(3.235.245.219) 您好!臺灣時間:2021/05/07 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:連永祥
研究生(外文):Yung-Hsiang Lien
論文名稱:中西北太平洋紅肉旗魚時空分布與資源評估
論文名稱(外文):Spatio-temporal distribution and stock assessment of striped marlin (Kajikia audax) in the western and central North Pacific Ocean
指導教授:孫志陸孫志陸引用關係
口試委員:李國添劉光明劉燈城蘇楠傑
口試日期:2013-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:87
中文關鍵詞:紅肉旗魚時空與環境因子系群分布資源評估非平衡生產量模式
外文關鍵詞:striped marlinspatial and environmental factorsstock distributionstock assessmentnon-equilibrium production model
相關次數:
  • 被引用被引用:2
  • 點閱點閱:476
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
紅肉旗魚是高度洄游性魚種,在北太平洋廣泛分布於熱帶和溫帶海域。本研究利用漁獲資料和衛星遙測環境因子資料,包括表水溫(SST)、葉綠素濃度(CHL)、混合層深度(MLD)和海面高度距平值(SHA),透過泛加成模式(generalized additive model, GAM)分析,探討中西北太平洋紅肉旗魚系群的棲地特性。分析結果顯示SST能解釋大部分的變異,可作為預測紅肉旗魚棲地的最好指標。系群相對豐度的分布顯示紅肉旗魚漁場具季節性南北移動的特性,且系群在夏威夷海域附近有較高的豐度。系群棲地環境之探討,顯示紅肉旗魚偏好棲息的環境分別為SST在23-26°C,MLD在30公尺以淺, CHL約0.08 mg m-3的海域,對SHA則無明顯的偏好範圍。
本研究另將台灣鮪延繩釣漁業在中西北太平洋的漁獲量與努力量資料透過泛加成模式進行標準化分析,考量因子包括年效應、月效應、漁區效應、表水溫效應及因子間之交感效應。標準化後之台灣鮪延繩釣紅肉旗魚單位努力漁獲量(catch per unit effort, CPUE),連同日本遠洋、日本近海及夏威夷鮪延繩釣漁業標準化CPUE,利用非平衡生產量模式(ASPIC)評估紅肉旗魚資源現況。結果顯示中西北太平洋紅肉旗魚最大可持續生產量(MSY)為4,812公噸,相對系群生物量(B2010/BMSY)為0.20,相對漁獲死亡率(F2009/FMSY)為2.53,推斷中西北太平洋紅肉旗魚系群目前處在已過漁且過漁中之狀態。未來資源量變動之投射分析結果建議總允許漁獲量應降低至每年1,700公噸,以使該資源能永續利用。


Striped marlin, Kajikia audax, is a highly migratory species distributed throughout tropical and temperate waters in the western and central North Pacific Ocean (WCNPO). In this study, the habitat preferences of striped marlin in the WCNPO were examined using generalized additive models (GAM). Fishery catch rates were modeled as a function of remotely-sensed environmental covariates, including sea surface temperature (SST), chlorophyll-a concentration (CHL), mixed layer depth (MLD) and sea-surface height anomalies (SHA). SST explained the largest proportion of the deviance, and was therefore considered the best predictor for the habitat of striped marlin. Spatial distributions of the relative density of striped marlin indicated that there is a seasonal north–south migration, and that the highest densities occur in the central North Pacific Ocean. The preferred habitat characteristics of striped marlin in high density areas were identified as SST between 23-26°C, MLD within 30 m depth, and CHL around 0.08 mg m-3. There was no evident preferred range for SHA.
Catch per unit effort (CPUE) data for striped marlin from the Taiwanese longline fleet in the WCNPO were standardized using GAM, with SST, year, month, fishing area, and the interactions used as the explanatory variables. The standardized CPUE series for this fleet, as well as those from the Japanese distant-water, Japanese coastal, and Hawaiian longline fleets were used in a non-equilibrium surplus production model (ASPIC) to assess the stock status of striped marlin in the WCNPO. Results showed that the maximum sustainable yield (MSY) estimated for this stock was 4,812 tons, and that the stock was both overfished and subject to overfishing. The values of B2010/BMSY and F2009/FMSY were estimated at 0.20 and 2.53, respectively. The projection analysis suggested that the total allowable catch (TAC) should be reduced to 1,700 tons per year for sustainable use of this resource.


