crowell, Phys. Rev. B 71, 121301 (2005).
[9]L. Barron, Molecular light scattering and optical activity (Cambridge Univ Pr, 2004).
[10]D. D. Awschalom, J. Warnock, and S. von Moln, Phys. Rev. Lett. 58, 812 (1987).
[11]M. Holub and P. Bhattacharya, J. Phys. D: Appl. Phys. 40, 179 (2007).
[12]A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 80, 1240 (2002).
[13]Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).
[14]M. Hetterich, P. Asshoff, G. Wst, A. Merz, and H. Kalt, Phys. Status Solidi (c) 8, 1157 (2011).
[15]R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).
[16]H. J. Chang, T. W. Chen, J. W. Chen, W. C. Hong, W. C. Tsai, Y. F. Chen, and G. Y. Guo, Phys. Rev. Lett. 98, 136403 (2007).
[17]J.-H. Lee, I.-H. Choi, S. Shin, S. Lee, J. Lee, C. Whang, S.-C. Lee, K.-R. Lee, J.-H. Baek, K. H. Chae, and J. Song, Appl. Phys. Lett. 90, 032504 (2007).
[18]S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L217 (1996).
[19]Y. D. Park, B. T. Jonker, B. R. Bennett, G. Itskos, M. Furis, G. Kioseoglou, and A. Petrou, Appl. Phys. Lett. 77, 3989 (2000).
[20]B. T. Jonker, A. T. Hanbicki, Y. D. Park, G. Itskos, M. Furis, G. Kioseoglou, A. Petrou, and X. Wei, Appl. Phys. Lett. 79, 3098 (2001).
[21]A. T. Hanbicki, O. M. J. van ’t Erve, R. Magno, G. Kioseoglou, C. H. Li, B. T. Jonker, G. Itskos, R. Mallory, M. Yasar, and A. Petrou, Appl. Phys. Lett. 82, 4092 (2003).
[22]B. Beschoten, E. Johnston-Halperin, D. K. Young, M. Poggio, J. E. Grimaldi, S. Keller, S. P. DenBaars, U. K. Mishra, E. L. Hu, and D. D. Awschalom, Phys. Rev. B 63, 121202 (2001).
[23]S. Krishnamurthy, M. van Schilfgaarde, and N. Newman, Appl. Phys. Lett. 83, 1761 (2003).
[24]A. A. Buyanova, J. P. Bergman, W. M. Chen, G. Thaler, R. Frazier, C. R. Abernathy, S. J. Pearton, J. Kim, F. Ren, F. V. Kyrychenko, C. J. Stanton, C.-C. Pan, G.-T. Chen, J.-I. Chyi, and J. M. Zavada, J. Vac. Sci. Techno. B 22, 2668 (2004).
[25]A. A. Buyanova, M. Izadifard, W. M. Chen, J. Kim, F. Ren, G. Thaler, C. R. Abernathy, S. J. Pearton, C.-C. Pan, G.-T. Chen, J.-I. Chyi, and J. M. Zavada, Appl. Phys. Lett. 84, 2599 (2004).
[26]M.-H. Ham, S. Yoon, Y. Park, L. Bian, M. Ramsteiner, and J.-M. Myoung, J. Phys. Condens. Matter 18, 7703 (2006).
[27]H.-S. Chen, D.-M. Yeh, Y.-C. Lu, C.-Y. Chen, C.-F. Huang, T.-Y. Tang, C. C. Yang, C.-S. Wu, and C.-D. Chen, Nanotechnology 17, 1454 (2006).
[28]S. Pearton, D. Norton, R. Frazier, S. Han, C. Abernathy, and J. Zavada, IEEE Proc.: Circuits Devices Syst. 152, 312 (2005).
[29]G. Hu and Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
[30]A. Yanase and N. Hamada, J. Phys. Soc. Jpn. 68, 1607 (1999).
