(3.238.130.97) 您好!臺灣時間:2021/05/14 19:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉婉珺
研究生(外文):Wan-Chun Yeh
論文名稱:次致死乙醇處理影響Cronobacter sakazakii在消毒劑和其他後續一些致死環境下之存活
論文名稱(外文):Effect of sub-lethal ethanol treatment on the survival of Cronobacter sakazakii exposed to disinfectants and other subsequent lethal stresses
指導教授:周正俊周正俊引用關係
口試委員:潘崇良游若篍丘志威蔡國珍
口試日期:2013-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:阪崎腸桿菌(Cronobacter sakazakii)次致死乙醇處理存活敏感性
外文關鍵詞:Cronobacter sakazakiiethanol shocksurvivalsusceptibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討Cronobacter sakazakii BCRC13988經5%次致死乙醇濃度處理60 min後,於後續壓力環境包括20% NaCl、10 ppm結晶紫、2% Clidox-SR(含氯消毒劑)、0.1% QuatricideR (四級銨消毒劑)、抗生素、和發酵乳冷藏5℃期間之存活情形。並進一步探討次致死乙醇處理對C. sakazakii之生物膜產生、胞內物質洩漏以及在不同碳氮源環境下生長之影響。結果發現,此乙醇處理能顯著提升C. sakazakii於20% NaCl、Clidox-SR和QuatricideR之耐受性,然而卻降低C. sakazakii在結晶紫(10 ppm)存在下之耐受性。在所測試之條件下,次致死乙醇處理可提升C. sakazakii在以Str. thermophilus製成之發酵乳中冷藏期間之存活,但未改變菌體對於對於抗生素(ampicillin、chloramphenicols、streptomycin、tetracycline、ciprofloxacin)之敏感性。此外,次致死乙醇處理可提升菌體在TSB中生長時生物膜之形成量,也會使菌體破損及皺狀,並增加了胞內物質(260 nm, 280 nm吸光物質)之洩漏。

In the present study, Cronobacter sakazakii was exposed to a sub-lethal dose of 5% ethanol for 60 min. The effect of ethanol shock on the survival of C. sakazakii subjected to subsequent adverse conditons including high sodium chloride concentration (20%), crystal violet (10 ppm), 2% Clidox-SR (chlorine-containing disinfectant), 0.1%,QuatricideR (quaternary ammonium compound), antibiotics, and during the refrigerated storage of lactic fermented milk was investigated. Additionally, the effect of ethanol shock on the biofilm formation of C. sakazakii, leakage of intracellar materials, and the growth of C. sakazakii in the presence of various carbon and nitrogen sources were also investigated. Results revealed that ethanol shock cells significantly (p < 0.05) enhanced the resistance of C. sakazakii to high sodium chloride concentration and sanitizers (chlorine and quaternary) but reduced the tolerance in presence of crystal violet (10 ppm). Ethanol shock treatments increased the Survival of C. sakazakii in the lactic fermented milk prepared with Str. thermophilus during refrigerated storage. However, susceptibilities of ethanol-shocked C. sakazakii to antibiotics (ampicillin, chloramphenicols, streptomycin, tetracycline, ciprofloxacin) showed no significant difference (p > 0.05). Furthermore, ethanol shock increased the biofilm formation of C. sakazakii when incubated in TSB, caused the damage and disruption of the ethanol-shocked cells, and increased the leakage of the intracellular 260 and 280 nm-absorbing materials.

目錄
頁次
摘要 ………………………………………………………………………………………………………………………...i
Abstract ……………………………………………………………………………………………………………………ii
目錄 …………………………………………………………………………………….…………………………………iii
表目錄 ………………………………………………………………………………………………..………………….vi
圖目錄 ...………………………………………………………….…………………………………………………...vii
壹、 前言 …………………………………………………………...…………………………………………………..1
貳、 文獻整理 ……………………….……….…………….………………………………………………………..2
一、 Cronobacter sakazakii ..........…..…..….…..….……………………………………………….2
(一) 分類與生理生化特性 …………………….……………………………………………….3
(二) 基本生理特性 ....…..……………………………………………………………..…..…….6
(三) 分布及來源……………………………………………….……………………………….…….9
1. 嬰兒配方奶粉 ……………………………………………………….…………….…….9
2. 臨床來源 …………………………………………………………….…….……….…… 13
3. 食品及環境 …………………………………………………..……………………..….13
(四) C. sakazakii的致病性 ……………………………………………………..…………...15
(五) C. sakazakii對壓力的耐抗性 …………………………….……….….…………....18
二、乙醇壓力反應 ………………………………...……………………………...….……….……....19
(一) 乙醇之性質與抑菌機制 ………....……………………………………….………..…19
(二) 乙醇壓力反應 ..…..…..………………………….………………………………………..20
參、 材料與方法 ..…..….……..…..…………………………………………………………………...……….26
