(3.238.96.184) 您好!臺灣時間:2021/05/08 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁桐敏
研究生(外文):Tong-Ming Weng
論文名稱:回音廊模態增強氧化鋅奈米柱的隨機雷射
論文名稱(外文):Enhancement of Random Laser Action Assisted by Whispering-Gallery-Mode Resonance
指導教授:陳永芳陳永芳引用關係
口試委員:林泰源許芳琪
口試日期:2013-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用物理所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:55
中文關鍵詞:雷射紫外光奈米材料光學共振腔
外文關鍵詞:lasersultravioletnanomaterialsoptical resonators
相關次數:
  • 被引用被引用:0
  • 點閱點閱:335
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的在於研究利用回音廊模態增強氧化鋅奈米柱的隨機雷射。為了探討其中的運作原理,我們研究了二氧化矽奈米球修飾氧化鋅奈米線的雷射特性。我們發現在二氧化矽奈米球的幫助下,放射光譜裡有數個半高寬小於0.3奈米的雷射尖峰,而隨機雷射的微分量子效率也增加了七倍。拿來做修飾的奈米球不但可以做為回音廊模態的共振腔、增強發光強度,也可以做為一個散射中心。透過我們元件的二維的陰極發光影像、圓形迴音廊模態的理論計算、不同大小氧化矽奈米球的使用,我們進一步地驗證了提出的理論。這樣獨特的雷射特性將可以利用在製作高效率的光電元件。

Whispering-gallery-mode (WGM) resonance enhanced random laser action has been proposed and demonstrated. To illustrate the working principle, lasing characteristics of ZnO nanorods decorated with SiO2 nanospheres have been investigated. It is found that with the assistance of SiO2 nanospheres, the emission spectrum exhibits a very narrow background signal with few sharp lasing peaks and a very small full width at half maximum of less than 0.3 nm. The differential quantum efficiency (ηd) of random laser action can be greatly enhanced by up to 735 %. The decorated nanospheres not only enable to generate WGM resonance and enhance the emission intensity, but also can serve as scattering centers. Cathodoluminescence mapping images of nanorods decorated with nanospheres and theoretical calculation based on the spherical cavity were utilized to confirm our proposed mechanism. The unique lasing behavior shown here may open up a new approach for the creation of highly efficient optoelectronic devices.

Chapter 1 Introduction……………………………… ……………………………………………1
Reference………………………………………………………...……………………...………6
Chapter 2 Background knowledge of experimental technique and studied nanomaterials……8
2.1 Theory of photoluminescence of semiconductors……………......……...…….……….…8
2.2 ZnO nanorods……………………….…………..….…….......................……...…...13
Reference……………………………………………………………………………....………16
Chapter 3 Experimental details, Theoretical background and Sample preparation……….17
3. 1 Scanning Electron Microscopy....................……...……...……...……...……...……...…17
3. 2 Cathodoluminescence.........................................................................................................24
3. 3 Photoluminescence arrangement……………....……...……...……...……...……....……25
3. 4 Time-resolved photoluminescence……….....……...……...……...……...……………..27
3. 5 Absorption Spectroscopy………………...……...……...….....……...……...……...……28
3. 6 Vapor-Soild (VS) Growth Mechanism of ZnO Nanorods…………...……..……...30
Reference………………………………………………………………...…………….....……31
Chapter 4 Enhancement of Random Laser Action Assisted by Whispering-Gallery-Mode Resonance…………………………………………………………………………………………...32
5. 1 Introduction..................................................................................................................32
5. 2 Experiment………………….…………...……...……...……...……...……...…….....…35
5. 3 Results and discussion…………………………...……...……...……...……...……........36
5. 4 Summary…………………………...……...……...……...……...……...……...……......43
Reference………………………………………………………………...…………….....……52
Chapter 5 Conclusion………………………………..........................................................……….55



Chapter 1
1.V. S. Letokhov, Sov. Phys. JETP 1968, 26, 835.
2.H. D. Li, S. F. Yu, S. P. Lau, and E. S. P. Leong, Appl. Phys. Lett. 2006, 89, 021110.
3.M. Anni, S. Lattante, T. Stomeo, R. Cingolani, G. Gigli, G. Barbarella, and L. Favaretto, Phys. Rev. B. 2004, 70, 195216
4.R. C. Polson, and Z. V. Vardeny, Appl. Phys. Lett. 2004, 85 1289–1291.
5.W. Guerin, N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Perez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser, J. Opt. 2010, 12, 024002.
6.S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 2004, 84, 3241-3243.
7.H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, B. H. Li, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. H. Huo, and K. L. Choy, Adv. Mater. 2010, 22, 1877-1881.
8.A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 2005, 44, L643-L645.
9.S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett. 2008, 93, 181106.
10.C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, Opt. Express 2009, 17, 7893-7900.
11.M. H. Huang, Science 2001, 292, 1897-1899.
12.D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, ACS Nano 2010, 4, 3270-3276.
13.R. Chen, B. Ling, X. W. Sun, and H. D. Sun, Adv. Mater. 2011, 23, 2199-2204.
14.Y. T. Chen and Y. F. Chen, Opt. Express 2011, 19, 8728-8734.
15.H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 1999, 82, 2278-2281
16.C. W. Chen and Y. F. Chen, Appl. Phys. Lett. 2007, 90, 071104.
17.Y. Wu and P. T. Leung, Phys. Rev. A 1999, 60, 630-633.
18.T. J. Lin, H. L. Chen, Y. F. Chen, and S. Cheng, Appl. Phys. Lett. 2008, 93, 223903.
19.I. S. Grudinin, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 2009, 102, 043902.