[31]S.-H. Wu, C.-Y. Lin, Y. Hung, W. Chen, C. Chang, and C.-Y. Mou, J. Biomed. Mater. Res. 99B, 81 (2011).
[32]L. Han, Y. Zhu, X. Zhang, P. Tan, H. Ni, Z. Niu, et al., Nanoscale research letters 6, 84 (2011).
[33]Y.-R. Wu, C. Chiu, C.-Y. Chang, P. Yu, and H.-C. Kuo, IEEE J. Sel. Top. Quantum Electron. 15, 1226 (2009).
[34]C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, and J. Huang, Opt. Express 16, 10549 (2008).
[35]R. M. Stroud, A. T. Hanbicki, Y. D. Park, G. Kioseoglou, A. G. Petukhov, B. T. Jonker, G. Itskos, and A. Petrou, Phys. Rev. Lett. 89, 166602 (2002).
[36]Y. Gohda and A. Oshiyama, Phys. Rev. B 78, 161201 (2008).
[37]G. Li, S. J. Chua, S. J. Xu, W. Wang, P. Li, B. Beaumont, and P. Gibart, Appl. Phys. Lett. 74, 2821 (1999).
[38]J. Tang, M. Myers, K. A. Bosnick, and L. E. Brus, J. Phys. Chem. B 107, 7501 (2003).
[39]M. Fonin, R. Pentcheva, Y. S. Dedkov, M. Sperlich, D. V. Vyalikh, M. Scheffler, U. R‥ diger, and G. G‥ ntherodt, Phys. Rev. B 72, 104436 (2005).

chapter 5
[1]M. N. Baibich, et al., Phys. Rev. Lett. 61, 2472 (1988).
[2]G. Binasch, P. Gr‥ nberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989).u
[3]G. A. Prinz, Science 282, 1660 (1998).
[4]M. Holub, P. Bhattacharya, J. Phys. D: Appl. Phys. 40, 179 (2007).
[5]D. Awschalom, D. Loss, N. Samarth, Semiconductor spintronics and quantum computation (Springer Verlag, 2002).
[6]S. A. Wolf, et al., Science 294, 1488 (2001).
[7]J. Bao, A. V. Bragas, J. K. Furdyna, R. Merlin, Nat Mater 2, 175 (2003).
[8]B. Jonker, IEEE Proc. 91, 727 (2003).
[9]C. Adelmann, X. Lou, J. Strand, C. J. Palmstrom, P. A. Crowell, Phys. Rev. B 71, 121301 (2005).
[10] D. D. Awschalom, J. Warnock, S. von Moln’ r, Phys. Rev. Lett. 58, 812 (1987).a
[11]H.-S. Chen, et al., Nanotechnology 17, 1454 (2006).
[12]M.-H. Ham, et al., J. Phys. Condens. Matter 18, 7703 (2006).
[13]I. A. Buyanova, et al., Appl. Phys. Lett. 84, 2599 (2004).
[14]H. Fujino, S. Koh, S. Iba, T. Fujimoto, H. Kawaguchi, Appl. Phys. Lett. 94, 131108 (2009).
[15]S. Iba, S. Koh, K. Ikeda, H. Kawaguchi, Appl. Phys. Lett. 98, 081113 (2011).
[16]G. Hu, Y. Suzuki, Phys. Rev. Lett. 89, 276601 (2002).
[17]A. Yanase, N. Hamada, J. Phys. Soc. Jpn. 68, 1607 (1999).
[18]J. Tang, M. Myers, K. A. Bosnick, L. E. Brus, J. Phys. Chem. B 107, 7501 (2003).
[19]T. Kouno, K. Kishino, M. Sakai, IEEE J. Sel. Topics Quantum Electron. 47, 1565 (2011).
[20]C. Liao, et al., Optics Express 20, 15859 (2012).
[21]S.-H. Wu, et al., J. Biomed. Mater. Res. 99B, 81 (2011).
[22]R. Chen, B. Ling, X. Sun, H. Sun, Adv. Mater. 23, 2199 (2011).