一、 實驗架構 ..…..….…….………………………………………………………………….…………..26
二、 實驗材料 ..…..…..…………………………………………………………….……….…….........26
(一) 菌種 ..…..…..……………………………………………………………….…….……………26
(二) 培養基與藥品 .....……….…………………………………………………………..…….26
(三) 儀器設備 …………………………………………………………………….……….……….28
三、 實驗方法 ....…..…..…..…..….………………………………………….……….………..……...29
(一) 菌株之保存 …………………………………………………………………..…....….......29
(二) 實驗菌株接種源之製備 ......…..…..…..…….…..……..……………….…........29
(三) C. sakazakii之次致死乙醇處理 ……………………………..……..……….......29
(四) 次致死乙醇處理對C. sakazakii於結晶紫之耐受性試驗 ….………...30
(五) 次致死乙醇處理對C. sakazakii在高鹽環境下之存活試驗 …….…..30
(六) 次致死乙醇處理影C. sakazakii於消毒劑下之存活試驗 …….........30
(七) 次致死乙醇處理對C. sakazakii於發酵乳貯存期間之存活試驗 ...31
(八) 次致死乙醇處理對C. sakazakii於抗生素之敏感性試驗 ……….……32
(九) 次致死乙醇處理對C. sakazakii在不同碳源及氮源下生長之
試驗 ..…..…..…………………..……..………...……………………………..……..………32
(十) 次致死乙醇處理對C. sakazakii於生物膜生成量差異之影響 .......33
(十一) 次致死乙醇處理對C. sakazaki於細胞膜通透性之影響 ...……... 33
(十二) 以掃描式電子顯微鏡觀察次致死乙醇處理對C. sakazakii
菌體之影響 …...……..……………………………………………………….……...34
(十三) 菌數測定 ……………………………………………………………………………..…...34
(十四) 統計分析 …………………………………………………………………………..……...34
肆、 結果與討論 ...…………………………………………………………………..….……………….……...36
一、 次致死乙醇影響C. sakazakii於結晶紫之耐受性 ……………………….……....36
二、 次致死乙醇處理對C. sakazakii於高鹽環境之存活 ……..…………………….38
三、 次致死乙醇處理C . sakazakii於消毒劑之存活 ………..…..…………………….41
(一) 次致死乙醇處理C. sakazakii 對於Clidox-SR之敏感性 ………………42
(二) 次致死乙醇處理C. sakazakii 對於Quatricide R之敏感性 ……..……45
四、 次致死乙醇處理C . sakazakii於發酵乳貯存期間之存活 . ………………….47
五、 次致死乙醇處理對C. sakazakii於抗生素之敏感性 ………………….…..…...50
六、 次致死乙醇處理對 C. sakazakii於不同碳源及氮源中之下生長 .…......51
(一)碳源 ..…….…….…..…….…..………….…..………….…..….………..…..………..…..…51
(二)氮源 ..…….…….…..…….…..………….…..………….…..….………..…..………..…..…54
七、 次致死乙醇處理影響C. sakazakii於生物膜生成量 ………………………….…54
八、 次致死乙醇處理對C. sakazaki於細胞膜通透性之影響 ………..…….……..58
九、 次致死乙醇處理對C. sakazakii菌體形態之影響 ……………….……….……...60
伍、 結論 ...…………………..….……………………………………………………………………….………....63
陸、 參考文獻 .…..…………..….…………………..…………………..………………..……….….………...64


黃翊婷。2011。次致死乙醇處理影響Cronobacter sakazakii之脂肪酸組成及其在後續致死環境下之存活。國立臺灣大學食品科技研究所碩士論文。臺北市。
葉宴珊。2012。次致死乙醇處理影響Cronobacter sakazakii之蛋白質表現及其在
後續致死環境下之存活。國立臺灣大學食品科技研究所碩士論文。臺北市。
Abdallah, F. B.; Chaieb, K.; Zmantar, T.; Kallel, H.; Bakhrouf, A., Adherence assays and slime production of Vibrio alginolyticus and Vibrio parahaemolyticus. Braz. J. Microbiol. 2009, 40, 394-398.
Abee, T.; Wouters, J. A., Microbial stress response in minimal processing. Int. J. Food Microbiol. 1999, 50, 65-91.
Adams, E. The antibacterial action of crystal violet. J. pharm. Pharmacol. 1967, 19, 822-827.
Adams, M. R.; Nicolaides, L., Review of the sensitivity of different foodborne pathogens to fermentation. Food Control 1997, 8, 227-239.
Al-Nabulsi, A. A.; Osaili, T. M.; Elabedeen, N. A. Z.; Jaradat, Z. W.; Shaker, R. R.; Kheirallah, K. A.; Tarazi, Y. H.; Holley, R. A., Impact of environmental stress desiccation, acidity, alkalinity, heat or cold on antibiotic susceptibility of Cronobacter sakazakii. Int. J. Food Microbiol. 2011, 146, 137-143.
Arsene, F.; Tomoyasu, T.; Bukau, B., The heat shock response of Escherichia coli. Int. J. Food Microbiol. 2000, 55, 3-9.
Bandara, A.; Fraser, S.; Chambers, P. J.; Stanley, G. A., Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress. Fems. Yeast Res. 2009, 9, 1208-1216.
Banwart, G.J. Basic Food Microbiology 2nd Edition. Van Nostrand Reinhold, New York, USA, 1989.
Bar-Oz, B.; Preminger, A.; Peleg, O.; Block, C.; Arad, I., Enterobacter sakazakii infection in the newborn. Acta Paediatr. 2001, 90, 356-358.
Baumgartner, A.; Grand, M.; Liniger, M.; Iversen, C., Detection and frequency of Cronobacter spp. (Enterobacter sakazakii) in different categories of ready-to-eat foods other than infant formula. Int. J. Food Microbiol. 2009, 136, 189-192.
