(3.235.191.87) 您好!臺灣時間:2021/05/14 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉昱德
研究生(外文):Yu-Te Yeh
論文名稱:中國橄欖之抗增生活性因子的純化及鑑定暨其生理活性之研究
論文名稱(外文):Analyze and identify the anti-tumor compounds fromChinese olive extracts and its physiological activity
指導教授:謝淑貞謝淑貞引用關係
口試委員:蘇南維郭靜娟羅翊禎
口試日期:2013-07-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:122
中文關鍵詞:中國橄欖抗癌總多酚
外文關鍵詞:Chinese oliveanti-tumortotal polyphenol
相關次數:
  • 被引用被引用:5
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中國橄欖具有抗菌、抗病毒、抗發炎與解毒功效。先前的研究顯示其含有豐富的多酚類物質與體外抗氧化功效成分。因此,本研究目的為探討中國橄欖抗癌功能之有效成分。本實驗利用WST-1 assay作為抗癌功能之篩選平台,結果顯示,以甲醇-乙酸乙酯區分層(OM-EtOAc)進行Diaion HP-20大孔樹脂管柱層析後,所得次區分層OM-EtOAc-C和OM-EtOAc-D的抗腫瘤效果明顯優於其它次區分層。再經由90% 的Hexane/Ethyl acetate 進行沉澱, 得到上清液與沉澱後, 發現
OM-EtOAc-C的上清液對於細胞抑制效果效果優於沉澱部分,而OM-EtOAc-D的上清液與沉澱部分皆有細胞抑制效果,透過HPLC與TLC找出適當分離條件後,最後以silica gel 進行管柱層析,所得OM-EtOAc-C2b抑制細胞增生效果明顯優於OM-EtOAc-C的上清液,然而OM-EtOAc-D的上清液的次區分層之抑制細胞增生效果並無優於OM-EtOAc-D 的上清液。最後選用OM-EtOAc-C2b 進行LC-SPE-NMR與LC-MS的化學結構鑑定,共鑑定出共9個化合物,其中有2個化合物須更進一步確認分子式為何,並進行細胞存活率分析。在動物實驗方面,利用大腸癌細胞轉殖於Balb/c 6週齡公鼠,餵食高劑量(300mg/kg bw/day) 的OM-EtOAc與低劑量(150mg/kg bw/day) 的OM-EtOAc,4週後發現腫瘤細胞與腫
瘤組相比有明顯變小,推測可能進行細胞凋亡或壞死途徑。綜合上述,中國橄欖確實具有抗腫瘤增生效果,其具有功效的成分為gallic acid, methyl gallate, ellagic acid, esculetin, scopoletin。

Chinese olive is a traditional medicine material, exhibiting beneficial functions in
anti-bacterium, anti-virus, anti-inflammation and detoxification. Previous studies have
displayed Chinese olive a phenolic compounds rich resource for providing
antioxidative activity. However, the role of Chinese olive in anti-cancer remains
unknown. Therefore, our aim is to search for compounds with anti-proliferation effect
in Chinese olive. In this study, we used WST-1 assay to examine the anti-proliferation
function of compounds within Chinese olive. Firstly, we obtained the ethyl acetate
fraction from Chinese olive methanolic extract and named it as OM-EtOAc. We then
found that the subfraction of OM-EtOAc-C and OM-EtOAc-D from OM-EtOAc
through Diaion HP-20 column chromatography exhibited better antitumor effect than
the other subfractions. These two subfractions were then precipitated by 90%
Hexane / Ethyl acetate. The supernatant of OM-EtOAc-C revealed superior anti-tumor
activity to the precipitate, whereas both the supernatant and precipitate of
OM-EtOAc-D displayed comparable effect. We then used HPLC and TLC spot to
titrate appropriate separation conditions for separating the supernatants of
OM-EtOAc-C and OM-EtOAc-D (OM-EtOAc-C2 and OM-EtOAc-D2), followed by
chromatography on silica gel. The OM-EtOAc-C2b revealed better effect thanOM-EtOAc-C2, however, no fraction exhibited higer anti-tumor activity than OM-EtOAc-D2. Finally, we choose OM-EtOAc-C2b to identify functionalcompounds using LC-SPE-NMR and LC-MS, and 12 compounds were identified.Among the compounds identified, three remained to be further analyzed to confirm
the chemical structure. In animal experiments, We also implanted mouse CT26 colon cancer cells to BALB/c mice and allowed them to form tumors. The tumor-bearing mice were treated with either high dose of OM-EtOAc (300mg/kg bw/day) or lowdose of (150mg/kg bw/day) OM-EtOAc. Compared with control mice, OM-EtOActreated mice beared significantly smaller tumor after four-week treatment. In conclusion, Chinese olive has anti-tumor proliferative effect, and the functional compounds includee gallic acid, methyl gallate, ellagic acid, esculetin, scopoletin.