目 錄
謝詞……………………………………………………………………………….…......i
摘要………………………………………………………………………………....…..ii
Abstract……………………………………………………………………...……...…..iii
第1章 前言……………………………………………………………..…………....1
1.1生物學概述 ………………………………………………………..…………....1
1.2漁業概況………………………………………………………………………....3
1.3 系群結構……………………………………………………………………...…4
1.4資源概況……………………………………………………………………...….5
1.5 研究目的……………………………………………………………………...…6
第2章 環境因子對系群時空分布的影響……………………………..…………....8
2.1 前言………………………………………………………………………….......8
2.2 材料與方法....................................................................................………..…...10
2.2.1 研究海域......................................................................................................10
2.2.2 漁業資料…………………………………………………………………. 10
2.2.3 環境資料…………………………………………………………............. 10
2.2.4 泛加成模式………………………………………………………............. 11
2.2.5 系群分布熱點分析………………………………………….…….............14
2.3 結果…………………………………………………………….....……........... 15
2.3.1漁獲資料分析…………………………………………….……................. 15
2.3.2 模式假設檢驗………………………….……....................................….....15
2.3.3系群豐度之分布 .......................................... .…………….........................16
2.3.4 環境因子影響分析…………………….……................………..…..…….16
2.3.5 分布熱點分析..............................……........................................................17
2.4討論………………………………………………….……..............………...…. 17
2.4.1漁獲資料與模式……………………….……...............…………………… 17
2.4.2環境因子影響.................................................................................................19
2.4.3系群分布與季節性變動..........................................……...............................20
第3章 非平衡生產量模式............................. .……................................................ 23
3.1前言……………………………….……............…………………………….....23
3.2 材料與方法....... .……........................................................................................23
3.2.1 CPUE標準化... .…….........……............…………………….…………….24
3.2.2 資源評估模式.……............………………………………………………..25
3.2.3 漁業資料…............………………………………………………………...26
3.2.4模式參數設定.……............……………………………………..………... 27
3.3結果.…….............................................................................................................30
3.3.1 漁業資料分析............................................................................................30
3.3.2 資源評估結果……………........................................................................31
3.3.3 投射分析……………................................................................................32
3.4 討論…………………………………………………………..………………...33
3.4.1漁獲資料標準化分析……..………………………………….………..…..33
3.4.2 模式設定與參數值之估計…………………………………………….…..35
3.4.3資源評估研究………………………………………………..………….....36
3.4.4投射分析與建議…………….......................................................................37
第4章 結論與建議……………..................................................................................39
4.1 結論…………………………………………………………………………….39
4.2 建議………………………………………………………………………….....39
參考文獻……………………………………………………………………….……...41
附圖……………............................................................................................................58
附表 ……………..........................................................................................................81


Abitia-Cardenas, L. A., D. MacKinlay, and L. Dagorn, 2002. Trophic dynamics and seasonal energetics of striped marlin Tetrapturus audax in the southern Gulf of California, Mexico. Fish. Res., 57: 287–295.
Abitia-Cardenas, L. A., F. Galvan-Magana, V. H. Cruz-Escalona, M.S. Peterson, and J. Rodriguez-Romero, 2011. Daily food intake of Kajikia audax (Philippi, 1887) off Cabo San Lucas, Gulf of California, Mexico. Lat. Am. Aquat. Res., 39: 449–460.
Akaike, H., 1981. Likelihood of a model and information criteria. J. Econom., 16: 3–14.
Baker, A. N., 1966. Food of marlins from New Zealand waters. Copeia, 4: 818-822.
Beverton, R. J. H., and S. J. Holt. 1957. On the dynamics of exploited fish populations. Fish Invest. Minist. Agric., Fish. Food Ser. 2, 19, 533 pp.
Bigelow, K. A., C. H. Boggs, and X. He, 1999. Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery. Fish. Oceanogr., 8: 178-198.
Bigelow, K., M. K. Musyl, F. Poisson, and P. Kleiber, 2006. Pelagic longline gear depth and shoaling. Fish. Res., 77: 173-183.
Bigelow, K., and B. Mourato, 2010. Evaluation of longline mitigation to reduce catches of North Pacific striped marlin in the Hawaii-based tuna fishery., Western and Central Pacific Fisheries Commission (WCPFC). August 10-19, 2010. Nukualofa, Tonga. WCPFC/SC6‐2010/EB‐WP‐03. 24 pp.