Beaven, M. J.; Charpentier, C.; Rose, A. H., Production and Tolerance of Ethanol in Relation to Phospholipid Fatty-Acyl Composition in Saccharomyces cerevisiae Ncyc 431. J. Gen. Microbiol. 1982, 128, 1447-1455.
Berger, B.; Carty, C. E.; Ingram, L. O., Alcohol-induced changes in the phospholipid molecular-species of Escherichia coli. J. Bacteriol. 1980, 142, 1040-1044.
Beuchat, L. R.; Adler, B. B.; Lang, M. M., Efficacy of chlorine and a peroxyacetic acid sanitizer in killing Listeria monocytogenes on iceberg and Romaine lettuce using simulated commercial processing conditions. J. Food Protect. 2004, 67, 1238-1242.
Beuchat, L. R.; Kim, H.; Gurtler, J. B.; Lin, L. C.; Ryu, J. H.; Richards, G. M., Cronobacter sakazakii in foods and factors affecting its survival, growth, and inactivation. Int. J. Food Microbiol. 2009, 136, 204-213.
Birch, R. M.; Walker, G. M., Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae. Enzyme Microb. Tech. 2000, 26, 678-687.
Bower, C. K.; Daeschel, M. A., Resistance responses of microorganisms in food environments. Int. J. Food Microbiol. 1999, 50, 33-44.
Breeuwer, P.; Lardeau, A.; Peterz, M.; Joosten, H. M., Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 2003, 95, 967-973.
Browne, N.; Dowds, B. C. A., Heat and salt stress in the food pathogen Bacillus cereus. J. Appl. Microbiol. 2001, 91, 1085-1094.
Bukau, B., Regulation of the Escherichia coli heat-shock response. Mol. Microbiol. 1993, 9, 671-680.
Buttke, T. M.; Ingram, L. O., Mechanism of ethanol-induced changes in lipid-composition of Escherichia coli - inhibition of saturated fatty-acid synthesis invivo. Biochemistry 1978, 17, 637-644.
Buttke, T. M.; Ingram, L. O., Ethanol-induced changes in lipid-composition of Escherichia coli - inhibition of saturated fatty-acid synthesis Invitro. Arch. Biochem. Biophys. 1980, 203, 565-571.
Carey, V. C.; Ingram, L. O., Lipid-composition of Zymomonas mobilis - effects of ethanol and glucose. J. Bacteriol. 1983, 154, 1291-1300.
Chang, C. H.; Chiang, M. L.; Chou, C. C., The effect of temperature and length of heat shock treatment on the thermal tolerance and cell leakage of Cronobacter sakazakii BCRC 13988. Int. J. Food Microbiol. 2009, 134, 184-189.
Chang, C. H.; Chiang, M. L.; Chou, C. C., The Effect of Heat Shock on the Response of Cronobacter sakazakii to Subsequent Lethal Stresses. Foodborne Pathog. Dis. 2010, 7, 71-76.
Chenu, J. W.; Cox, J. M., Cronobacter (''Enterobacter sakazakii''): current status and future prospects. Lett. Appl. Microbiol. 2009, 49, 153-159.
Chiang, M. L.; Chou, C. C., Expression of superoxide dismutase, catalase and thermostable direct hemolysin by, and growth in the presence of various nitrogen and carbon sources of heat-shocked and ethanol-shocked Vibrio parahaemolyticus. Int. J. Food Microbiol. 2008, 121, 268-274.
Chiang, M. L.; Ho, W. L.; Chou, C. C., Response of Vibrio parahaemolyticus to ethanol shock. Food Microbiol. 2006, 23, 461-467.
Chiang, M. L.; Ho, W. L.; Chou, C. C., Ethanol shock changes the fatty acid profile and survival behavior of Vibrio parahaemolyticus in various stress conditions. Food Microbiol. 2008, 25, 359-365.
Chiou, R. Y. Y.; Phillips, R. D.; Zhao, P.; Doyle, M. P.; Beuchat, L. R., Ethanol-mediated variations in cellular fatty acid composition and protein profiles of two genotypically different strains of Escherichia coli O157 : H7. Appl. Environ. Microbiol. 2004, 70, 2204-2210.
Chou, C. C.; Cheng, S. J., Recovery of low-temperature stressed E coli O157 : H7 and its susceptibility to crystal violet, bile salt, sodium chloride and ethanol. Int. J. Food Microbiol. 2000, 61, 127-136.
Cordier, J.-L. Production of powdered infant formulae and microbiological control measures. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008; pp. 145-177.
Cronan, J. E., Phospholipid modifications in bacteria. Curr. Opin. Microbiol. 2002, 5, 202-205.
Dauga, C.; Breeuwer, P. Taxonomy and physiology of Enterobacter sakazakii. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008a; pp. 15-16.
Dauga, C.; Breeuwer, P. Taxonomy and physiology of Enterobacter sakazakii. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008b; pp. 12-13.
Davidson, P. M.; Harrison, M. A., Resistance and adaptation to food antimicrobials, sanitizers, and other process controls. Food Technol-Chicago 2002, 56, 69-78.
Dennison, S. K.; Morris, J., Multiresistant Enterobacter sakazakii wound infection in an adult. Infect. Med. 2002, 19, 533-535.
Dombek, K. M.; Ingram, L. O., Effects of Ethanol on the Escherichia coli Plasma-Membrane. J. Bacteriol. 1984, 157, 233-239.
Donlan, R. M., Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881-890.