[23]M. Fonin, et al., Phys. Rev. B 72, 104436 (2005).

chapter 6
[1]F. Villa and J. A. Gaspar-Armenta, Opt. Exp. 12, 2338 (2004).
[2]E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[3]S. John, Phys. Rev. Lett. 58, 2486 (1987).
[4]N. Tetreault, A. C. Arsenault, A. Mihi, S. Wong, V. Kitaev, I. Manners, H. Miguez and G. A. Ozin, Adv. Mater. 17, 1912 (2005).
[5]R. K. Price, IEEE J. Quan. Elec. 42, 667 (2006).
[6]S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz and Jim Bur, Nature 394, 251 (1998).
[7]M. Skorobogatiy and A. V. Kabashin, Appl. Phys. Lett. 89, 143518 (2006).
[8]P. Russell, Science 299, 357 (2003).
[9]K. J. Vahala, Nature 424, 839 (2003).
[10]E. Chow, S.Y. Lin, S.G. Johnson, P.R. Villeneuve, J.D. Joannopoulos, J.R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou and A. Alleman, Nature 407, 983 (2000).
[11]J. S. Xia, Y. Ikegami, Y. Shiraki, N. Usami and Y. Nakata, Appl. Phys. Lett. 89, 201102 (2006).
[12]A. C. Arsenault, T. J. Clark, G. V. Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, and G. A. Ozin, Nat. Mater. 5, 175 (2006).
[13]Y. Zhang, C. Shi, C. Gu, L. Seballos and J. Z, Zhang, Appl. Phys. Lett. 90, 193504 (2007).
[14]A. Polman, J. Appl. Phys. 82, 1 (1997).
[15]S. Kim and V. Gopalan, Appl. Phys. Lett. 78, 3015 (2001).
[16]F. Du, Y. Q. Lu and S. T. Wu, Appl. Phys. Lett. 85, 2181 (2004).
[17]C. S. Kee, J. E. Kim and H. Y. Park, Phys. Rev. B 61, 15 523 (2000).
[18]Y. Gao, A. D. Li, Z. B. Gu, Q. J. Wang, Y. Zhang, D. Wu, Y. F. Chen, N. B. Ming, S. X. Ouyang and T. Yu, Appl. Phys. Lett. 91, 031910 (2007).
[19]P. B. Johnson and R. W. Christy, Phys. Rev. B 9, 5056 (1974).
[20]G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov and A. V. Zayats, New J. Phys. 10, 105012 (2008).
[21]O. V. Ivanov and D. I. Sementsov, Crystallography Reports 40, 78-81 (1995).
[22]C. M. Wei, C. W Chen, C. H. Wang, J. Y. Chen, Y. C. Chen and Y. F. Chen, Opt. Lett. 36, 514 (2011).
[23]K. Shinagawa, in Magneto-Optics, edited by S. Sugano and N. Kojima, Springer Series in Solid-State Sciences Vol. 128 (Springer. Berlin, 2000), pp. 139-141.
[24]A. M. Merzlikin, M. Levy, A. P. Vinogradov, Z. Wu and A. A. Jalali, Opt. Commun. 283, 4298 (2010).
[25]A. Lesuffleur, M. Vanwolleghem, P. Gogol, B. Bartenlian, P. Beauvillain, J. Harmle, L. Lagae, J. Pistora, K. Postava, S. Visnovsky and R. W. Speetjens, J. Magn. Magn. Mater. 305, 284 (2006).

chapter 7
[1]M. Fiebig, “Revival of the magnetoelectric effect,” J. Phys. D: Appl. Phys. 38, R123 (2005).
[2]H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, “Multiferroic BaTiO3−CoFe2O4 nanostructures,” Science 303, 661 (2004).
[3]F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S. Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D. G. Schlom, Y. Suzuki, and R. Ramesh, “Electric field-induced magnetization switching in epitaxial columnar nanostructures,” Nano Letters 5, 1793 (2005).