Brill, R.W., D. B. Holts, R. K. C. Chang, R. K. S. Sullivan, H. Dewar, and F. G. Carey, 1993. Vertical and horizontal movement of striped marlin (Tetrapturus audax) near the Hawaiian Islands, determined by ultrasonic telemetry, with simultaneous measurement of oceanic currents. Mar. Biol., 117: 567-574.
Brill, R. W. and Lutcavage, M. E., 2001. Understanding environmental influences on movements and depth distributions of tunas and billfishes can significantly improve population assessments. In: Sedberry G. R. (Ed.), Islands in the Stream: Oceanography and Fisheries of the Charleston Bump. American Fisheries Society Symposium 25, American Fisheries Society. Bethesda, Maryland. pp. 179–198.
Brodziak, J., and K. Piner, 2010. Model averaging and probable stock status of north Pacific striped marlin, Tetrapturus audax. Can. J. Fish. Aquat. Sci., 67: 793-805.
Bromhead, D., J. Pepperell, B. Wise, and J. Finlay, 2004. Striped marlin: Biology and fisheries. Bureau of Rural Sciences, Canberra, Australia. 260 pp.
Brown, C. A., and S. C. Turner, 1988. Standardized catch rates of large bluefin tuna in
the New England (U. S.) rod and reel/handline fishery 1982-1986. Col. Vol. Sci. Pap. ICCAT, 30:302-310.
Butterworth, D. S., 1996. A possible alternative approach for generalized linear model analysis of tuna CPUE data. Col. Vol. Sci. Pap. ICCAT, 45: 123-124.
Campbell, R. A., G. Tuck, S. Tsuji, and T. Nishida, 1996. Indices of abundance for southern bluefin tuna from analysis of fine-scale catch and effort data. Southern Bluefin Tuna Working Series, Hobart, Australia. SBF WORKSHOP/96/16. 35 pp.
Chatterjee, S., and B. Price, 1991. Regression Analysis by Example. John Wiley & Sons, New York, US. 734 pp.
Chen, B., H. Liu, and B. Huang, 2012. Environmental controlling mechanisms on bacterial abundance in the South China Sea inferred from generalized additive models (GAMs). J. Sea. Res., 72: 69-76.
Collette, B. B., J. R. McDowell, and J. E. Graves, 2006. Phylogeny of recent
billfishes (Xiphioidei). Bull. Mar. Sci., 79: 455-468.
Damalas, D., P. Megalofonou, and M. Apostolopoulou, 2007. Environmental, spatial, temporal and operational effects on swordfish (Xiphias gladius) catch rates of eastern Mediterranean Sea longline fisheries. Fish. Res., 84: 233-246.
Davies, N., S. Hoyle, and J. Hampton, 2012. Stock assessment of striped marlin (Kajikia audax) in the southwest Pacific Ocean. Western and Central Pacific Fisheries Commission (WCPFC). August 7-15, 2012. Busan, Korea.
WCPFC-SC8-2012/SA-WP-05. 32 pp.
Domeier, M. L., H. Dewar, and N. Nasby-Lucas, 2003. Mortality rate of striped marlin (Tetrapturus audax) caught with recreational tackle. Mar. Freshw. Res., 54: 435- 445.
Domeier, M. L., 2006. An analysis of Pacific striped marlin (Tetrapturus audax) horizontal movement patterns using pop-up satellite archival tags. Bull. Mar. Sci., 79: 811–825.
Dorner, B., R. M. Peterman, and Z. Su, 2009. Evaluation of performance of alternative management models of Pacific salmon (Oncorhynchus spp.) in the presence of climatic change and outcome uncertainty using Monte Carlo simulations. Can. J. Fish. Aquat. Sci., 66: 2199-2221.
Eldridge, M. B., and P. G. Wares, 1974. Some biological observations of billfish taken in the eastern Pacific Ocean 1967-1970. In: Shomura R. S. and F. Williams (Eds.), Proceedings of International Billfish Symposium. August 9–12, 1972. Kailua-Kona, Hawaii, pp. 89-101.
Fournier, D. A., J. Hampton, and J. R. Sibert, 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can. J. Fish. Aquat. Sci., 55: 2105-2116.
Fox, W. W., 1970. An exponential yield model for optimizing exploited fish populations. Trans. Am. Fish. Soc., 99: 80-88.
Gonzalez-Armas, R., A. Klett-Traulsen, and A. Hernandez-Herrera, 2006. Evidence
of billfish reproduction in the southern Gulf of California, Mexico. Bull. Mar.
Sci., 79: 705-717.