Drudy, D.; Mullane, N. R.; Quinn, T.; Wall, P. G.; Fanning, S., Enterobacter sakazakii: An emerging pathogen in powdered infant formula. Clin. Infect. Dis. 2006, 42, 996-1002.
Eaton, L. C.; Tedder, T. F.; Ingram, L. O., Effects of fatty acid composition on the sensitivity of membrane functions to ethanol in Escherichia coli. Subst. Alcohol Actions Misuse 1982, 3, 77-87.
Edelson-Mammel, S.; Porteous, M. K.; Buchanan, R. L., Acid resistance of twelve strains of Enterobacter sakazakii, and the impact of habituating the cells to an acidic environment. J. Food Sci. 2006, 71, 201-207.
El-Sharoud, W. M.; O''Brien, S.; Negredo, C.; Iversen, C.; Fanning, S.; Healy, B., Characterization of Cronobacter recovered from dried milk and related products. BMC Microbiol. 2009, 9, 24.
Fanning, S.; Forsythe, S. Isolation and identification of Enterobacter sakazakii. In Enterobacter sakazakii, Farber, J. M.; Forsythe, S. J., Eds.; ASM Press: Washington, DC, 2008; pp. 27-32.
Farmer, J. J., III. Enterobacteriacae: introduction and identification. In Manual of clinical microbiology, 6th ed.; Murray, P. R.; Baron, E. J.; Pfaller, M. A. Tenover, F. C.; Yolken, R. H., Eds.; ASM Press: Washington, DC, 1995. Cited by Gurtler, J. B. et al. 2005.
Farmer, J. J.; Asbury, M. A.; Hickman, F. W.; Brenner, D. J., Enterobacter sakazakii - a New species of Enterobacteriaceae isolated from clinical specimens. Int. J. Syst. Bacteriol. 1980, 30, 569-584.
Forsythe, S. J., Enterobacter sakazakii and other bacteria in powdered infant milk formula. Matern. Child. Nutr. 2005, 1, 44-50.
Friedemann, M., Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int. J. Food Microbiol. 2007, 116, 1-10.
Furukawa, K.; Lieu, P. K.; Tokitoh, H.; Fujii, T., Development of single-stage nitrogen removal using anammox and partial nitritation (SNAP) and its treatment performances. Water Sci. Technol. 2006, 53, 83-90.
Gassem, M. A. A., A microbiological study of Sobia: a fermented beverage in the Western province of Saudi Arabia. World J. Microb. Biot. 2002, 18, 173-177.
Graumann, P.; Marahiel, M. A., Some like it cold: Response of microorganisms to cold shock. Arch. Microbiol. 1996, 166, 293-300.
Gross, M.; Jaenicke, R., Proteins under Pressure - the Influence of High Hydrostatic-Pressure on Structure, Function and Assembly of Proteins and Protein Complexes. Eur. J. Biochem. 1994, 221, 617-630.
Gurtler, J. B.; Kornacki, J. L.; Beuchat, L. R., Enterobacter sakazakii: A coliform of increased concern to infant health. Int. J. Food Microbiol. 2005, 104, 1-34.
Hamilton, J. V.; Lehane, M. J.; Braig, H. R., Isolation of Enterobacter sakazakii from midgut of Stomoxys calcitrans. Emerg. Infect. Dis. 2003, 9, 1355-1356.
Hassani, A. S.; Malekzadeh, F.; Amirmozafari, N.; Hamdi, K.; Ordouzadeh, N.; Ghaemi, A., Phage Shock Protein G, a Novel ethanol-induced stress protein in Salmonella typhimurium. Curr. Microbiol. 2009, 58, 239-244.
Hatefi, Y.; Hanstein, W. G., Destabilization of membranes with chaotropic ions. Methods Enzymol. 1974, 31, 770-90.
Hiemenz, P.C., Principles of Colloid and Surface Chemistry. Marcel Dekker, New York, USA, 1977.
Hill, C.; Cotter, P. D.; Sleator, R. D.; Gahan, C. G. M., Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int. Dairy J. 2002, 12, 273-283.
Himelright, I.; Harris, E.; Lorch, V.; Anderson, M.; Jones, T.; Craig, A.; Kuehnert, M.; Forster, T.; Arduino, M.; Jensen, B.; Jernigan, D., Enterobacter sakazakii infections associated with the use of powdered infant Formula - Tennessee, 2001 (Reprinted from MMWR, vol 51, pg 297-300, 2002). JAMA-J. Am. Med. Assoc. 2002, 287, 2204-2205.
Hood, S. K.; Zottola, E. A., Biofilms in Food-Processing. Food Control 1995, 6, 9-18.
Huang, Y. T.; Cheng, K. C.; Yu, R. C.; Chou, C. C., Effect of Ethanol Shock Pretreatment on the Tolerance of Cronobacter sakazakii BCRC 13988 Exposed to Subsequent Lethal Stresses. Foodborne Pathog. Dis. 2013, 10, 165-170.
Hurrell, E.; Kucerova, E.; Loughlin, M.; Caubilla-Barron, J.; Forsythe, S. J., Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae. Int. J. Food Microbiol. 2009, 136, 227-231.
Ingram, L. O., Adaptation of membrane lipids to alcohols. J. Bacteriol. 1976, 125, 670-678.
Ingram, L. O., Microbial Tolerance to Alcohols - Role of the Cell-Membrane. Trends Biotechnol. 1986, 4, 40-44.
Ingram, L. O., Ethanol Tolerance in Bacteria. Crit Rev Biotechnol 1990, 9, 305-319.
