(3.236.118.225) 您好!臺灣時間:2021/05/14 12:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉斌雁
研究生(外文):Penk-Yeir Low
論文名稱:不同品種甘薯葉乙醇萃取物抗氧化及改善葡萄糖攝入之研究
論文名稱(外文):Antioxidation and glucose uptake improvement by ethanol extracts from leaves of different sweet potato cultivars
指導教授:吳瑞碧
口試委員:吳明昌鄭瑞棠
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:花青素甘薯葉乙醇萃取物抗氧化活性葡萄糖攝入
外文關鍵詞:Sweet potato leavesphenolic acidsanthocyaninsantioxidation activitiesglucose uptake test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:678
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
農產品及蔬果中所含之植物化學物質 (phytochemical),如花青素、類胡蘿蔔素、類黃酮或酚類化合物 (polyphenols),具有很強的抗氧化能力,可以降低慢性疾病的發生機率,例如心血管疾病、糖尿病、癌症等。甘薯葉富含花青素及多酚類,可被廣泛利用及開發成各種商品。
本研究主要以三個品種的甘薯葉為原材料,針對其冷凍乾燥或40 ℃ 乾燥處理後之 70 % 乙醇萃取物的抗氧化特性加以探討。所用甘薯葉品種包括亞蔬 CN 1927-16、台農64 號及CYY 98-59。抗氧化功能測定包括螯合亞鐵離子、清除 DPPH 自由基與總抗氧化能力。之後再以小鼠肝臟上皮 FL83B 細胞進行細胞毒性 (cell viability) 測試,以確定其安全使用劑量。同時,利用 TNF-α 誘導小鼠肝臟上皮細胞產生胰島素阻抗模式,並以不同品種之甘薯葉萃取物處理前述細胞;評估其對提升葡萄糖攝入能力及改善醣類代謝之效果。
研究結果顯示,總酚含量以台農 64 號 (380.59 mg GAE/g DW)以及 CYY 98-59 (603.09 mg GAE/g DW) 兩個品種的凍乾處理組較高。而在總黃酮類和總花青素類的結果也和總酚含量的測定相近,分別以台農 64 號 (0.30 g 總黃酮類/g DW;0.25 g 總花青素/g DW)以及 CYY 98-59 (0.22 g 總黃酮類/g DW;0.18 g總花青素/g DW) 兩個品種的凍乾處理組較高。在抗氧化特性部份,具有螯合亞鐵離子能力效果最佳的為 CYY 98-59 的40 ℃ 乾燥處理後之 70 % 乙醇萃取物 (EC 50值為3.98 mg/ml);而台農64 號以及CYY 98-59 兩個品種對DPPH 自由基具有較強的清除活性,EC 50值分別為 4.02 mg/ml 以及4.11 mg/ml。在總抗氧化能力測定的方面,也以台農64 號以及CYY 98-59 兩個品種的凍乾處理組最佳,EC 50值為 7.64 mg/ml 以及8.72 mg/ml。
由細胞試驗結果發現,三種品種甘薯葉之70 % 乙醇萃取物在濃度1 mg/ml 之內對小鼠肝臟上皮細胞均無毒性。胰島素阻抗細胞模式之葡萄糖攝入能力試驗,結果顯示,處理濃度 1 mg/ml 時 ,台農64之40℃乾燥處理組效果最好,與控制組 (TNF-α 處理) 比較可增加 57.72 % 的葡萄糖攝入能力;其次為CYY 98-59 之凍乾處理組及亞蔬 1927-16 之凍乾處理組,分別提升了 46.25 % 和 43.84 %。之後探討不同品種之甘薯葉萃取物對TNF-α 誘導小鼠肝臟上皮細胞之胰島素訊息傳遞蛋白質及葡萄糖轉運蛋白表現量的影響。結果顯示,FL83B 細胞經 20 ng/ml TNF-α 誘導後其 IR、IRS-1 及 GLUT-2 之表現量與正控制組比較之下量並無顯著差異,其明確機轉有待探討。
綜合上述結果,甘薯葉具有抗氧化力將可提供保健食品原料業者之新選擇,並開發出符合市場需求並具保健功效之新產品,藉以提升甘薯葉加工利用多元性,增加甘薯葉之附加價值,提高農民的收益。

Sweet potato leaves have been consumed as a fresh vegetable in many parts of the world. They are rich in vitamin B complex, β-carotene, iron, calcium, zinc, and protein. Recent experiments revealed that sweet potato leaves contain high contents of polyphenolics, namely anthocyanins and phenolic acids, compared with commercial vegetables.
