|
1.张凯, et al., 分散聚合反应. 化学通报, 2002. 65: p. w85. 2.Ishizu, K., Synthesis and structural ordering of core-shell polymer microspheres. Prog. Polym. Sci., 1998. 28(8). 3.王群 and 府寿宽, 乳液聚合的最新进展 (上). 高分子通报, 1996(3): p. 141-151. 4.Paine, A.J., W. Luymes, and J. McNulty, Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly (N-vinylpyrrolidone)-stabilized reactions. Macromolecules, 1990. 23(12): p. 3104-3109. 5.Viswanathan, N.B., et al., Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. Journal of controlled release, 1999. 58(1): p. 9-20. 6.张洪涛, et al., 制备单分散交联聚苯乙烯微球共聚合动力学和粒径的研究. 应用化学, 2001. 18(9): p. 726-730. 7.Okubo, M., et al., Preparation of micron-sized, monodispersed, anomalous polymer particles by utilizing the solvent-absorbing/releasing method. Colloid and Polymer Science, 2000. 278(10): p. 919-926. 8.Shen, S., E. Sudol, and M. El‐Aasser, Control of particle size in dispersion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(6): p. 1393-1402. 9.Saenz, J.M. and J.M. Asua, Dispersion polymerization in polar solvents. Journal of Polymer Science Part A: Polymer Chemistry, 1995. 33(9): p. 1511-1521. 10.Ober, C.K. and K.P. Lok, Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules, 1987. 20(2): p. 268-273. 11.Tseng, C., et al., Uniform polymer particles by dispersion polymerization in alcohol. Journal of Polymer Science Part A: Polymer Chemistry, 1986. 24(11): p. 2995-3007. 12.Hu, R., et al., Monodisperse poly (butadiene/styrene) particles by dispersion polymerization. Journal of applied polymer science, 1995. 55(10): p. 1411-1415. 13.Bourgeat-Lami, E. and J. Lang, Encapsulation of inorganic particles by dispersion polymerization in polar media: 2. Effect of silica size and concentration on the morphology of silica–polystyrene composite particles. Journal of colloid and interface science, 1999. 210(2): p. 281-289. 14.蔣孝澈, 溶凝膠製作與應用專輯. 化工, 1999. 41. 15.Wright, J.D. and N.A. Sommerdijk, Sol Gel Materials: Chemistry and Applications. Statistics, 2011. 21: p. 528. 16.Teixeira, R.F. and S.A. Bon, Physical methods for the preparation of hybrid nanocomposite polymer latex particles, in Hybrid Latex Particles. 2010, Springer. p. 19-52. 17.Derjaguin, B., A theory of the heterocoagulation, interaction and adhesion of dissimilar particles in solutions of electrolytes. Discussions of the Faraday Society, 1954. 18: p. 85-98. 18.Jachowicz, J. and M. Berthiaume, Heterocoagulation of silicon emulsions on keratin fibers. Journal of colloid and interface science, 1989. 133(1): p. 118-134. 19.Deraguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim: USSR, 1941. 14: p. 633-662. 20.Verwey, E.J.W. and J.T.G. Overbeek, Theory of the stability of lyophobic colloids. 1999: Courier Dover Publications. 21.Visser, J., On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Advances in Colloid and Interface Science, 1972. 3(4): p. 331-363. 22.Hamaker, H., The London—van der Waals attraction between spherical particles. physica, 1937. 4(10): p. 1058-1072. 23.Hogg, R., T. Healy, and D. Fuerstenau, Mutual coagulation of colloidal dispersions. Trans. Faraday Soc., 1966. 62: p. 1638-1651. 24.Bleier, A. and E. Matijevic, Heterocoagulotion. I. Interactions of monodispersed chromium hydroxide with polyvinyl chloride latex. Journal of Colloid and Interface Science, 1976. 55(3): p. 510-524. 25.Luckham, P., B. Vincent, and T.F. Tadros, The controlled flocculation of particulate dispersions using small particles of opposite charge. IV. Effect of surface coverage of adsorbed polymer on heteroflocculation. Colloids and Surfaces, 1983. 6(2): p. 119-133. 26.Luckham, P., B. Vincent, and T.F. Tadros, The controlled flocculation of particulate dispersions using small particles of opposite charge. III. Investigation of floc structure using rheological techniques. Colloids and Surfaces, 1983. 6(2): p. 101-118. 27.Luckham, P., et al., The controlled flocculation of particulate dispersions using small particles of opposite charge. II. Investigation of floc structure using a freeze-fracture technique. Colloids and Surfaces, 1983. 6(1): p. 83-95. 28.Vincent, B., C.A. Young, and T.F. Tadros, Equilibrium aspects of heteroflocculation in mixed sterically-stabilised dispersions. Faraday Discuss. Chem. Soc., 1978. 65: p. 296-305. 29.Vincent, B., et al., Adsorption of small, positive particles onto large, negative particles in the presence of polymer. Part 2.—Adsorption equilibrium and kinetics as a function of temperature. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980. 76: p. 674-682. 30.Hansen, F.K. and E. Matijević, Heterocoagulation. Part 5.—Adsorption of a carboxylated polymer latex on monodispersed hydrated metal oxides. J. Chem. Soc., Faraday Trans. 1, 1980. 76: p. 1240-1262. 31.Barouch, E., et al., Heterocoagulation II. Interaction energy of two unequal spheres. Journal of Colloid and Interface Science, 1978. 