Ingram, L. O.; Buttke, T. M., Effects of Alcohols on Microorganisms. Adv. Microb. Physiol. 1984, 25, 253-300.
Ingram, L. O.; Carey, V. C.; Dombek, K. M.; Holt, A. S.; Holt, W. A.; Osman, Y. A.; Walia, S. K., Biochemical and Genetic-Improvement of Zymomonas mobilis. Biomass 1984, 6, 131-143.
Ioannou, C. J.; Hanlon, G. W.; Denyer, S. P., Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrob. Agents Ch. 2007, 51, 296-306.
Iversen, C.; Forsythe, S., Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Tech. 2003, 14, 443-454.
Iversen, C.; Lane, M.; Forsythe, S. J., The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 2004, 38, 378-382.
Iversen, C.; Lehner, A.; Mullane, N.; Bidlas, E.; Cleenwerck, I.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H., The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov and descriptions of Cronobacter sakazakii comb. nov Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp nov., Cronobacter muytjensii sp nov., Cronobacter dublinensis sp nov and Cronobacter genomospecies I. Bmc Evolutionary Biology 2007a, 7, (no page number for citation).
Iversen, C.; Lehner, A.; Mullane, N.; Marugg, J.; Fanning, S.; Stephan, R.; Joosten, H., Identification of "Cronobacter" spp. (Enterobacter sakazakii). J. Clin. Microbiol. 2007b, 45, 3814-3816.
Iversen, C.; Mullane, N.; McCardel, B.; Tal, B. D.; Lehner, A.; Fannin, S.; Stephan, R.; Joosten, H., Cronobacter gen nov, a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen nov, comb nov, Cronobacter malonaticus sp nov, Cronobacter turicensis sp nov, Cronobacter muytjensii sp nov, Cronobacter dublinensis sp nov, Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov, Cronobacter dublinensis subsp. lausannensis subsp. nov and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 2008, 58, 1442-1447.
Jirku, V., The effect of covalent immobilization on ethanol-induced leakage in Saccharomyces Cerevisiae. Acta Biotechnol. 1991, 11, 77-80.
Joseph, S.; Cetinkaya, E.; Drahovska, H.; Levican, A.; Figueras, M. J.; Forsythe, S. J., Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. Int. J. Syst. Evol. Microbiol. 2012, 62, 1277-1283.
Jung, J. H.; Choi, N. Y.; Lee, S. Y., Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiol. 2013, 34, 70-80.
Kempf, B.; Bremer, E., Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 1998, 170, 319-330.
Kheadr, E.; Dabour, N.; Le Lay, C.; Lacroix, C.; Fliss, I., Antibiotic susceptibility profile of bifidobacteria as affected by oxgall, acid, and hydrogen peroxide stress. Antimicrob. Agents Ch. 2007, 51, 169-174.
Kim, H.; Beuchat, L. R., Survival and growth of Enterobacter sakazakii on fresh-cut fruits and vegetables and in unpasteurized juices as affected by storage temperature. J. Food Protect. 2005, 68, 2541-2552.
Kim, H.; Ryu, J. H.; Beuchat, L. R., Attachment of and biofilm formation by Enterobacter sakazakii on stainless steel and enteral feeding tubes. Appl. Environ. Microbiol. 2006a, 72, 5846-5856.
Kim, H.; Ryu, J. H.; Beuchat, L. R., Survival of Enterobacter sakazakii on fresh produce as affected by temperature, and effectiveness of sanitizers for its elimination. Int. J. Food Microbiol. 2006b, 111, 134-143.
Kim, H.; Ryu, J. H.; Beuchat, L. R., Effectiveness of disinfectants in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in a biofilm. Appl. Environ. Microbiol. 2007, 73, 1256-1265.
Kim, K. Y.; Frank, J. F., Effect of Nutrients on Biofilm Formation by Listeria monocytogenes on Stainless-Steel. J. Food Protect. 1995, 58, 24-28.
Knobloch, J. K. M.; Bartscht, K.; Sabottke, A.; Rohde, H.; Feucht, H. H.; Mack, D., Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: Differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 2001, 183, 2624-2633.
Koga, T.; Sakamoto, F.; Yamoto, A.; Takumi, K., Acid adaptation induces cross-protection against some environmental stresses in Vibrio parahaemolyticus. J. Gen. Appl. Microbiol. 1999, 45, 155-161.
Kubota, H.; Senda, S.; Nomura, N.; Tokuda, H.; Uchiyama, H., Biofilm Formation by Lactic Acid Bacteria and Resistance to Environmental Stress. J. Biosci. Bioeng. 2008, 106, 381-386.
Kumar, C. G.; Anand, S. K., Significance of microbial biofilms in food industry: a review. Int. J. Food Microbiol. 1998, 42, 9-27.
Kuzina, L. V.; Peloquin, J. J.; Vacek, D. C.; Miler, T. A., Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera : Tephritidae). Curr. Microbiol. 2001, 42, 290-294.
Landini, P., Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res. Microbiol. 2009, 160, 259-266.
Lee, J.; Gupta, M. J.; Lopes, J.; Pascall, M. A., Efficacy of two acidic sanitizers for microbial reduction on metal cans and low-density polyethylene film surfaces. J. Food Sci. 2007, 72, 335-339.
Lee, Y. D.; Park, J. H.; Chang, H., Detection, antibiotic susceptibility and biofilm formation of Cronobacter spp. from various foods in Korea. Food Control 2012, 24, 225-230.