表目錄……………………………………………..………………………..………………………………………..……i
圖目錄……………………………………………..………………………..………………………………………….…ii
摘要 .............................................................. 1
Abstract .......................................................... 2
第一章 前言 ....................................................... 4
第二章文獻回顧 ................................................... 5
第一節、中國橄欖................................................................................................ 5
一、中國橄欖中的成分.............................................................................. 5
二、中國橄欖的體外及體內試驗.............................................................. 6
(一) 體外試驗 ....................................................................................... 6
1.抗氧化試驗................................................................................. 6
2.抗腫瘤增生與抗發炎試驗......................................................... 6
(二) 體內試驗...................................................................................... 6
1.肝毒性試驗................................................................................ 6
第二節、其他橄欖屬(Canarium)相關研究 ......................................................... 7
(一) 體外試驗.................................................................................... 10
1.抗氧化試驗............................................................................... 10
2. 抗菌試驗................................................................................. 10
3. 抗腫瘤增生試驗..................................................................... 11
(二) 體內試驗.................................................................................... 11
1.抗糖尿病................................................................................... 11
2.抗疼痛試驗............................................................................... 11
3. 肝毒性試驗............................................................................. 11
4. 心血管疾病試驗..................................................................... 12
第三節、大腸直腸癌.......................................................................................... 12
一、大腸直腸癌與發炎反應之關係.......................................................... 13
(一) Chemokines .................................................................................. 14
(二) Toll-like receptors ......................................................................... 14
(三) TIR8 ............................................................................................. 15
(四)IL-6 ................................................................................................ 15
(五) NF-κB ........................................................................................... 15
(六) Cyclooxygenase-2 ( COX2 ) ........................................................ 16
二、大腸癌與免疫反應之關係.................................................................. 17
(一)腫瘤白血球浸潤(tumor leukocyte infiltration(TILs)).................. 17
(二) 腫瘤相關巨噬細胞Tumor-associated Macrophages(TAM) ...... 18
三、參與大腸直腸癌反應路徑.................................................................. 19
(一) Wnt signaling pathway ................................................................. 19
(二)Notch signaling ............................................................................. 20
(三)BMP signaling ............................................................................... 20
第三章實驗動機與目的 ............................................ 25
一、實驗動機............................................................................................ 25
二、實驗目的............................................................................................ 25
二、實驗架構............................................................................................ 25
第四章材料與方法............................................................................................ 26
4-1 中國橄欖萃取 ............................................................................................... 26
一、實驗材料...................................................................................................... 26
1.化學藥品與溶劑............................................................................................... 26
2.儀器設備........................................................................................... 26
二、中國橄欖以不同溶劑萃取及區分層、次區分層與細區分層的製備
...................................................................................................................... 26
1. 中國橄欖萃取大量製備(進行細胞抗增生活性成份之製備與分離
使用) .................................................................................................... 26
2. 中國橄欖甲醇萃取物乙酸乙酯區分層的管柱層析..................... 27
3. 中國橄欖甲醇萃取物乙酸乙酯次區分層的沉澱反應與管柱層析
.............................................................................................................. 28
4-2 以化學分析檢驗中國橄欖之抗增生與抗發炎的能力 ............................... 29
一、實驗材料.............................................................................................. 29
1.化學藥品與溶劑............................................................................... 29
2.儀器設備........................................................................................... 29
二、化學分析.............................................................................................. 30
1.總多酚類化合物含量測定............................................................... 30
2.總黃酮類含量測定........................................................................... 30
4-3 以細胞模式檢驗中國橄欖之抗增生與抗發炎的能力 ............................... 31
一、實驗材料.............................................................................................. 31
1.化學藥品與溶劑............................................................................... 31
2.儀器設備........................................................................................... 32
二、細胞來源與培養.................................................................................. 32
1.繼代培養........................................................................................... 32
2.細胞計數........................................................................................... 33
3.細胞冷凍保存及解凍....................................................................... 33
二、細胞分析實驗...................................................................................... 34
1.細胞存活率測定.............................................................................. 34
2.細胞發炎反應之測定...................................................................... 34
4-4 以動物模式探討中國橄欖之抗增生的生理活性 ....................................... 36
一、實驗材料.............................................................................................. 36
1.化學藥品與溶劑............................................................................... 36
2.儀器設備........................................................................................... 36
二、動物分析實驗...................................................................................... 36
1.動物飼養........................................................................................... 36
2.轉植腫瘤........................................................................................... 36
3.實驗組別.......................................................................................... 37
4.腫瘤大小測量................................................................................... 37
4-5 統計分析 ...................................................................................................... 37
第四章結果 ...................................................... 38
一、以細胞模式檢驗中國橄欖萃取物之抗增生效應...................................... 38
1. 中國橄欖以不同溶劑萃取後的萃取物對於抗增生之影響................. 38
2. 中國橄欖甲醇萃取物不同區分層對於抗增生之影響......................... 38
3. 中國橄欖甲醇乙酸乙酯區分層之次區分物對CT26 細胞株生長之影
響.................................................................................................................. 39
4. OM-EtOAc-C 與OM-EtOAc-D之沉澱反應對CT26 細胞株生長之影
響.................................................................................................................. 39
5. OM-EtOAc-C2 與OM-EtOAc-D2 細區分物對CT26 細胞株生長之影
響.................................................................................................................. 40
6. OM-EtOAc-C2b HPLC 細區分物對CT26 細胞株生長之影響 ......... 40
7. OM-EtOAc-C2b 分析之結果 ................................................................. 41
二、以化學分析中國橄欖萃取物之組成.......................................................... 66
三、以動物模式探討中國橄欖之抗增生的生理活性...................................... 68
1.體重變化與腫瘤生長大小....................................................................... 68
第五章 討論 ...................................................... 71
一、萃取方式...................................................................................................... 71
二、中國橄欖萃取物對於抑制癌症的路徑...................................................... 71
三、中國橄欖具有抗腫瘤增生的成分探討...................................................... 72
第六章 結論 ...................................................... 75
第七章參考文獻 .................................................. 76

邱詩婷。 2010。建立並評估生物技術平台篩選具有抗發炎效果的食品。國立台
灣大學食品科技研究所碩士論文。台北。
陳大為編 (明) 李時珍原著。本草綱目圖鑑。2009。長征出版社。400。
陳奕安。2012。利用細胞平台的評估進行中國橄欖萃取物中具有抗發炎或抗腫瘤
功效成份的分析與分離。國立台灣大學食品科技研究所碩士論文。台北。
謝鴻業、賴幸宜、方信秀。2011。熱帶水果研究團隊-熱帶及亞熱帶果樹種原之
蒐集及保存。熱帶及亞熱帶果樹種原保存利用研討會專刊。61~76。
1. Guo, D. J.; Cheng, H. L.; Chan, S. W.; Yu, P. H., Antioxidative activities and the
total phenolic contents of tonic Chinese medicinal herbs. Inflammopharmacology
2008, 16, 201-7.