This study was aimed to evaluate the antioxidation activities and alleviation of insulin resistance of 70 % ethanol extract of leaves of 3 sweet potato cultivars, TN 64, CYY 98-59 and CN1927. Sweet potato leaves were separated into 2 groups, lyophilized and 40 ℃ air-dried. Afterthat, they were extracted with 70 % ethanol at 25 oC. The antioxidation activities tests include total phenolics assay, α,α-diphenyl- β-picrylhydrazyl (DPPH) scavenging ability, ferrous ion chelating ability and scavenging ability on long-life radical anion ABTS˙+ were performed. The in vitro anti-hyperglycemic activity of the extracts was investigated using glucose uptake test in FL83B mouse hepatocytes. The fluorescent dye 2-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino)-2-deoxyglucose was used to estimate the uptake ability of the cells.
The total phenolics of the extracts was determined spectrophotometrically according to the Folin Ciocalteau procedure and ranged from 198.49 to 603.09 mg GAE/g DW. For total flavonoids and total anthocyanins, the values were in the descending order: 0.30 > 0.22 > 0.20 > 0.05 > 0.03 > 0.01 g/g DW which were found in TN 64 > CYY 98-59 > CN 1927-16, respectively. With regard to the results of antioxidation activities of ethanol extracts from leaves of different sweet potato cultivars, the antioxidation activities of lyophilized of 70 % ethanol extract CYY 98-59 and TN 64 were significantly higher than Trolox in ABTS˙+ radical-scavenging activity (p < 0.05), EC 50 values were 8.72 mg/ml and 7.64 mg/ml respectively. The evaluation of ability to chelate ferrous ion showed that 40 ℃ air-drying of 70 % ethanol extract of CYY 98-59 had lower EC 50 value (3.98 mg/ml), on the other hand, lyophilized of 70 % ethanol extract CYY 98-59 and TN 64 had higher scavenging activity on DPPH free radical with EC 50 values at 4.11 mg/ml and 4.02 mg/ml respectively.
The cell viability test showed that the ethanol extracts from leaves of different sweet potato cultivars have no cell toxicity in concentration of 1 mg/ml. Results of the glucose uptake test in the insulin resistance cell model indicated that the highest improvement can be achieved by the 40 ℃ air-dried of ethanol extract TN 64 in PBS buffer. Compared with the control group (TNF-α treated group), the ethanol extract could increase the glucose uptake ability by 57.72 %. Next is the lyophilized 70 % ethanol extract of CYY 98-59 and CN 1927-16, the percentage increase of the glucose uptake were 46.25 % and 43.84 % respectively. However, the results did not show that ethanol extracts from leaves of different sweet potato cultivars promote the expressions of insulin receptor substrate-1 (IRS-1), insulin receptor and glucose transporter-2 (GLUT-2).