Goodyear, C. P., and M. H. Prager, 2001. Fitting Surplus-Production Models with Missing Catch Data using ASPIC: evaluation with simulated Data on Atlantic blue marlin. Col. Vol. Sci. Pap. ICCAT. 53: 146-163.
Goodyear, C. P., 2003. Spatio-temporal distribution of longline catch per unit effort, sea surface temperature and Atlantic marlin. Mar. Freshw. Res., 54: 409-417.
Gulland, J. A., 1965. Estimation of mortality rates. Annex to Arctic Fisheries Working Group Report. ICES C.M. Gadoid Fish. Comm. January, 1965. Hamburg, Germany. 9 pp.
Haddon, M., 2011. Modelling and Quantitative Methods in Fisheries (2nd ed.). CRC/Chapman& Hall, New York, US. 465 pp.
Hampton, J., and D. Fournier, 2001. A spatially-disaggregated, length-based, age-structured population model of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean. Mar. Freshw. Res., 52: 937−963.
Hanamoto, E., 1974. Fishery oceanographic studies of the striped marlin, Tetrapturus audax, in waters off Baja California. I. Fishing conditions in relation to the thermocline. NOAA Tech. Rep. NMFS-SSRF-675 (2). National Marine Fisheries Service. Seattle, US. pp. 302-308.
Hanamoto, E., 1977. Fishery Oceanography of Striped Marlin. II. Spawning Activity of the Fish in the Southern Coral Sea. Bull. Jpn. Soc. Sci. Fish., 43: 1279- 1286.
Hastie, T. J., and R. J. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall. London, UK. 335 pp.
Hilborn, R., and C. J. Walters, 1992. Quantitative fisheries stock assessment. Chapman and Hall, New York, US. 570 pp.
Hinton M. G., M. N. Maunder, and A. Aires-da-Silva, 2010. Assessment of striped marlin in the eastern Pacific Ocean in 2008 and outlook for the future. Document SAC-01-10, Inter-Am. Trop. Tuna Comm., La Jolla, California, US. pp. 229-252.
Hinton, M. G. and M. N. Maunder, 2011. Status and trends of striped marlin in the northeast Pacific Ocean in 2009. Stock Assessment Report. Inter-Am. Trop. Tuna Comm., La Jolla, California, US. pp. 163-218.
Holdsworth, J. C., T. J. Sippel, and B. A. Block, 2009. Near real time satellite tracking of striped marlin (Kajikia audax) movements in the Pacific Ocean. Mar. Biol., 156: 505–514.
Holdsworth, J. C., and R. K. Kopf, 2011. Characterisation of striped marlin fisheries and biology in New Zealand and the wider southwest Pacific Ocean. New Zealand Fisheries Assessment Research Document. Ministry of Fisheries, Wellington, New Zealand. 74 pp.
Holts, D., and D. Bedford, 1990. Activity patterns of striped marlin in the southern California bight. In: Stroud R. S. (Ed.), Planning the future of billfishes. Research and Management in the 90s and Beyond. Proceedings of the Second International Billfish Symposium. August 1-5, 1988. Kailua-Kona, Hawaii. pp. 81-93.
Honma, M., 1974. Estimation of overall effective fishing intensity of tuna longline
fishery. Bull. Far. Seas. Fish. Res. Lab., 10: 63-85.
Horbowy, J., 2011. Comparison of stock management with production, difference, and age-structured models using operating models. Fish. Res., 108: 153-162.
Howard, J. K., and S. Ueyanagi, 1965. Distribution and relative abundance of billfishes (Istiophoridae) of the Pacific Ocean. Stud. Trop. Oceanogr., 2: 1-134.
Howell, E. A., and D. R. Kobayashi, 2006. El Nino effects in the Palmyra Atoll region: oceanographic changes and bigeye tuna (Thunnus obesus) catch rate variability. Fish. Oceanogr., 15: 477-489.
Hyde, J. R., J. R. Humphreys, M. Musyl, E. Lynn, and R.Vetter, 2006. A central north Pacific spawning ground for striped marlin, Tetrapterus audax. Bull. Mar. Sci., 79: 683–690.
ISC, 2008. Estimation of striped marlin biomass above 20°N in the central and western North Pacific Ocean. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). June 11-19, 2008. Abashiri, Japan. ISC/08/BILLWG-2/01. 12 pp.
ISC, 2011a. Report of the billfish working group workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). January 19-27, 2011, Honolulu, US. 37 pp.
ISC, 2011b. Report of the billfish working group workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). December 6-16, 2011, Honolulu, US. 52 pp.