67(1): p. 1-9. 32.Furusawa, K. and C. Anzai, Preparation of composite fine particles by heterocoagulation. Colloid and Polymer Science, 1987. 265(10): p. 882-888. 33.Furusawa, K. and C. Anzai, Heterocoagulation behaviour of polymer latices with spherical silica. Colloids and surfaces, 1992. 63(1): p. 103-111. 34.S, H., Ph.D. dissertation thesis. University of Bristol, 1990. 35.Harley, S., D.W. Thompson, and B. Vincent, The adsorption of small particles onto larger particles of opposite charge Direct electron microscope studies. Colloids and surfaces, 1992. 62(1): p. 163-176. 36.Ottewill, R., et al., Preparation of core-shell polymer colloid particles by encapsulation. Colloid and Polymer Science, 1997. 275(3): p. 274-283. 37.Xu, Y., et al., Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method. Polymer, 2004. 45(11): p. 3735-3746. 38.Chen, J.H., et al., Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites by heterocoagulation and blending with PET. Journal of Colloid and Interface Science, 2007. 308(1): p. 81-92. 39.W, K., Some forces in the interpretation of protein denaturation. Advances in Protein Chemistry, 1959. 40.Attard, P., Nanobubbles and the hydrophobic attraction. Advances in colloid and interface science, 2003. 104(1): p. 75-91. 41.Eriksson, J.C., S. Ljunggren, and P.M. Claesson, A phenomenological theory of long-range hydrophobic attraction forces based on a square-gradient variational approach. J. Chem. Soc., Faraday Trans. 2, 1989. 85(3): p. 163-176. 42.Stillinger, F.H., Capillary waves and the inherent density profile for the liquid–vapor interface. The Journal of Chemical Physics, 1982. 76: p. 1087. 43.Yamaguchi, K., et al., Preparation of core–shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction. Colloid and Polymer Science, 2004. 282(4): p. 366-372. 44.Zubarev, E.R., et al., Amphiphilic gold nanoparticles with V-shaped arms. Journal of the American Chemical Society, 2006. 128(15): p. 4958-4959. 45.Miller, W.L. and A. Cacciuto, Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Physical Review E, 2009. 80(2). 46.Whitelam, S. and S.A. Bon, Self-assembly of amphiphilic peanut-shaped nanoparticles. The Journal of chemical physics, 2010. 132: p. 074901. 47.Maeda, S. and S.P. Armes, Preparation of novel polypyrrole-silica colloidal nanocomposites. Journal of colloid and interface science, 1993. 159(1): p. 257-259. 48.Maeda, S. and S.P. Armes, PREPARATION AND CHARACTERIZATION OF NOVEL POLYPYRROLE-SILICA COLLOIDAL NANOCOMPOSITES. Journal of Materials Chemistry, 1994. 4(6): p. 935-942. 49.Li, R., et al., Core-corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction. Langmuir, 2006. 22(19): p. 8127-8133. 50.Jin, J., et al., Self-assembly of uniform spherical aggregates of magnetic nanoparticles through pi-pi interactions. Angewandte Chemie-International Edition, 2001. 40(11): p. 2135-2138. 51.Richardson, K.C., L. Jarett, and E.H. Finke, EMBEDDING IN EPOXY RESINS FOR ULTRATHIN SECTIONING IN ELECTRON MICROSCOPY. Stain Technology, 1960. 35(6): p. 313-323. 52.Fox, T.G. and P.J. Flory, Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 1950. 21(6): p. 581-591. 53.Yim, M.-J. and K.-W. Paik. Design and understanding of anisotropic conductive films (ACFs) for LCD packaging. in Polymeric Electronics Packaging, 1997. Proceedings., The First IEEE International Symposium on. 1997. IEEE. 54.HETTCK, C., RHINE, 1932, Google Patents. 55.Ugelstad, J., M. El‐Aasser, and J. Vanderhoff, Emulsion polymerization: Initiation of polymerization in monomer droplets. Journal of Polymer Science: Polymer Letters Edition, 1973. 11(8): p. 503-513. 56.Delgado, J., et al., Miniemulsion copolymerization of vinyl acetate and butyl acrylate. III. Experimental evidence for the role of the cosurfactant. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(1): p. 193-202. 57.Delgado, J., et al., Miniemulsion copolymerization of vinyl acetate and butyl acrylate. IV. Kinetics of the copolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1990. 28(4): p. 777-794. 58.Wang, S. and F. Schork, Miniemulsion polymerization of vinyl acetate with nonionic surfactant. Journal of applied polymer science, 1994. 54(13): p. 2157-2164. 59.Carlier, C., D. Douay, and J.-M. Galewski, Expandable polystyrene composition, expanded beads and moulded parts, 2001, Google Patents. 60.潘祖仁, 懸浮聚合. 2001. 61.Lee, Y., J. Rho, and B. Jung, Preparation of magnetic ion‐exchange resins by the suspension polymerization of styrene with magnetite. Journal of applied polymer science, 2003. 89(8): p. 2058-2067. 62.Zhang, B., et al., Preparation of poly (styrene‐co‐isobornyl methacrylate) beads having controlled glass transition temperature by suspension polymerization. Journal of Applied Polymer Science, 2012.
|