In conclusion, 70 % ethanol extract from sweet potato leaves has potential on physiologic effects as antioxidation and anti-hyperglycemic agents.

中文摘要 i
Abstract iii
目 錄 v
圖 次 viii
表 次 ix
第一章、前言 1
第二章、文獻整理 3
一、 自由基與健康之關聯性 3
(一) 自由基與活性氧的產生及作用機制 3
(二) 自由基與氧化壓力 4
(三) 過氧化對人體造成的傷害 5
(四) 抗氧化劑 6
二、 糖尿病 9
(一) 糖尿病流行病學 9
(二) 糖尿病簡介 10
(三) 糖尿病分類 11
(四) 糖尿病藥物治療 14
三、 胰島素 17
(一) 胰島素信號傳導 17
(二) 葡萄糖代謝與胰島素阻抗之關係 19
(三) 胰島素阻抗 20
(四) 胰島素分泌缺失 21
(五) 腫瘤壞死因子 tumor necrosis factor-α (TNF-α) 與胰島素阻抗 22
(六) 以細胞模式探討胰島素阻抗 23
四、 甘薯 26
第三章、 研究動機與實驗架構 30
第四章、 不同品種甘薯葉乙醇萃取物抗氧化特性之研究 32
一、 前言 32
二、 實驗材料 33
(一) 原料 33
(二) 試藥級藥品 33
(三) 儀器設備 33
三、 實驗方法 36
(一) 樣品 70 % 乙醇粗萃物製取 36
(二) 總酚化合物含量測定 36
(三) 總類黃酮類測定 36
(四) 總花青素類測定 36
(五) 甘薯葉乙醇粗萃物之抗氧化能力探討 37
(六) 統計分析 38
四、 結果與討論 39
(一) 不同品種甘薯葉之乙醇萃取物之萃取率 39
(二) 總酚化合物含量測定 39
(三) 總黃酮類測定 40
(四) 總花青素類測定 40
(五) 甘薯葉乙醇粗萃物之抗氧化能力探討 41
五、 結論 52
第五章、 不同品種甘薯葉乙醇萃取物對葡萄糖攝入能力之探討 54
一、 前言 54
二、 實驗材料 55
(一) 原料 55
(二) 實驗細胞 55
(三) 試藥級藥品 55
(四) 實驗樣品配製 56
(五) 儀器設備 58
三、 實驗方法 59
(一) 樣品 70 % 乙醇粗萃物製取 59
(二) 小鼠肝細胞 FL83B 之保存與培養 59
(三) FL83B 細胞存活率試驗 (MTT assay) 59
(四) 甘薯葉乙醇萃物對具胰島素阻抗性 FL83B 細胞之葡萄糖攝入試驗 (Glucose uptake) 59
(五) 西方轉印分析 (Western blot) 60
(六) 統計分析 62
四、 結果與討論 63
(一) 不同品種甘薯葉之乙醇萃取物對 FL83B 細胞生長存活率 (cell viability) 63
(二) 甘薯葉乙醇萃物對具胰島素阻抗 FL83B 細胞葡萄糖攝入試驗 (glucose uptake) 64
(三) 不同品種甘薯葉乙醇萃取物對胰島素阻抗 FL83B 細胞胰島素訊息傳遞蛋白質表現之影響 65
五、 結論 75
第六章、 總結 76
第七章、 參考文獻 77

王方生、陳淑英、陳海鑫、王寒、於同泉、周端敏。Simon 1號對免疫功能影響的研究。1988。中國甘薯2:69-72。
行政院農業委員會網站 (甘薯館) 。http://kmweb.coa.gov.tw/subject/mp.asp?mp=190
行政院衛生署網站。http://www.doh.gov.tw/CHT2006/index_populace.aspx
李良。台灣區雜糧發展基金會成立廿週年紀念專輯之一: 雜糧作物各論 III。根及莖類。1994。p.1329-1477。
亞洲蔬菜研究發展中心。(AVRDC) The World Vegetable Center on http://avrdc.org/
高彥祥、李媛媛。天然色素抗氧化性研究進展。2005。食品科學26: 56-60。
張文昌。食用桃金孃科植物萃取物減輕小鼠肝臟細胞 (FL83B) 胰島素阻抗之探討。國立台灣大學食品科技研究所碩士論文。2010。
張巧俐。粉紅種蓮霧幼果水萃物減輕以腫瘤壞死因子 (TNF-α) 處理之小鼠肝臟細胞 (FL83B) 胰島素阻抗及改善醣類代謝之研究。國立台灣大學食品科技研究所碩士論文。2011。
華希新、鄔景禹、王勝武、李蕾。藥用甘薯“西蒙一號”的生物學特性及栽培技術研究。1988。中國甘薯2:51-56。
黃為瑜。紅色鄉土蔬菜中類黃酮抗氧化力及其對淋巴球DNA氧化損傷的保護作用。中國文化大學生活應用科學研究所碩士論文。2002。
黃雅萍。紫色蕃薯葉及其成份對於TNF-α 所誘導人類動脈內皮細胞發炎之影響。中國文化大學生活應用科學研究所碩士論文。2005。
楊正憲。桑椹、紅皮甘薯花色素苷之研究與花色素之氧化和抗氧化之探討。東海大學食品科學研究所碩士論文。1994。
詹穗興。甘薯不同品種及期作黃酮醇、花青素與類胡蘿蔔素含量之變異。中興大學農藝學系所碩士論文。2010。
鄭芳琪。番石榴葉水萃物降血糖作用及有效成份分離。國立台灣大學食品科技研究所碩士論文。2009。
鄭統隆、施怡如、曾東海、賴永昌、吳明哲。甘薯花青素與多酚含量之研究。台灣農業研究。2008。57:33-48。
謝一芝、尹晴紅、邱瑞鐮。高花青素甘薯的研究及利用。雜糧作物 2004。24:23-25。
鍾愛嵐。青草植物抗氧化力及抗氧化功能性之研究。中國文化大學生活應用科學研究所碩士論文。2006。
Albert, N. W.; Lewis D. H.; Zhang H.; Irving L. J.; Jameson P. E.; Davies K. M. Light-induced vegetative anthocyanin pigmentation in Petunia. J. Exp. Bot. 2009, 60: 2191-2202.