Chapter 2
1.Y. Yu, M. Cardona, Fundamentals of Semiconductors, pp.348, published by springer, 1990.
2.Quirk, M.; Serda, J. Semiconductor Manufacturing Technology, Prentice Hall, 2000.
3.Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS Nano 2010, 4, 4324-4330.
4.H. K. Schroeder, Semiconductor Material and Device Characterization, published by John Willey & Sons, 1998, 624,
5.Chen Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S., Cheng, H. M. Nat. Mater. 2011, 10, 424-428.
6.O. Dulub, L. A. Boatner, and U. Diebold, Surf. Sci. 519, 201 (2002)
7.Z. L. Wang, J. Phy. Condens. Matter 16, 829 (2004)
8.T. Kogure, and Y. Bando, J. Electron Microsc. 47, 7903 (1993)
9.Park, S. Ruoff, R. S. Nature Nanotech. 2009, 4, 217-224.
10.Seung J. C.; Fethullah G.; Ki K. K.; Eun S. K.; Gang H. H.; Soo M. K.; Hyeon J. S., Seon M. Y.; Jae Y. C.; Min H. P.; Cheol W. Y.; Didier P.; Young H. L.; Adv. Mater. 2009, 21, 2328-2333.

Chapter 3
1.Online resource, http://en.wikipedia.org/wiki/Scanning_electron_microscope.
2.D. McMullan, Scanning, 2006, 17, 175.
3.Online source, http://www4.nau.edu/microanalysis/Microprobe-SEM/Signals.html
4. S. Fatikow, “Nanostructuring and Nanobonding by EBID”. Automated nanohandling by Microrobts, 2007, Chapter 1.
5.K. Kanaya, S. Okayama, J. Appl. Phys. 1972, 5, 43
6.B. G. Yacobi and D. B. Holt, Cathodoluminescence microscopy of inorganic solids, Plenum Press, New York and London (1990)
7.A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth , 2005, 282, 131-136.

Chapter 4
Reference
1.V. S. Letokhov, Sov. Phys. JETP 1968, 26, 835.
2.B. Q. Sun, M. Gal, Q. Gao, H. H. Tan, C. Jagadish, T. Puzzer, L. Ouyang, and J. Zou, J. Appl. Phys. 2003, 93,5855.
3.F. Quochi, J. Opt. 2010, 12,024003.
4.W. Guerin, N. Mercadier, F. Michaud, D. Brivio, L. S. Froufe-Perez, R. Carminati, V. Eremeev, A. Goetschy, S. E. Skipetrov, and R. Kaiser, J. Opt. 2010, 12,024002.
5.H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 1999, 82, 2278-2281.
6.J. E. Shaw, P. N. Stavrinou, and T. D. Anthopoulos, Adv. Mater. 2013, 25, 552-558.
7.T. S. Kulmala, A. Colli, A. Fasoli, A. Lombardo, S. Haque, and A. C. Ferrari, ACS Nano 2011, 5, 6910–6915.
8.M. L. Lu, T. M. Weng, J. Y. Chen, Y. F. Chen, NPG Asia Mater. 2012, 4, e26.
9.M. Lin. Lu, C. Wei. Lai, H. Ju. Pan, C. T. Chen, P. T. Chou, and Y. F. Chen, Nano Letters 2013, DOI: 10.1021/nl3041367.
10.X. Fang, J. Yan, L. Hu, H. Liu, and P. S. Lee, Adv. Funct. Mater. 2010, 22, 1613-1622.
11.T. Zhai, M. Ye, L. Li, X. Fang, M. Liao, Y. Li, Y. Koide, Y. Bando, and D. Golberg, Adv. Mater. 2010, 22, 4530-4533 (2010).
12.S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, Appl. Phys. Lett. 2004, 84, 3241-3243.
13.H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, B. H. Li, B. Yao, D. Z. Shen, X. W. Fan, Z. K. Tang, X. H. Huo, and K. L. Choy, Adv. Mater. 2010, 22, 1877-1881.
14.A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu, and M. Kawasaki, Jpn. J. Appl. Phys. 2005, 44, L643-L645.
15.S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett. 2008, 93, 181106.
16.C. Zhang, F. Zhang, T. Xia, N. Kumar, J. I. Hahm, J. Liu, Z. L. Wang, and J. Xu, Opt. Express 2009, 17, 7893-7900.
17.M. H. Huang, Science 2001, 292, 1897-1899.
18.D. J. Gargas, M. C. Moore, A. Ni, S. W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, ACS Nano 2010, 4, 3270-3276.
19.R. Chen, B. Ling, X. W. Sun, and H. D. Sun, Adv. Mater. 2011, 23, 2199-2204.
20.Y. T. Chen and Y. F. Chen, Opt. Express 2011, 19, 8728-8734.
21.C. W. Chen and Y. F. Chen, Appl. Phys. Lett. 2007, 90, 071104.
22.Y. Wu and P. T. Leung, Phys. Rev. A 1999, 60, 630-633.
23.T. J. Lin, H. L. Chen, Y. F. Chen, and S. Cheng, Appl. Phys. Lett. 2008, 93, 223903.
24.I. S. Grudinin, A. B. Matsko, and L. Maleki, Phys. Rev. Lett. 2009, 102, 043902.
25.A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, J. Cryst. Growth 2005, 282, 131-136.
26.M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, Appl. Phys. Lett. 2011, 99, 091106.
27.W. M. Kwok, Y. H. Leung, A. B. Djurišić, W. K. Chan, and D. L. Phillips, Appl. Phys. Lett. 2005, 87, 093108.
28.A. K. Bhowmik , Appl. Opt. 2000 , 39, 3071.
29.T. Nobis, E. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, Phys. Rev. Lett. 2004, 93, 103903.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