2. Ito, M.; Shimura, H.; Watanabe, N.; Tamai, M.; Hanada, K.; Takahashi, A.; Tanaka,
Y.; Arai, K.; Zhang, P. L.; Chang, R.; et al., Hepatoprotective compounds from
Canarium album and Euphorbia nematocypha. Chem Pharm Bull (Tokyo) 1990, 38,
2201-3.
3. Zhang, L. L.; Lin, Y. M., Tannins from Canarium album with potent antioxidant
activity. J Zhejiang Univ Sci B 2008, 9, 407-15.
4. Prasad, K. N.; Chew, L. Y.; Khoo, H. E.; Kong, K. W.; Azlan, A.; Ismail, A.,
Antioxidant capacities of peel, pulp, and seed fractions of Canarium odontophyllum
Miq. fruit. J Biomed Biotechnol 2010, 2010.
5. Kamtchouing, P.; Kahpui, S. M.; Dzeufiet, P. D.; Tedong, L.; Asongalem, E. A.;
Dimo, T., Anti-diabetic activity of methanol/methylene chloride stem bark extracts of
Terminalia superba and Canarium schweinfurthii on streptozotocin-induced diabetic
rats. J Ethnopharmacol 2006, 104, 306-9.
77
6. Koudou, J.; Abena, A. A.; Ngaissona, P.; Bessiere, J. M., Chemical composition
and pharmacological activity of essential oil of Canarium schweinfurthii. Fitoterapia
2005, 76, 700-3.
7. Shakirin, F. H.; Azlan, A.; Ismail, A.; Amom, Z.; Yuon, L. C., Antiatherosclerotic
Effect of Canarium odontophyllum Miq. Fruit Parts in Rabbits Fed High Cholesterol
Diet. Evidence-based complementary and alternative medicine : eCAM 2012, 2012,
838604.
8. Katoh, M., Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling
pathways during carcinogenesis. Stem Cell Rev 2007, 3, 30-8.
9. Sancho, E.; Batlle, E.; Clevers, H., Signaling pathways in intestinal development
and cancer. Annu Rev Cell Dev Biol 2004, 20, 695-723.
10. Bernstein, C. N.; Blanchard, J. F.; Kliewer, E.; Wajda, A., Cancer risk in patients
with inflammatory bowel disease: a population-based study. Cancer 2001, 91,
854-62.
11. Hussain, S. P.; Hofseth, L. J.; Harris, C. C., Radical causes of cancer. Nat Rev
Cancer 2003, 3, 276-85.
12. Meira, L. B.; Bugni, J. M.; Green, S. L.; Lee, C. W.; Pang, B.; Borenshtein, D.;
Rickman, B. H.; Rogers, A. B.; Moroski-Erkul, C. A.; McFaline, J. L.; Schauer, D. B.;
Dedon, P. C.; Fox, J. G.; Samson, L. D., DNA damage induced by chronic inflammation
contributes to colon carcinogenesis in mice. J Clin Invest 2008, 118, 2516-25.
13. Rustgi, A. K., The genetics of hereditary colon cancer. Genes Dev 2007, 21,
2525-38.
14. Yang, L.; Belaguli, N.; Berger, D. H., MicroRNA and colorectal cancer. World J Surg
2009, 33, 638-46.
15. Iliopoulos, D.; Hirsch, H. A.; Struhl, K., An epigenetic switch involving NF-kappaB,
Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009,
139, 693-706.
78
16. McConnell, B. B.; Yang, V. W., The Role of Inflammation in the Pathogenesis of
Colorectal Cancer. Curr Colorectal Cancer Rep 2009, 5, 69-74.
17. Popivanova, B. K.; Kostadinova, F. I.; Furuichi, K.; Shamekh, M. M.; Kondo, T.;
Wada, T.; Egashira, K.; Mukaida, N., Blockade of a chemokine, CCL2, reduces chronic
colitis-associated carcinogenesis in mice. Cancer Res 2009, 69, 7884-92.
18. Erreni, M.; Bianchi, P.; Laghi, L.; Mirolo, M.; Fabbri, M.; Locati, M.; Mantovani, A.;
Allavena, P., Expression of chemokines and chemokine receptors in human colon
cancer. Methods in enzymology 2009, 460, 105-21.
19. Zipin-Roitman, A.; Meshel, T.; Sagi-Assif, O.; Shalmon, B.; Avivi, C.; Pfeffer, R. M.;
Witz, I. P.; Ben-Baruch, A., CXCL10 promotes invasion-related properties in human
colorectal carcinoma cells. Cancer Res 2007, 67, 3396-405.