Lehner, A.; Riedel, K.; Eberl, L.; Breeuwer, P.; Diep, B.; Stephan, R., Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: Aspects promoting environmental persistence. J. Food Protect. 2005, 68, 2287-2294.
Leslie, S. B.; Israeli, E.; Lighthart, B.; Crowe, J. H.; Crowe, L. M., Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ. Microbiol. 1995, 61, 3592-3597.
Li, P.-T.; Hsiao, W.-L.; Yu, R.-C.; Chou, C.-C., Effect of heat shock on the fatty acid and protein profiles of Cronobacter sakazakii BCRC 13988 as well as its growth and survival in the presence of various carbon, nitrogen sources and disinfectants. Food Microbiol. 2013, 36, 142-148.
Lin, C.; Yu, R. C.; Chou, C. C., Susceptibility of Vibrio parahaemolyticus to various environmental stresses after cold shock treatment. Int. J. Food Microbiol. 2004, 92, 207-215.
Lin, M. H.; Chiang, M. L.; Pan, C. L.; Chou, C. C., Heat Shock and Cold Shock Treatments Affect the Survival of Listeria monocytogenes and Salmonella Typhimurium Exposed to Disinfectants. J. Food Protect. 2012, 75, 695-700.
Lin, M. H.; Lee, S. L.; Chou, C. C., Acid Adaptation Affects the Viability of Listeria monocytogenes BCRC 14846 and Salmonella Typhimurium BCRC 10747 Exposed to Disinfectants at 25 degrees C and 40 degrees C. Foodborne Pathog. Dis. 2011, 8, 1077-1081.
Lin, M. H.; Tsai, T. Y.; Hsieh, S. C.; Yu, R. C.; Chou, C. C., Susceptibility of Vibrio parahaemolyticus to disinfectants after prior exposure to sublethal stress. Food Microbiol. 2013, 34, 202-206.
Lin, Y.-D.; Chou, C.-C., Effect of heat shock on thermal tolerance and susceptibility of Listeria monocytogenes to other environmental stresses. Food Microbiol. 2004, 21, 605-610.
Lopes, J. A., Evaluation of Dairy and Food Plant Sanitizers against - Salmonella Typhimurium and Listeria monocytogenes. J. Dairy Sci. 1986, 69, 2791-2796.
Lou, Y. Q.; Yousef, A. E., Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 1997, 63, 1252-1255.
Mansure, J. J. C.; Panek, A. D.; Crowe, L. M.; Crowe, J. H., Trehalose Inhibits Ethanol Effects on Intact Yeast-Cells and Liposomes. Bba-Biomembranes 1994, 1191, 309-316.
Marriott, N. G.; Gravani, R. B. Sanitizers. Principles of Food Sanitation, 5th ed.; Marriott, N. G., Gravani, R. B., Eds.; Springer: New York, USA, 2006; pp. 165-189.
McDonnell, G.; Russell, A. D., Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147-179.
McMahon, M. A. S.; Xu, J. R.; Moore, J. E.; Blair, I. S.; McDowell, D. A., Environmental stress and antibiotic resistance in food-related pathogens. Appl. Environ. Microbiol. 2007, 73, 211-217.
Mensah, P.; Yeboah-Manu, D.; Owusu-Darko, K.; Ablordey, A., Street foods in Accra, Ghana: how safe are they? B. World Health Organ. 2002, 80, 546-554.
Mizoguchi, H.; Hara, S., Effect of fatty acid saturation in membrane lipid bilayers on simple diffusion in the presence of ethanol at high concentrations. J. Ferment. Bioeng. 1996, 81, 406-411.
Monroe, P. W.; Tift, W. L., Bacteremia associated with Enterobacter sakazakii (yellow, pigmented Enterobacter cloacae). J. Clin. Microbiol. 1979, 10, 850-851.
Moreno, S. N., Metabolism and mode of action of gentian violet. Mem. Inst. Oswaldo Cruz. 1988, 83 Suppl 1, 308-320.
Moss, C. W.; Speck, M. L., Identification of Nutritional Components in Trypticase Responsible for Recovery of Escherichia coli Injured by Freezing. J. Bacteriol. 1966, 91, 1098-1104.
Mullane, N. R.; Drudy, D.; Whyte, P.; O''Mahony, M.; Scannell, A. G. M.; Wall, P. G.; Fanning, S., Enterobacter sakazakii: biological properties and significance in dried infant milk formula (IMF) powder. Int. J. Dairy Technol. 2006, 59, 102-111.
Muytjens, H. L.; Kollee, L. A. A., Enterobacter sakazakii meningitis in neonates - causative role of formula. Pediatr. Infect. Dis. J. 1990, 9, 372-373.
Muytjens, H. L.; Roelofswillemse, H.; Jaspar, G. H. J., Quality of powdered substitutes for breast-milk with eegard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 1988, 26, 743-746.
Muytjens, H. L.; Zanen, H. C.; Sonderkamp, H. J.; Kollee, L. A.; Wachsmuth, I. K.; Farmer, J. J., Analysis of 8 cases of neonatal meningitis and sepsis due to Enterobacter sakazakii. J. Clin. Microbiol. 1983, 18, 115-120.
Nandii-Kishore, S. G.; Mattox, S. M.; Martin, C. E.; Thompson, G. A., Membrane changes during growth of tetrahymena in the presence of ethanol. Biochim. Biophys. Acta 1979, 551, 315-327.