ISC, 2012. Report of the billfish working group workshop. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC).
April 2-9, 2012. Shanghai, China. 68 pp.
Jensen, O. P., S. Ortega-Garcia, S. J. D. Martell, R. N. M. Ahrens, M. L. Domeier, C. J. Walters, and J. F. Kitchell, 2010. Local management of a "highly migratory species": The effects of long-line closures and recreational catch-and-release or Baja California striped marlin fisheries. Prog. Oceanogr., 86: 176-186.
Kamimura, T., and M. Honma., 1958. A population study of the so-called makajiki (striped marlin) of both northern and southern hemispheres of the Pacific. I. comparison of external characters. Rep. Nankai Reg. Fish. Res. Lab., 8: 1-11.
Kanaiwa, M., A. Kimoto, and K. Yokawa, 2011. Standardized CPUE of striped marlin in north western central Pacific Ocean by using GLM. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). May 24 - June 1, 2011.Taipei, Taiwan. ISC/11/BILLWG-2/06. 16 pp.
Kleiber, P., M. Hinton, and Y. Uozumi, 2003. Stock assessment of blue marlin (Makaira nigricans) in the Pacific using MULTIFAN-CL. Mar. Freshw. Res., 54: 349-360.
Kopf, R. K., P. S. Davie, and J. C. Holdsworth, 2005. Size trends and population characteristics of striped marlin, Tetrapturus audax caught in the New Zealand recreational fishery. New. Zeal. J. Mar. Freshw. Res., 39: 1145-1156.
Kopf, R. K., P. S. Davie, D. Bromhead, and J. G. Pepperell, 2011. Age and
growth of striped marlin (Kajikia audax) in the southwest Pacific Ocean. ICES J. Mar. Sci., 68: 1884-1895.
Kopf, R. K., Davie P. S., D. Bromhead, and J. W. Young, 2012. Reproductive biology and spatiotemporal patterns of spawning in striped marlin Kajikia audax. J. Fish Biol., 81: 1834-1858.
Langley, A., B. Molony, D. Bromhead, K. Yokawa, and B. Wise, 2006. Stock assessment of striped marlin (Tetrapturus audax) in the southwest pacific ocean. Working paper. Western and Central Pacific Fisheries Commission (WCPFC). August 7-18, 2006. Manila, Philippines. WCPFC/SC2/SA-WP-6, 62 pp.
Lien, Y. H., N. J. Su, C. L. Sun, A. E. Punt, S. Z. Yeh, G. DiNardo, 2013. Spatial and environmental determinants of the distribution of Striped Marlin (Kajikia audax) in the western and central North Pacific Ocean, Environmental Biology of Fishes, Environ. Biol. Fish., (in press). doi:10.1007/s10641-013-0149-z.
Lo, N. C. H., L. D. Jacobson, and J. L. Squire, 1992. Indices of relative abundance
from fish spotter data based on delta-lognormal models. Can. J. Fish. Aquat. Sci., 49: 2515-2526.
Matstmoto, W. M., and T. K. Kazama, 1974. Occurrence of young billfishes in the central Pacific Ocean. In: Shomura R. S. and F. Williams (Eds.), Proceedings of International Billfish Symposium. August 9-12, 1972. Kailua-Kona. Hawaii., Part 2: Review and Contributed Paper. NMFS SSRF-675. pp. 238-251.
Maunder, M. N., and A. E. Punt, 2004. Standardizing catch and effort data: a review of
recent approaches. Fish. Res., 70: 141-159.
Maunder, M. N., J. R. Sibert, A. Fonteneau, J. Hampton, P. Kleiber, and S. J. Harley, 2006. Interpreting catch per unit effort data to assess the status of individual stocks and communities. ICES J. Mar. Sci., 63: 1373-1385.
McDowell, J. R., and J. E. Graves, 2008. Population structure of striped marlin (Kajikia audax) in the Pacific Ocean based on analysis of microsatellite and mitochondrial DNA. Can. J. Fish. Aquat. Sci., 65: 1307-1320.
Melo-Barrera, F. N., R. Felix-Uraga, and C. Quinonez-Velazquez, 2003. Growth and
length-weight relationship of the striped marlin, Tetrapturus audax , in Cabo San lucas, Baja California Sur, Mexico. Cien. Mar., 29: 305-313.
Methot, R. D., 2000. Technical description of the stock synthesis assessment program. NOAA Tech. Memo. NMFS-NWFSC-43. US. Dept. of Commerce, Washington, US. 46 pp.