20. Schneider, M. R.; Hoeflich, A.; Fischer, J. R.; Wolf, E.; Sordat, B.; Lahm, H.,
Interleukin-6 stimulates clonogenic growth of primary and metastatic human colon
carcinoma cells. Cancer Lett 2000, 151, 31-8.
21. Vetrano, S.; Borroni, E. M.; Sarukhan, A.; Savino, B.; Bonecchi, R.; Correale, C.;
Arena, V.; Fantini, M.; Roncalli, M.; Malesci, A.; Mantovani, A.; Locati, M.; Danese, S.,
The lymphatic system controls intestinal inflammation and inflammation-associated
Colon Cancer through the chemokine decoy receptor D6. Gut 2010, 59, 197-206.
22. Rakoff-Nahoum, S.; Medzhitov, R., Regulation of spontaneous intestinal
tumorigenesis through the adaptor protein MyD88. Science 2007, 317, 124-7.
23. Fukata, M.; Abreu, M. T., Role of Toll-like receptors in gastrointestinal
malignancies. Oncogene 2008, 27, 234-43.
24. Huang, B.; Zhao, J.; Li, H.; He, K. L.; Chen, Y.; Chen, S. H.; Mayer, L.; Unkeless, J. C.;
Xiong, H., Toll-like receptors on tumor cells facilitate evasion of immune surveillance.
Cancer Res 2005, 65, 5009-14.
25. Thomassen, E.; Renshaw, B. R.; Sims, J. E., Identification and characterization of
SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine
1999, 11, 389-99.
79
26. Garlanda, C.; Riva, F.; Veliz, T.; Polentarutti, N.; Pasqualini, F.; Radaelli, E.; Sironi,
M.; Nebuloni, M.; Zorini, E. O.; Scanziani, E.; Mantovani, A., Increased susceptibility
to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the
interleukin-1 receptor family. Cancer Res 2007, 67, 6017-21.
27. Hoebe, K.; Janssen, E.; Beutler, B., The interface between innate and adaptive
immunity. Nat Immunol 2004, 5, 971-4.
28. McLoughlin, R. M.; Witowski, J.; Robson, R. L.; Wilkinson, T. S.; Hurst, S. M.;
Williams, A. S.; Williams, J. D.; Rose-John, S.; Jones, S. A.; Topley, N., Interplay
between IFN-gamma and IL-6 signaling governs neutrophil trafficking and apoptosis
during acute inflammation. J Clin Invest 2003, 112, 598-607.
29. Hsu, C. P.; Chung, Y. C., Influence of interleukin-6 on the invasiveness of human
colorectal carcinoma. Anticancer Res 2006, 26, 4607-14.
30. Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G. Y.; Vallabhapurapu, S.;
Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; Karin, M., IL-6 and Stat3 are
required for survival of intestinal epithelial cells and development of
colitis-associated cancer. Cancer Cell 2009, 15, 103-13.
31. Bollrath, J.; Phesse, T. J.; von Burstin, V. A.; Putoczki, T.; Bennecke, M.; Bateman,
T.; Nebelsiek, T.; Lundgren-May, T.; Canli, O.; Schwitalla, S.; Matthews, V.; Schmid, R.
M.; Kirchner, T.; Arkan, M. C.; Ernst, M.; Greten, F. R., gp130-mediated Stat3
activation in enterocytes regulates cell survival and cell-cycle progression during
colitis-associated tumorigenesis. Cancer Cell 2009, 15, 91-102.
32. Malek, S.; Huxford, T.; Ghosh, G., Ikappa Balpha functions through direct
contacts with the nuclear localization signals and the DNA binding sequences of
NF-kappaB. J Biol Chem 1998, 273, 25427-35.
33. Verma, I. M.; Stevenson, J. K.; Schwarz, E. M.; Van Antwerp, D.; Miyamoto, S.,
Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation.
Genes Dev 1995, 9, 2723-35.
34. Ghosh, S.; Karin, M., Missing pieces in the NF-kappaB puzzle. Cell 2002, 109
Suppl, S81-96.
80
35. Solinas, G.; Karin, M., JNK1 and IKKbeta: molecular links between obesity and
metabolic dysfunction. FASEB J 2010, 24, 2596-611.
36. Greten, F. R.; Eckmann, L.; Greten, T. F.; Park, J. M.; Li, Z. W.; Egan, L. J.; Kagnoff,
M. F.; Karin, M., IKKbeta links inflammation and tumorigenesis in a mouse model of
colitis-associated cancer. Cell 2004, 118, 285-96.
37. Pikarsky, E.; Porat, R. M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.;
Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y., NF-kappaB functions
as a tumour promoter in inflammation-associated cancer. Nature 2004, 431, 461-6.
38. Shi, H.; Kokoeva, M. V.; Inouye, K.; Tzameli, I.; Yin, H.; Flier, J. S., TLR4 links innate
immunity and fatty acid-induced insulin resistance. J Clin Invest 2006, 116, 3015-25.
39. Senn, J. J., Toll-like receptor-2 is essential for the development of
palmitate-induced insulin resistance in myotubes. J Biol Chem 2006, 281, 26865-75.
40. Pal, D.; Dasgupta, S.; Kundu, R.; Maitra, S.; Das, G.; Mukhopadhyay, S.; Ray, S.;
Majumdar, S. S.; Bhattacharya, S., Fetuin-A acts as an endogenous ligand of TLR4 to
promote lipid-induced insulin resistance. Nat Med 2012.