[4]Y. Zhang, C. Deng, J. Ma, Y. Lin, and C.-W. Nan, “Enhancement in magnetoelectric response in CoFe2O4−BaTiO3 heterostructure,” Appl. Phys. Lett. 92, 062911 (2008).
[5]T. Morita, M. K. Kurosawa, and T. Higuchi, “Cylindrical micro ultrasonic motor utilizing bulk lead zirconate titanate (PZT),” Jpn. J. Appl. Phys. 38, 3347 (1999).
[6]H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, “Electric-field control of ferromagnetism,” Nature 408, 944 (2000).
[7]W.-G. Wang, M. Li, S. Hageman, and C. L. Chien, “Electric-field-assisted switching in magnetic tunnel junctions,” Nat Mater 11, 64 (2012).
[8]S. Nakamura, M. Senoh, N. Iwasa, and S. ichi Nagahama, “High-brightness InGaN blue, green and yellow light emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797 (1995).
[9]S. P. Shuji Nakamura and G. Fasol, “The blue laser diode. the complete story,” Measurement Science and Technology 12, 755 (2001).
[10]S. Nakamura, M. Senoh, S. ichi Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN multi-quantum-well-structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys. 35, L217 (1996).
[11]T. Palacios, A. Chakraborty, S. Heikman, S. Keller, S. DenBaars, and U. Mishra, “AlGaN/GaN high electron mobility transistors with ingan back-barriers,” IEEE Electron Device Lett. 27, 13 (2006).
[12]F. Bernardini and V. Fiorentini, “Spontaneous versus piezoelectric polarization in III − V nitrides: Conceptual aspects and practical consequences,” phys. stat. sol. (b) 216, 391 (1999).
[13]S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998).
[14]T. Y. Lin, “Converse piezoelectric effect and photoelastic effect in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 82, 880 (2003).
[15]C. H. Chen, W. H. Chen, Y. F. Chen, and T. Y. Lin, “Piezoelectric, electro-optical, and photoelastic effects in InxGa1−xN/GaN multiple quantum wells,” Appl. Phys. Lett. 83, 1770 (2003).
[16]H. Hong, K. Bi, and Y. Wang, “Magnetoelectric performance in Ni/Pb(Zr, Ti)O3 /FeCo trilayered cylindrical composites,” J. Alloys Comp. 545, 182 (2012).
[17]N. Vernier, D. A. Allwood, D. Atkinson, M. D. Cooke, and R. P. Cowburn, “Domain wall propagation in magnetic nanowires by spin-polarized current injection,” EPL 65, 526 (2004).
[18]A. G. Kontos, Y. S. Raptis, N. T. Pelekanos, A. Georgakilas, E. Bellet-Amalric, and D. Jalabert, “Micro-raman characterization of Inx Ga1−x N/GaN/Al2 O3 heterostructures,” Phys. Rev. B 72, 155336 (2005).
[19]C. H. Chen, W. H. Chen, Y. F. Chen, and T. Y. Lin, “Piezoelectric, electro-optical, and photoelastic effects in InxGa1−xN/GaN multiple quantum wells,” Appl. Phys. Lett. 83, 1770 (2003).
[20]H. J. Chang, Y. P. Hsieh, T. T. Chen, Y. F. Chen, C.-T. Liang, T. Y. Lin, S. C. Tseng, and L. C. Chen, “Strong luminescence from strain relaxed InGaN/GaN nanotips for highly efficient light emitters,” Opt. Express 15, 9357 (2007).
[21]T. Suzuki, H. Baba, and E. Matsumoto, “Stress effect on hysteretic magnetization curve of nickel,” Int. J. Appl. Electromag. and Mech. 13, 307 (2002).
[22]C. M. Wei, H. Y. Shih, Y. F. Chen, and T. Y. Lin, “Optical detection of magnetoelectric effect in the composite consisting of ingan/gan multiple quantum wells and FeCo thin film,” Appl. Phys. Lett. 98, 131913 (2011).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