Nazarowec-White, M.; Farber, J. M., Enterobacter sakazakii: A review. Int. J. Food Microbiol. 1997a, 34, 103-113.
Nazarowec-White, M.; Farber, J. M., Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J. Food Protect. 1997b, 60, 226-230.
Nazarowec-White, M.; Farber, J. M., Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 1997c, 24, 9-13.
Neidhardt, F. C.; Vanbogelen, R. A.; Vaughn, V., The genetics and regulation of heat-shock proteins. Annu. Rev. Genet. 1984, 18, 295-329.
Nikaido, H., Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 1996, 178, 5853-5859.
Norwood, D. E.; Gilmour, A., The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steady-state multispecies biofilm. J. Appl. Microbiol. 2000, 88, 512-520.
Nucleo, E.; Steffanoni, L.; Fugazza, G.; Migliavacca, R.; Giacobone, E.; Navarra, A.; Pagani, L.; Landini, P., Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol. 2009, 9, 270.
Okrend, A. J. G.; Rose, B. E.; Bennett, B., A Screening Method for the Isolation of Escherichia coli O157-H7 from Ground-Beef. J. Food Protect. 1990, 53, 249-252.
Osaili, T. M.; Shaker, R. R.; Olaimat, A. N.; Al-Nabulsi, A. A.; Al-Holy, M. A.; Forsythe, S. J., Detergent and sanitizer stresses decrease the thermal resistance of Enterobacter sakazakii in infant milk formula. J. Food Sci. 2008, 73, 154-157.
Osman, Y. A.; Ingram, L. O., Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis Cp4. J. Bacteriol. 1985, 164, 173-180.
Pagotto, F. J.; Farber, J. M., Cronobacter spp. (Enterobacter sakazakii): Advice, policy and research in Canada. Int. J. Food Microbiol. 2009, 136, 238-245.
Peng, J. S.; Tsai, W. C.; Chou, C. C., Inactivation and removal of Bacillus cereus by sanitizer and detergent. Int. J. Food Microbiol. 2002, 77, 11-18.
Pharmacal Research Laboratories., INC., CT, USA. Material Safety Data Sheet. http://www.pharmacal.com/index.htm. 2013.
Pribyl, C.; Salzer, R.; Beskin, J.; Haddad, R. J.; Pollock, B.; Beville, R.; Holmes, B.; Mogabgab, W. J., Aztreonam in the Treatment of Serious Orthopedic Infections. Am. J. Med. 1985, 78, 51-56.
Ray, B., Impact of bacterial injury and repair in food microbiology - Its past, present and future. J. Food Protect. 1986, 49, 651-655.
Riedel, K.; Lehner, A., Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 2007, 7, 1217-1231.
Rode, T. M.; Langsrud, S.; Holck, A.; Moretro, T., Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int. J. Food Microbiol. 2007, 116, 372-383.
Ronner, A. B.; Wong, A. C. L., Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella Typhimurium on Stainless-Steel and Buna-N Rubber. J. Food Protect. 1993, 56, 750-758.
Ruiz-Cruz, S.; Acedo-Felix, E.; Diaz-Cinco, M.; Islas-Osuna, M. A.; Gonzalez-Aguilar, G. A., Efficacy of sanitizers in reducing Escherichia coli O157 : H7, Salmonella spp. and Listeria monocytogenes populations on fresh-cut carrots. Food Control 2007, 18, 1383-1390.
Russell, N. J.; Evans, R. I.; terSteeg, P. F.; Hellemons, J.; Verheul, A.; Abee, T., Membranes as a target for stress adaptation. Int. J. Food Microbiol. 1995, 28, 255-261.
Salgueiro, S. P.; Sacorreia, I.; Novais, J. M., Ethanol-induced leakage in Saccharomyces cerevisiae - kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Appl. Environ. Microbiol. 1988, 54, 903-909.
Sanders, J. W.; Venema, G.; Kok, J., Environmental stress responses in Lactococcus lactis. Fems. Microbiol. Rev. 1999, 23, 483-501.
Santos, M. H. S., Amino acid decarboxylase capability of microorganisms isolated in Spanish fermented meat products. Int. J. Food Microbiol. 1998, 39, 227-230.
Sapers, G. M.; Miller, R. L.; Mattrazzo, A. M., Effectiveness of sanitizing agents in inactivating Escherichia coli in Golden Delicious apples. J. Food Sci. 1999, 64, 734-737.
SAS. SAS user’s guide: Statistics SAS institute, 8th ed. SAS Institute Inc: Cary, NC, 2001.
Schuetze, A.; Heberer, T.; Juergensen, S., Occurrence of residues of the veterinary drug malachite green in eels caught downstream from municipal sewage treatment plants. Chemosphere 2008, 72, 1664-1670.
Shaker, R. R.; Osaili, T. M.; Ayyash, M., Effect of thermophilic lactic acid bacteria on the fate of Enterobacter sakazakii during processing and storage of plain yogurt. J. Food Safety 2008, 28, 170-182.
Sharma, S. C.; Raj, D.; Forouzandeh, M.; Bansal, M. P., Salt-induced changes in lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Appl. Biochem. Biotech. 1996, 56, 189-195.
Simmons, B. P.; Gelfand, M. S.; Haas, M.; Metts, L.; Ferguson, J., Enterobacter sakazakii infections in neonates associated with intrinsic contamination of a powdered infant formula. Infect. Control Hosp. Epidemiol. 1989, 10, 398-401.