41. Arber, N.; Eagle, C. J.; Spicak, J.; Racz, I.; Dite, P.; Hajer, J.; Zavoral, M.; Lechuga,
M. J.; Gerletti, P.; Tang, J.; Rosenstein, R. B.; Macdonald, K.; Bhadra, P.; Fowler, R.;
Wittes, J.; Zauber, A. G.; Solomon, S. D.; Levin, B.; Pre, S. A. P. T. I., Celecoxib for the
prevention of colorectal adenomatous polyps. N Engl J Med 2006, 355, 885-95.
42. Benelli, R., Aspirin, COX-2, and the risk of colorectal cancer. N Engl J Med 2007,
357, 824-5; author reply 824-5.
43. Iglesias, D.; Nejda, N.; Azcoita, M. M.; Schwartz, S., Jr.; Gonzalez-Aguilera, J. J.;
Fernandez-Peralta, A. M., Effect of COX2 -765G>C and c.3618A>G polymorphisms on
the risk and survival of sporadic colorectal cancer. Cancer Causes Control 2009, 20,
1421-9.
44. Wu, W. K.; Sung, J. J.; Lee, C. W.; Yu, J.; Cho, C. H., Cyclooxygenase-2 in
tumorigenesis of gastrointestinal cancers: an update on the molecular mechanisms.
Cancer Lett 2010, 295, 7-16.
81
45. Talmadge, J. E.; Donkor, M.; Scholar, E., Inflammatory cell infiltration of tumors:
Jekyll or Hyde. Cancer Metastasis Rev 2007, 26, 373-400.
46. Chiba, T.; Ohtani, H.; Mizoi, T.; Naito, Y.; Sato, E.; Nagura, H.; Ohuchi, A.; Ohuchi,
K.; Shiiba, K.; Kurokawa, Y.; Satomi, S., Intraepithelial CD8+ T-cell-count becomes a
prognostic factor after a longer follow-up period in human colorectal carcinoma:
possible association with suppression of micrometastasis. British journal of cancer
2004, 91, 1711-7.
47. Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pages,
C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; Zinzindohoue, F.; Bruneval, P.;
Cugnenc, P. H.; Trajanoski, Z.; Fridman, W. H.; Pages, F., Type, density, and location of
immune cells within human colorectal tumors predict clinical outcome. Science 2006,
313, 1960-4.
48. Fricke, I.; Gabrilovich, D. I., Dendritic cells and tumor microenvironment: a
dangerous liaison. Immunol Invest 2006, 35, 459-83.
49. Van Ginderachter, J. A.; Movahedi, K.; Van den Bossche, J.; De Baetselier, P.,
Macrophages, PPARs, and Cancer. PPAR Res 2008, 2008, 169414.
50. Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A., Role of
tumor-associated macrophages in tumor progression and invasion. Cancer
Metastasis Rev 2006, 25, 315-22.
51. Savage, N. D.; de Boer, T.; Walburg, K. V.; Joosten, S. A.; van Meijgaarden, K.;
Geluk, A.; Ottenhoff, T. H., Human anti-inflammatory macrophages induce Foxp3+
GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J
Immunol 2008, 181, 2220-6.
52. Hagemann, T.; Wilson, J.; Burke, F.; Kulbe, H.; Li, N. F.; Pluddemann, A.; Charles,
K.; Gordon, S.; Balkwill, F. R., Ovarian cancer cells polarize macrophages toward a
tumor-associated phenotype. J Immunol 2006, 176, 5023-32.
53. Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F., Cancer-related inflammation.
Nature 2008, 454, 436-44.
54. Bacman, D.; Merkel, S.; Croner, R.; Papadopoulos, T.; Brueckl, W.; Dimmler, A.,
82
TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis
and high-grade tumours show more tumour-associated macrophages and lower
TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 2007, 7,
156.
55. Popovic, Z. V.; Sandhoff, R.; Sijmonsma, T. P.; Kaden, S.; Jennemann, R.; Kiss, E.;
Tone, E.; Autschbach, F.; Platt, N.; Malle, E.; Grone, H. J., Sulfated glycosphingolipid as
mediator of phagocytosis: SM4s enhances apoptotic cell clearance and modulates
macrophage activity. J Immunol 2007, 179, 6770-82.
56. Zins, K.; Abraham, D.; Sioud, M.; Aharinejad, S., Colon cancer cell-derived tumor
necrosis factor-alpha mediates the tumor growth-promoting response in
macrophages by up-regulating the colony-stimulating factor-1 pathway. Cancer Res
2007, 67, 1038-45.
57. Jedinak, A.; Dudhgaonkar, S.; Sliva, D., Activated macrophages induce metastatic
behavior of colon cancer cells. Immunobiology 2010, 215, 242-9.
58. van de Wetering, M.; Sancho, E.; Verweij, C.; de Lau, W.; Oving, I.; Hurlstone, A.;
van der Horn, K.; Batlle, E.; Coudreuse, D.; Haramis, A. P.; Tjon-Pon-Fong, M.; Moerer,
P.; van den Born, M.; Soete, G.; Pals, S.; Eilers, M.; Medema, R.; Clevers, H., The
beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal
cancer cells. Cell 2002, 111, 241-50.