Methot, R. D., 2011. User Manual for Stock Synthesis. Model version 3.20. January 2011. NOAA Fisheries, Seattle, US, 143 pp.
Montgomery, D. C., and E. A. Peck, 1992. Introduction to Linear Regression Analysis. Wiley-Interscience, New York, US. 672 pp.
Morgan, L.W., 1992. Allozyme analysis of billfish population structure. Master Thesis, College of William and Mary, Virginia, US. 226 pp.
Mugo, R., S. Saitoh, A. Nihira, and T. Kuroyama, 2010. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific, a remote sensing perspective. Fish. Oceanogr., 19: 382-396.
Nakamura, I., 1985. Billfishes of the World: An annotated and illustrated catalogue of marlins, sailfishes, spearfishes and swordfishes known to date. FAO Fish. Synop., 125. FAO, Rome, Italy. 65 pp.
Nelder, J. A., and R. W. M. Wedderburn, 1972. Generalized linear models. J. R. Stat. Soc. Ser. A., 135: 370-384.
Neter, J., W. Wasserman, and M. H. Kunter, 1990. Applied Linear Statistical Models, (3rd ed.). CRC Press. Boca Raton, US. 1184 pp.
Nishikawa, Y., S. Kikawa, M. Honma, and S. Ueyanagi, 1978. Distribution atlas of larval tunas, billfishes and related species ‐ Results of larval surveys by R/V Shunyo Maru, and Shoyo Maru, 1956‐1975. Far Seas Fisheries Research Laboratory. Shizuoka-ken, Japan. 99 pp.
Ortega-Garcia, S., A. Klett-Traulsen, and G. Ponce-Diaz, 2003. Analysis of sportfishing catch rates of striped marlin (Tetrapturus audax) at Cabo San Lucas, Baja California Sur, Mexico, and their relation to sea surface temperature. Mar. Freshw. Res., 54: 483-488.
Ortega-Garcia, S., G. Ponce-Diaz, R. O’Hara, and J. Merila, 2008. The relative importance of lunar phase and weather conditions on Striped Marlin (Tetrapturus audax) catches in sport fishing. Fish. Res., 93: 190-194.
Ortiz, M., E. D. Prince, J. E. Serafy, D. B. Holts, K. B. Davy, J. G. Pepperell, M. B. Lowry, and J. C. Holdsworth, 2003. Global overview of the major constituent- based billfish tagging programs and their results since 1954. Mar. Freshw. Res., 54: 489-507.
Pearcy, W. G., 1991. Biology of the transition region. In: Wetherall J. A. (Ed), Biology, Oceanography, and Fisheries of the North Pacific Transition Zone and Subarctic Frontal Zone, NOAA Tech. Rep. NMFS 105. Dep. Commer., US. pp. 39–55.
Pella, J. J., and P. K. Tomlinson, 1969. A generalized stock production model . Inter-Am. Trop. Tuna Comm. Bull., 13: 419-496.
Piner, K., R. Conser, G. DiNardo, and J. Brodziak, 2007. SS2 Sensitivity Runs for
Striped Marlin Assessment WG 2007. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). March 19-26, 2007. Taipei, Taiwan. ISC/07/MARLIN&SWOWG-1/02. 26 pp.
Polovina, J. J., E. Howell, D. R. Kobayashi, and M. P. Seki, 2001. The Transition Zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Prog. Oceanogr., 49: 469-483
Prager, M. H., 1992. ASPIC: A Surplus-Production Model Incorporating Covariates. Col. Vol. Sci. Pap. ICCAT. 28: 218-229.
Prager, M. H., 1994. A suite of extensions to a non-equilibrium surplus-production model. Fish. Bull., 92: 374–389.
Prager, M. H., E. D. Prince, and D. W. Lee, 1995. Empirical length and weight conversion equations for blue marlin, white marlin, and sailfish from the North Atlantic Ocean. Bull. Mar. Sci., 56: 201–210.
Prager, M. H., 2002. Comparison of logistic and generalized surplus-production models applied to swordfish, Xiphias gladius, in the North Atlantic Ocean. Fish. Res., 58: 41–57.
Prager, M. H., 2004. User’s Manual for ASPIC: A Stock-Production Model Incorporating Covariates (ver. 5) and auxiliary programs. National Marine Fisheries Service. Seattle, US. 27 pp.
Purcell, C. M., 2009. Genetic analysis of population structure in striped marlin, Tetrapturus audax, in the Pacific Ocean. Ph.D. Dissertation, University of Southern California. California, US. 273 pp.