Ames, B. M.; Shigena M. K.; and Hagen T. M. Oxidants, antioxidant, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. 1993. 90:7915-7922.
Cameron E; Pauling L. Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc. Natl. Acad. Sci. USA 1976, 73: 3685-9.
Carr AC; McCall MR; Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 2000, 20: 1716-23.
Childs, R. E. ; Bardsley, W. G. The steady-state kinetics of peroxidase with 2, 2’-azino-di-(3-ethylbenzthiazoline-6-sulphonic acid) as chromogen. Biochem. J. 1975, 145: 93-103.
Choi, S.W.; Chang, E.J.; Ha, T.Y.; Choi, K.H. Antioxidative activity of acylated anthocyanin isolated from fruit and vegetables. J. Food Sci. Nut. 1997, 2: 191-196.
Dinis; T.C.P.; Madeira; V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315:161-169.
Francis, F. J. Food colorants: anthocyanins. Crit. Rev. Food Sci. Nutr. 1989, 28: 273-314.
Goda, Y.; T. Shimizu, Y. Kato, M. Nakamura; T. Maitani; T. Yamada; N. Terahara; M. Yamaguchi. Two acylated anthocyanins from purple sweet potato. Phytochemistry 1997, 44, 183-186.
Halliwell, B. Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson''s disease, Alzheimer''s disease, traumatic injury or stroke? Acta Neurologica Scandinavica 2009, 80: 23-33.
Hotamisligil G; Peraldi P; Budavari A; Ellis R; White M; Spiegelman BM. IRS-1–mediated inhibition of insulin receptor tyrosine kinase activity in TNF and obesity-induced insulin resistance. Science. 1996, 271: 665–668.
Huang, D. J.; Lin C. D.; Chen H. J.; Lin Y. H. Antioxidant and antiproliferative activities of sweet potato [Ipomoea batatas (L.) Lam ‘Tainung 57’] constituents. Bot. Bull. Acad. Sin. 2004, 45:179-186.
Huang, Y. C.; Chang Y. H.; Shao Y. Y. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan. Food Chem. 2006, 98:529-538.
Islam, S.; Yoshimoto, M.; Yahara, S.; Okuno, S.; Ishiguro, K.; Yamakawa, O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. J. Agric. Food Chem. 2002, 50: 3718-3722.
Kano, M.; Takayanagi T.; Harada K.; Makino K.; Ishikawa F. Antioxidative activity of anthocyanins from pruple sweet potato, Ipomoera batatas cultivar ayamurasaki. Biosci. Biotech.Biochem. 2005, 69, 979‐988.
Kaur, C.; Kapoor, H. Anti-oxidant activity and total phenolic content of some Asian vegetables. International J. Food Sci. Technol. 2002, 37: 153-161.
Lu, G. Q.; Li X. L. Stability of red pigments from purple sweet potato [Ipomea batata (L), Lam] and other five natural red pigment. J. Zhejiang Univ. 2001, 27, 635-638.
Malkeet S. Padda; David H. Picha. Quantification of phenolic acids and antioxidant activity in sweetpotato genotypes. Scientia Horticulturae. 2008, 119: 17–20.
Oki, T.; Masuda M.; Furuta S.; Nishiba Y.; Terahara N.; Suda I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 2002, 67:1752-1756.
Park, K.Y.; Lee, K.I.; Rhee, S.H. Inhibitory effect of green-yellow vegetables on the mutagenicity in a Salmonella assay system and on the growth of AZ-521 human gastric cancer celis. J. Korean Soc. Food Nut. 1992, 21:149-153.
Peraldi P; Hotamisligil GS; Buurman WA; White MF; Spiegelman BM. Tumor necrosis factor (TNF-α) inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J. Biol. Chem. 1996, 271:13018–13022.
Pessin JE; Saltiel AR: Signaling pathways in insulin resistance. J. Clin. Invest. 2000, 106:165-170.
Rumbaoa R G O; Cornago D F; Geronimo I M. Phenolic content and antioxidant capacity of Philippin sweet potato (Ipomoea batatas) cultivars. Food Chemistry. 2009, 113, 1133-1138.