59. Kumar, A.; Pandurangan, A. K.; Lu, F.; Fyrst, H.; Zhang, M.; Byun, H. S.; Bittman,
R.; Saba, J. D., Chemopreventive sphingadienes downregulate Wnt signaling via a
PP2A/Akt/GSK3beta pathway in colon cancer. Carcinogenesis 2012, 33, 1726-35.
60. Vooijs, M.; Liu, Z.; Kopan, R., Notch: architect, landscaper, and guardian of the
intestine. Gastroenterology 2011, 141, 448-59.
61. Urist, M. R., Bone: formation by autoinduction. Science 1965, 150, 893-9.
62. Wozney, J. M.; Rosen, V.; Celeste, A. J.; Mitsock, L. M.; Whitters, M. J.; Kriz, R. W.;
Hewick, R. M.; Wang, E. A., Novel regulators of bone formation: molecular clones and
activities. Science 1988, 242, 1528-34.
63. Deng, H.; Makizumi, R.; Ravikumar, T. S.; Dong, H.; Yang, W.; Yang, W. L., Bone
morphogenetic protein-4 is overexpressed in colonic adenocarcinomas and promotes
83
migration and invasion of HCT116 cells. Exp Cell Res 2007, 313, 1033-44.
64. Kang, M. H.; Kang, H. N.; Kim, J. L.; Kim, J. S.; Oh, S. C.; Yoo, Y. A., Inhibition of PI3
kinase/Akt pathway is required for BMP2-induced EMT and invasion. Oncology
reports 2009, 22, 525-34.
65. Auclair, B. A.; Benoit, Y. D.; Rivard, N.; Mishina, Y.; Perreault, N., Bone
morphogenetic protein signaling is essential for terminal differentiation of the
intestinal secretory cell lineage. Gastroenterology 2007, 133, 887-96.
66. Hardwick, J. C.; Van Den Brink, G. R.; Bleuming, S. A.; Ballester, I.; Van Den
Brande, J. M.; Keller, J. J.; Offerhaus, G. J.; Van Deventer, S. J.; Peppelenbosch, M. P.,
Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells
in the colon. Gastroenterology 2004, 126, 111-21.
67. Hardwick, J. C.; Kodach, L. L.; Offerhaus, G. J.; van den Brink, G. R., Bone
morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 2008, 8,
806-12.
68. Kodach, L. L.; Wiercinska, E.; de Miranda, N. F.; Bleuming, S. A.; Musler, A. R.;
Peppelenbosch, M. P.; Dekker, E.; van den Brink, G. R.; van Noesel, C. J.; Morreau, H.;
Hommes, D. W.; Ten Dijke, P.; Offerhaus, G. J.; Hardwick, J. C., The bone
morphogenetic protein pathway is inactivated in the majority of sporadic colorectal
cancers. Gastroenterology 2008, 134, 1332-41.
69. Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M., Inflammation and colon cancer.
Gastroenterology 2010, 138, 2101-2114 e5.
70. Reya, T.; Clevers, H., Wnt signalling in stem cells and cancer. Nature 2005, 434,
843-50.
71. Geissler, K.; Zach, O., Pathways involved in Drosophila and human cancer
development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway. Ann
Hematol 2012, 91, 645-69.
72. Cain, J. E.; Hartwig, S.; Bertram, J. F.; Rosenblum, N. D., Bone morphogenetic
protein signaling in the developing kidney: present and future. Differentiation 2008,
76, 831-42.
84
73. Singleton, V. L.; Orthofer, R.; Lamuela-Raventos, R. M., [14] Analysis of total
phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu
reagent. In Methods in Enzymology, Lester, P., Ed. Academic Press: 1999; Vol. Volume
299, pp 152-178.
74. Zhishen, J.; Mengcheng, T.; Jianming, W., The determination of flavonoid
contents in mulberry and their scavenging effects on superoxide radicals. Food
Chemistry 1999, 64, 555-559.
75. Makino, M.; Shoji, H.; Takemoto, D.; Honboh, T.; Nakamura, S.; Kurayoshi, K.;
Kaibara, N., Comparative study between daily and 5-days-a-week administration of
oral 5-fluorouracil chemotherapy in mice: determining the superior regimen. Cancer
chemotherapy and pharmacology 2001, 48, 370-4.
76. Dai, J.; Mumper, R. J., Plant phenolics: extraction, analysis and their antioxidant
and anticancer properties. Molecules 2010, 15, 7313-52.
77. Ojo-Amaize, E. A.; Cottam, H. B.; Oyemade, O. A.; Okogun, J. I.; Nchekwube, E. J.,
Hypoestoxide inhibits tumor growth in the mouse CT26 colon tumor model. World J
Gastroenterol 2007, 13, 4586-8.
78. Barbarics, E.; Kronauge, J. F.; Cohen, D.; Davison, A.; Jones, A. G.; Croop, J. M.,
Characterization of P-glycoprotein transport and inhibition in vivo. Cancer Res 1998,
58, 276-82.
79. Wilmanns, C.; Fan, D.; O''Brian, C. A.; Bucana, C. D.; Fidler, I. J., Orthotopic and
ectopic organ environments differentially influence the sensitivity of murine colon
carcinoma cells to doxorubicin and 5-fluorouracil. International journal of cancer.
Journal international du cancer 1992, 52, 98-104.
80. Shahrzad, S.; Bitsch, I., Determination of some pharmacologically active
phenolic acids in juices by high-performance liquid chromatography. Journal of
chromatography. A 1996, 741, 223-31.