Singh, N.; Singh, R. K.; Bhunia, A. K.; Stroshine, R. L., Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157 : H7 on lettuce and baby carrots. Lebensm-Wiss Technol. 2002, 35, 720-729.
Skladal, P.; Mascini, M.; Salvadori, C.; Zannoni, G., Detection of bacterial-contamination in sterile UHT milk using an L-lactate biosensor. Enzyme Microb. Tech. 1993, 15, 508-512.
Smeets, L. C.; Voss, A.; Muytjens, H. L.; Meis, J. F. G. M.; Melchers, W. J. G. Genetische karakterisatie van Enterobacter sakazakii-isolaten van Nederlandse patienten met neonatale meningitis. Nederlands Tijdschrift voor Medische Microbiologie 1998, 6, 113-115.
Srey, S.; Jahid, I. K.; Ha, S. D., Biofilm formation in food industries: A food safety concern. Food Control 2013, 31, 572-585.
Stock, I.; Wiedemann, B., Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin. Microbiol. Infec. 2002, 8, 564-578.
Strydom, A.; Cameron, M.; Witthuhn, R. C., Phylogenetic analysis of Cronobacter isolates based on the rpoA and 16S rRNA genes. Curr. Microbiol. 2012, 64, 251-258.
Sutton, S. V. W.; Wrzosek, T.; Proud, D. W., Neutralization efficacy of Dey-Engley medium in testing of contact-lens disinfecting solutions. J. Appl. Bacteriol. 1991, 70, 351-354.
Taneja, R.; Khuller, G. K., Ethanol-induced alterations in phospholipids and fatty-acids of Mycobacterium smegmatis Atcc-607. Fems. Microbiol. Lett. 1980, 8, 83-85.
Thompson, H. C.; Rushing, L. G.; Gehring, T.; Lochmann, R., Persistence of gentian violet and leucogentian violet in channel catfish (Ictalurus punctatus) muscle after water-borne exposure. J. Chromatogr. B 1999, 723, 287-291.
Tift, W. L., Group B streptococcal infections in the neonate. J. Med. Assoc. Ga. 1977, 66, 703-5.
Uchida, K., Lipids of alcoholophilic lactobacilli. 2. Occurrence of polar lipids with unusually long acyl chains in Lactobacillus heterohiochii. Biochim. Biophys. Acta 1974, 369, 146-155.
Uchida, K., Alteration of unsaturated to saturated ratio of fatty-acids in bacterial lipids by alcohols. Agr. Biol. Chem. 1975, 39, 1515-1516.
Urmenyi, A. M.; Franklin, A. W., Neonatal death from pigmented coliform infection. Lancet 1961, 1, 313-315.
Van Acker, J.; de Smet, F.; Muyldermans, G.; Bougatef, A.; Naessens, A.; Lauwers, S., Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 2001, 39, 293-297.
Van Houdt, R.; Michiels, C., Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 2010, 109, 1117-1131.
VanBogelen, R. A.; Acton, M. A.; Neidhardt, F. C., Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev. 1987a, 1, 525-531.
VanBogelen, R. A.; Kelley, P. M.; Neidhardt, F. C., Differential induction of heat-shock, sos, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. J. Bacteriol. 1987b, 169, 26-32.
VanBogelen, R. A.; Neidhardt, F. C., Ribosomes as sensors of heat and cold shock in Escherichia coli. P. Natl. Acad. Sci. USA 1990, 87, 5589-5593.
Vonholy, A.; Holzapfel, W. H.; Dykes, G. A., Bacterial-populations associated with vienna sausage packaging. Food Microbiol. 1992, 9, 45-53.
WHO Enterobacter sakazakii (Cronobacter spp.) in Powdered Follow-up Formulae. http://www.who.int/foodsafety/publications/micro/MRA_followup.pdf. 2008.
WHO/FAO Enterobacter sakazakii and other Microorganisms in Powdered Infant Formula. http://www.fao.org/docrep/007/y5502e/y5502e00.htm. 2004.
Wiegand, I.; Hilpert, K.; Hancock, R. E. W., Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163-175.
Wong, A. C., Biofilms in food processing environments. J. Dairy Sci. 1998, 81, 2765-2770.
Yaacobi, M.; Ben-Naim, A., Solvophobic Interaction. J. Phys. Chem. 1974, 78, 175-178.
Yousef, A. E.; Courtney, P. D. Basics of stress adaptation and implications in new-generation foods. In Microbial Stress Adaptation and Food Safety, Yousef, A. E.; Juneja, V. K., Eds.; CRC Press LLC: US, 2003; pp. 2-25.
Zeuthen, M. L.; Dabrowa, N.; Aniebo, C. M.; Howard, D. H., Ethanol tolerance and the induction of stress proteins by ethanol in Candida albicans. J. Gen. Microbiol. 1988, 134, 1375-1384.
Zhang, S.; Farber, J. M., The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiol. 1996, 13, 311-321.
Zhuang, R. Y.; Beuchat, L. R.; Angulo, F. J., Fate of Salmonella montevideo on and in raw tomatoes as affected by temperature and treatment with chlorine. Appl. Environ. Microbiol. 1995, 61, 2127-2131.
Zottola, E. A.; Sasahara, K. C., Microbial biofilms in the food processing industry--should they be a concern? Int. J. Food Microbiol. 1994, 23, 125-148.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top