Purcell, C. M., and S. Edmands, 2011. Resolving the genetic structure of striped marlin, Kajikia audax, in the Pacific Ocean through spatial and temporal sampling of adult and immature fish. Can. J. Fish. Aquat. Sci., 68: 1861–1875.
Quinn, T. J. I., and R. B. Deriso, 1999. Quantitative Fish Dynamics. Oxford University Press, New York, US. 560 pp.
Russell, F. S., 1931. Some theoretical considerations on the overfishing problem. J. Cons. Explor. Mer., 6: 3-27.
Schaefer, M. B., 1954. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Inter-Am. Trop. Tuna Comm. Bull., 1: 27-56.
Schaefer, M. B., 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Inter-Am. Trop. Tuna. Comm. Bull., 2: 247-285.
Schwarz, G., 1978. Estimating the dimension of a model. Ann. Stat., 6: 461-464.
Shimose, T., K. Yokawa, and H. Saito, 2010. Habitat and food partitioning of billfishes (Xiphioidei). J. Fish Biol., 76: 2418-2433.
Shomura, R., 1980. Summary report of the billfish stock assessment workshop Pacific resource. NOAA Tech. Memo., U.S. Dep. Commer., La Jolla, California. 58 pp.
Sippel, T. J., P. S. Davie, J. C. Holdsworth, and B. A. Block, 2007. Striped marlin (Tetrapturus audax) movements and habitat utilization during a summer and autumn in the Southwest Pacific Ocean. Fish. Oceanogr., 16: 459–472.
Sippel, T. J., J. Holdsworth, T. Dennis, and J. Montgomery, 2011. Investigating behaviour and population dynamics of striped marlin (Kajikia audax) from the southwest Pacific Ocean with satellite tags. PLoS ONE 6: e21087.
Skillman, R. A., 1989. Status of Pacific billfish stocks. In: Stroud, R. H. (Ed.), Planning the future of billfishes: Research and Management in the 90s and Beyond. Proceedings of the Second International Billfish Symposium. August 1-5, 1988. Kailua-Kona, Hawaii. pp. 179–195.
Squire, J. L., 1974. Migration patterns of Istiophoridae in the Pacific Ocean as determined by cooperative tagging programs. In: R. S. Shomura and F. Williams (Eds.), Proceedings of International Billfish Symposium. Aug 9-12, 1972. Kailua-Kona, Hawaii. pp. 226-237.
Squire, J.L., 1987. Striped marlin, Tetrapturus audax, migration patterns and rates in the Northeast Pacific Ocean as determined by a cooperative tagging program: Its relation to resource management. Mar. Fish. Rev., 49: 26–43.
Squire, J. L., and Z. Suzuki, 1990. Migration trends of striped marlin (Tetrapturus audax) in the Pacific Ocean. In: Stroud R. H. (Ed.), Planning the future of billfishes: Research and Management in the 90’s and beyond. Proceedings of the Second International Billfish Symposium. August 1-5, 1988. Part 2: Contributed Papers. Natl. Coalition Mar. Conserv., Savannah, Georgia. pp. 67–80.
Su, N. J., C. L. Sun, A. E. Punt, and S. Z. Yeh, 2008. Environmental and spatial effects on the distribution of blue marlin (Makaira nigricans) as inferred from data for longline fisheries in the Pacific Ocean. Fish. Oceanogr., 17: 432-445.
Su, N. J., C. L. Sun, A.E. Punt, S. Z. Yeh, and G. DiNardo, 2011. Modelling the impacts of environmental variation on the distribution of blue marlin, Makaira nigricans, in the Pacific Ocean. ICES J. Mar. Sci., 68: 1072-1080.
Su, N. J., C. L. Sun, A.E. Punt, S. Z. Yeh, G. DiNardo, and Y. J. Chang, 2013. An ensemble analysis to predict future habitats of striped marlin (Kajikia audax) in the North Pacific Ocean. ICES J. Mar. Sci., (in press). doi:10.1093/icesjms/fss191.
Sun, C. L., N. J. Su, S. Z. Yeh, and Y. J. Chang, 2011a. Standardized catch-rates for striped marlin (Kajikia audax) for Taiwanese distant-water longline fishery in the North Pacific Ocean for 1967-2009. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). 19-27 January 2011, Honolulu, Hawaii, ISC/11/BILLWG-1/07. 11 pp.