81. Ma, J.; Luo, X. D.; Protiva, P.; Yang, H.; Ma, C.; Basile, M. J.; Weinstein, I. B.;
Kennelly, E. J., Bioactive novel polyphenols from the fruit of Manilkara zapota
(Sapodilla). Journal of natural products 2003, 66, 983-6.
85
82. Mirvish, S. S.; Cardesa, A.; Wallcave, L.; Shubik, P., Induction of mouse lung
adenomas by amines or ureas plus nitrite and by N-nitroso compounds: effect of
ascorbate, gallic acid, thiocyanate, and caffeine. Journal of the National Cancer
Institute 1975, 55, 633-6.
83. Esmat, A.; Al-Abbasi, F. A.; Algandaby, M. M.; Moussa, A. Y.; Labib, R. M.; Ayoub,
N. A.; Abdel-Naim, A. B., Anti-inflammatory activity of Pistacia khinjuk in different
experimental models: isolation and characterization of its flavonoids and galloylated
sugars. J Med Food 2012, 15, 278-87.
84. Kim, D. O.; Lee, K. W.; Lee, H. J.; Lee, C. Y., Vitamin C equivalent antioxidant
capacity (VCEAC) of phenolic phytochemicals. Journal of agricultural and food
chemistry 2002, 50, 3713-7.
85. Sergediene, E.; Jonsson, K.; Szymusiak, H.; Tyrakowska, B.; Rietjens, I. M.; Cenas,
N., Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells: description of
quantitative structure-activity relationships. FEBS letters 1999, 462, 392-6.
86. Forester, S. C.; Choy, Y. Y.; Waterhouse, A. L.; Oteiza, P. I., The anthocyanin
metabolites gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde
decrease human colon cancer cell viability by regulating pro-oncogenic signals.
Molecular carcinogenesis 2012.
87. Noh, J. R.; Gang, G. T.; Kim, Y. H.; Yang, K. J.; Hwang, J. H.; Lee, H. S.; Oh, W. K.;
Song, K. S.; Lee, C. H., Antioxidant effects of the chestnut (Castanea crenata) inner
shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice.
Food and chemical toxicology : an international journal published for the British
Industrial Biological Research Association 2010, 48, 3177-83.
88. Kim, H. J.; Jang, S. I.; Kim, Y. J.; Chung, H. T.; Yun, Y. G.; Kang, T. H.; Jeong, O. S.;
Kim, Y. C., Scopoletin suppresses pro-inflammatory cytokines and PGE2 from
LPS-stimulated cell line, RAW 264.7 cells. Fitoterapia 2004, 75, 261-6.
89. Kim, E. K.; Kwon, K. B.; Shin, B. C.; Seo, E. A.; Lee, Y. R.; Kim, J. S.; Park, J. W.; Park,
B. H.; Ryu, D. G., Scopoletin induces apoptosis in human promyeloleukemic cells,
accompanied by activations of nuclear factor kappaB and caspase-3. Life sciences
2005, 77, 824-36.
86
90. Liu, X. L.; Zhang, L.; Fu, X. L.; Chen, K.; Qian, B. C., Effect of scopoletin on PC3 cell
proliferation and apoptosis. Acta pharmacologica Sinica 2001, 22, 929-33.
91. Sharma, M.; Li, L.; Celver, J.; Killian, C.; Kovoor, A.; Seeram, N. P., Effects of fruit
ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on Wnt
signaling. Journal of agricultural and food chemistry 2010, 58, 3965-9.
92. Heber, D., Multitargeted therapy of cancer by ellagitannins. Cancer letters 2008,
269, 262-8.
93. Agyare, C.; Lechtenberg, M.; Deters, A.; Petereit, F.; Hensel, A., Ellagitannins
from Phyllanthus muellerianus (Kuntze) Exell.: Geraniin and furosin stimulate cellular
activity, differentiation and collagen synthesis of human skin keratinocytes and
dermal fibroblasts. Phytomedicine : international journal of phytotherapy and
phytopharmacology 2011, 18, 617-24.
94. Rosillo, M. A.; Sanchez-Hidalgo, M.; Cardeno, A.; de la Lastra, C. A., Protective
effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn''s
disease. Biochemical pharmacology 2011, 82, 737-45.
95. Malik, A.; Afaq, S.; Shahid, M.; Akhtar, K.; Assiri, A., Influence of ellagic acid on
prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pacific journal
of tropical medicine 2011, 4, 550-5.
96. Larrosa, M.; Tomas-Barberan, F. A.; Espin, J. C., The dietary hydrolysable tannin
punicalagin releases ellagic acid that induces apoptosis in human colon
adenocarcinoma Caco-2 cells by using the mitochondrial pathway. The Journal of
nutritional biochemistry 2006, 17, 611-25.
97. Umesalma, S.; Sudhandiran, G., Ellagic acid prevents rat colon carcinogenesis
induced by 1, 2 dimethyl hydrazine through inhibition of AKT-phosphoinositide-3
kinase pathway. European journal of pharmacology 2011, 660, 249-58.
98. Calvo, T. R.; Demarco, D.; Santos, F. V.; Moraes, H. P.; Bauab, T. M.; Varanda, E. A.;
Colus, I. M.; Vilegas, W., Phenolic compounds in leaves of Alchornea triplinervia:
anatomical localization, mutagenicity, and antibacterial activity. Natural product
communications 2010, 5, 1225-32.