Saigusa, N.; Terahara N.; Ohba R. Evaluation of DPPH-Radical-Scavenging activity and antimutagenicity and analysis of anthocyanins in an alcoholic fermented beverage produced from cooked or raw purple-fleshed sweet potato (Ipomoea Batatas cv. Ayamurasaki) roots. Food Sci.Technol. Res. 2005, 11(4):390-394.
Salleh, M. N.; Runnie, I.; Roach, P. D.; Mohamed, S.; Abeywardena, M. Y. Inhibition of low-density lipoprotein oxidation and up-regulation of low-density lipoprotein receptor in HepG2 cells by tropical plant extracts. J. Agric. Food Chem. 2002, 50: 3693-3697.
Sang S.; Lapsley, K.; Jeong, W.S; Lachance, P. A.; Ho, C-T; Rosen, R. T. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalusBatsch). J. Agric. Food Chem. 2002, 50: 2459-2463.
Shih, M.C.; Kuo, C.K.; Chiang, W. Effects of drying and extrusion on colour, chemical composition, antioxidant activities and mitogenic response of spleen lymphocytes of sweet potatoes. Food Chem. 2009, 117:114.121.
Shimozono, H.; Kobori, M.; Shinmoto, H.; Tsushida, T. Suppression of the melanogenesis of mouse melanoma B16 cells by sweet potato extract. Nippon Shokuhin Kagaku Kaishi. 1996, 43: 313-317.
Shulman. GI: Cellular mechanisms of insulin resistance. J. Clin. Invest. 2000, 106: 171-176.
Stadtman ER. Role of oxidant species in aging. Curr. Med. Chem. 2004, 11: 1105-12.
Suda, I; Yamakawa, O.; Matusgano, K.; Sugita, K.; Takeguma, Y.; Irisa, K.; Tokumaru, F. Changes of serum γ-GTP, GOT and GPTlevels in hepatic function- weakling subjects by ingestion of high anthocyanin sweet potato juice.日食工誌1999, 45:611-617.
Teow, C. C.; Truong V. D.; McFeeters R. F.; Thompson, R. L.; Pecota K. V.; Yencho G. C. Antioxidant activities, phenolic and b-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103:829-838.
Tsuda, T.; Shiga K.; Ohshima K.; Kawadishi S.; Osawa T. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem. Pharmacol. 1996, 52:1033-1039.
Valko M; Izakovic M; Mazur M; Rhodes CJ; Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 2004, 266: 37-56.
Wang, G. L.; Yue J.; Su D. X.; Fang H. J. Study on the antioxidant activity of sweet potato anthocyanin and its inhibiting effect on growth of cancer. Acta Nutri. Sin. 2006, 28, 71-74.
Xie, Y. Z.; Yin Q. H.; Qiu R. L. Study and utilization of sweet potato with high anthocyanins. Rain. Fed. Crops 2004, 24, 23-25.
Yamakawa, O.; Sudam, I.; Yoshimoto, M. Development and utilization of sweet potato cultivars with high anthocyanin content. Foods Food Ingred. J. Jpn. 1998, 178, 69–77.
Yang, Jing; Chen Jin-feng; Zhao Yu-ying; Mao Lin-chun. Effects of Drying Processes on the Antioxidant Properties in Sweet Potatoes. Agricultural Sciences in China 2010, 9, 1522-1529.
Yin Q. H.; Liu Y. Z.; Xie Y. Z.; Chen M. The stability of anthocyanin from purple sweet potato. Jiangsu J. Agric. Sci. 2004, 20, 111-115.
Yoshimoto, M.; Okuno S.; Yoshinaga M. Antimutagenicity of sweet potato (Ipomea batata) roots. Biosci. Biotechnol. Biochem. 1999, 63:537-541.
Yoshinaga, M.; Tanaka M.; Nakatani M. Changes in anthocyanins content and composition of developing storage root of purple-fleshed sweet potato. Breed. Sci. 2000, 50:59-64.
Yue J.; Fang H. J.; Huang H. G. Research advance of purple sweet potato color. Liaoning Agric. Sci. 2003, 5: 22-25.
Zhan, P.X. Atioxidative activity of extracts from potato and sweet potato. Food Fermen. Ind. 1996, 2:30-33.
Zin, Z. M.; Abdul-Hamid, A.; Osman, A. Antioxidative activity of extracts from Mengkudu (Morinda citrifolia L.) root, fruit and leaf. Food Chem. 2002, 78: 227-231.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