Sun, C. L., N. J. Su, Y. J. Chang, and S. Z. Yeh, 2011b. Stock assessment of striped marlin (Kajikia audax) in the western and central North Pacific Ocean using an age-structured model. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). December 6-16, 2011. Honolulu, Hawaii. ISC/11/BILLWG-3/02. 11 pp.
Suzuki, Z., 1989. Catch and fishing effort relationships for striped marlin, blue marlin and black marlin in the Pacific Ocean, 1952 to 1985. In: Stroud, R. H. (Ed.), Planning the future of billfishes: Research and Management in the 90s and Beyond. Proceedings of the Second International Billfish Symposium. August 1-5, 1988. Kailua-Kona, Hawaii. Part 1: Fishery and stock synopses, data needs and management. Natl. Coalition Mar. Conserv., Savannah, Georgia. pp. 165-177.
Talbot, F. H., and M. J. Penrith, 1962 . Tunnies and marlins of south Africa. Nature, 193: 558-559.
Tian, S. Q., Y. Chen, X. J. Chen, L. X. Xu, and X. J. Dai, 2009. Impacts of spatial scales of fisheries and environmental data on catch per unit effort standardization. Mar. Freshw. Res., 60: 1273-1284.
Uosaki, K., 1998. Standardized CPUE of North Pacific swordfish, Xiphias gladius, in the Japanese large-mesh driftnet fishery. NOAA Tech. Rep. NMFS 142, Dep. Commer., US. pp. 125–132.
Ueyanagi, S., and P. Wares, 1975. Synopsis of biological data on striped marlin, Tetrapturus audax (Philipps), 1887. In: Shomura R. and F. Williams (Eds), Proceedings of International Billfish Symposium. August 9-12, 1972. Kailua-Kona, Hawaii. pp. 132-159.
Vayssieres, M. P., R. E. Plant, and B. H. Allen-Diaz, 2000. Classification trees: an alternative non-parametric approach for predicting species distributions. J. Veg. Sci., 11: 679–694.
Walsh, W. A., and P. Kleiber, 2001. Generalized additive model and regression tree analyses of blue shark (Prionace glauca) catch rates by the Hawaii-based commercial longline fishery. Fish. Res., 53: 115–131.
Walsh, W. A., 2007. Observed swordfish (Xiphias gladius) catch rates in the Hawaii-based longline fishery, 1994-2006. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC), March 19-27 2007, Taipei, Taiwan. ISC/07/MAR&SWOWG-1/07. 18 pp.
Walsh, W., and H. H. Lee, 2011. Standardization of striped marlin, Kajikia audax, CPUE with generalized linear models fitted to pelagic longline observer fata from the Hawaii-based fishery: 1995-2009. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). January 19-27, 2011, Honolulu, Hawaii. ISC/11/BILLWG-1/08. 45 pp.
Yokawa, K., 2005. Standardized CPUE of striped marlin caught by Japanese (High Seas) large-mesh drift fishery in the north Pacific for the periods between 1977 and 1993. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). November 15-22, 2005. Honolulu, Hawaii. ISC/05/MAR&SWOWG/18. 11 pp.
Yokawa, K., and S. Clarke, 2006. Production model analysis of the north Pacific striped marlin using currently available data set in the ISC marlin working group. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). March, 2006. La Jolla, California. ISC/06/MARLIN-WG/ 06. 10 pp.
Yokawa, K., and A. Kimoto, 2011a. Standardized CPUE of striped marlin caught by Japanese coastal large-mesh drift fishery in the northwest Pacific in the periods between 2001 and 2009. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). May 24-June 1, 2011. Taipei, Taiwan. ISC/11/ BILLWG-2/05. 5 pp.
Yokawa, K., and A. Kimoto, 2011b. Update of the Standardized of CPUE of striped marlin caught by Japanese coastal longliners in the northwest Pacific. International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC). May 24-June 1, 2011. Taipei, Taiwan. ISC/11/ BILLWG-2/13. 5 pp.
Zuur, A. F., E. N. Ieno, and C. S. Elphick, 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol., 1: 3–14.
許文聲,2010。台灣海域紅肉旗魚之年齡與成長研究。國立台灣大學海洋研究所
碩士論文。33頁。
張筱筠,2011。台灣海域紅肉旗魚之生殖生物學研究。國立台灣大學海洋研究所碩士論文。43頁。
蔡易霖,2011。大西洋黑皮旗魚之豐度指標標準化及資源評估。國立台灣大學海洋研究所碩士論文,68頁。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