87
99. Lirdprapamongkol, K.; Sakurai, H.; Kawasaki, N.; Choo, M. K.; Saitoh, Y.; Aozuka,
Y.; Singhirunnusorn, P.; Ruchirawat, S.; Svasti, J.; Saiki, I., Vanillin suppresses in vitro
invasion and in vivo metastasis of mouse breast cancer cells. European journal of
pharmaceutical sciences : official journal of the European Federation for
Pharmaceutical Sciences 2005, 25, 57-65.
100. Vetrano, A. M.; Heck, D. E.; Mariano, T. M.; Mishin, V.; Laskin, D. L.; Laskin, J. D.,
Characterization of the oxidase activity in mammalian catalase. The Journal of
biological chemistry 2005, 280, 35372-81.
101. Huang, S. M.; Hsu, C. L.; Chuang, H. C.; Shih, P. H.; Wu, C. H.; Yen, G. C.,
Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic
Neuro-2A cells. Neurotoxicology 2008, 29, 1016-22.
102. Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Kobayashi, M.; Tamesada, M.; Yagi,
K., Hepatoprotective effect of syringic acid and vanillic acid on concanavalin
a-induced liver injury. Biological & pharmaceutical bulletin 2009, 32, 1215-9.
103.Gennari, L.; Felletti, M.; Blasa, M.; Angelino, D.; Celeghini, C.; Corallini, A.; Ninfali,
P., Total extract of Beta vulgaris var. cicla seeds versus its purified phenolic
components: antioxidant activities and antiproliferative effects against colon cancer
cells. Phytochemical analysis : PCA 2011, 22, 272-9.
104. Ho, K.; Yazan, L. S.; Ismail, N.; Ismail, M., Apoptosis and cell cycle arrest of
human colorectal cancer cell line HT-29 induced by vanillin. Cancer epidemiology
2009, 33, 155-60.
105. Lin, W. L.; Wang, C. J.; Tsai, Y. Y.; Liu, C. L.; Hwang, J. M.; Tseng, T. H., Inhibitory
effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver.
Archives of toxicology 2000, 74, 467-72.
106. Egan, D.; O''Kennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R. D., The
pharmacology, metabolism, analysis, and applications of coumarin and
coumarin-related compounds. Drug metabolism reviews 1990, 22, 503-29.
107. Huang, H. C.; Lai, M. W.; Wang, H. R.; Chung, Y. L.; Hsieh, L. M.; Chen, C. C.,
Antiproliferative effect of esculetin on vascular smooth muscle cells: possible roles of
signal transduction pathways. European journal of pharmacology 1993, 237, 39-44.
88
108. Pan, S. L.; Huang, Y. W.; Guh, J. H.; Chang, Y. L.; Peng, C. Y.; Teng, C. M., Esculetin
inhibits Ras-mediated cell proliferation and attenuates vascular restenosis following
angioplasty in rats. Biochemical pharmacology 2003, 65, 1897-905.
109. Park, S. S.; Park, S. K.; Lim, J. H.; Choi, Y. H.; Kim, W. J.; Moon, S. K., Esculetin
inhibits cell proliferation through the Ras/ERK1/2 pathway in human colon cancer
cells. Oncology reports 2011, 25, 223-30.
110.Fujita, T., Colorectal cancer. Lancet 2010, 376, 331; author reply 331-2.
111.Takebe, N.; Ivy, S. P., Controversies in cancer stem cells: targeting embryonic signaling pathways. Clinical cancer research : an official journal of the American Association for Cancer Research 2010, 16, 3106-12.
112.Takebe, N.; Harris, P. J.; Warren, R. Q.; Ivy, S. P., Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature reviews. Clinical oncology 2011, 8, 97-106.
113.Lea, M. A., Recently identified and potential targets for colon cancer treatment. Future oncology 2010, 6, 993-1002.
114.He, Z.; Xia, W., Nutritional composition of the kernels from Canarium album L. Food chemistry 2007, 102, 808-811.
115.Wei, H.; Peng, W.; Mao, Y.; Liu, B.; Li, S., [Studies on chemical constituents in the fruit of Canarium album Raeusch]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica 1999, 24, 421-3, 447.
116.Tamai, M.; Watanabe, N.; Someya, M.; Kondoh, H.; Omura, S.; Zhang, P. L.; Chang, R.; Chen, W. M., New hepatoprotective triterpenes from Canarium album. Planta medica 1989, 55, 44-7.
117.He, Z.; Xia, W.; Chen, J., Isolation and structure elucidation of phenolic compounds in Chinese olive (Canarium album L.) fruit. European food research and technology = Zeitschrift fur Lebensmittel-Untersuchung und -Forschung. A 2008, 226, 1191-1196.
118.He, Z.; Xia, W., Analysis of phenolic compounds in Chinese olive (Canarium album L.) fruit by RPHPLC–DAD–ESI–MS. Food Chemistry 2007, 105, 1307-1311.
119.Kris-Etherton, P. M.; Hecker, K. D.; Bonanome, A.; Coval, S. M.; Binkoski, A. E.; Hilpert, K. F.; Griel, A. E.; Etherton, T. D., Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am J Med 2002, 113, 71-88.
120.Surh, Y. J., Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 2003, 3, 768-80.
121.Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R., The structure and pharmacological functions of coumarins and their derivatives. Current medicinal chemistry 2009, 16, 4236-60.
122.Riveiro, M. E.; De Kimpe, N.; Moglioni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C., Coumarins: old compounds with novel promising therapeutic perspectives. Current medicinal chemistry 2010, 17, 1325-38.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top