跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉皓
研究生(外文):Hao Liu
論文名稱:以異質吸引法製備高分子/碳黑複合顆粒及其性質與應用研究
論文名稱(外文):Studies on Polymer/Carbon Black Composites by Heterocoagulation Method
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
口試委員:王滿生李佳芬童世煌
口試委員(外文):Man-Sheng WangChia-Fen LiShih-Huang Tung
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:89
中文關鍵詞:分散聚合法矽烷氧化物溶膠凝膠法碳黑異質吸引法
外文關鍵詞:dispersion polymerizationsilane coupling agentsol-gel processcarbon blackHeterocoagulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用異質吸引法製備微米級高分子/碳黑複合顆粒和其形態的探討。系統架構是利用分散聚合法先製備窄分佈且表面具有正電的高分子乳膠顆粒,接著使用矽烷氧化物對表面帶有負電的市售碳黑進行表面性質修飾,最後將高分子乳膠顆粒與碳黑顆粒在水中混合,藉由調控pH值使得兩者互相吸引,並加高反應溫度至乳膠顆粒玻璃轉移溫度以上,讓其表面稍微軟化,形成穩定的高分子/碳黑微米級複合顆粒。
實驗的第一部分討論在不同的反應條件下,以分散聚合製備出的高分子乳膠顆粒其粒徑均勻程度、界面電位大小與等電點的差異以及玻璃轉移溫度的高低。首先以動態光散射粒徑電位分析儀檢測顆粒之介面電位,由pH值與介面電位的關係找出高分子顆粒的等電點,再使用掃描式電子顯微鏡觀察粒徑大小,接著使用差式掃描熱量分析儀檢測其玻璃轉移溫度。
實驗的第二部分是以溶膠凝膠法對市售碳黑顆粒進行表面改質,藉由改質條件和矽烷氧化物種類的改變,研究改質後其表面性質的差異。先以動態光散射粒徑電位分析儀檢測碳黑顆粒分散在水中的粒徑分佈,還有隨著pH值改變的電位變化,接著以熱重示差同步掃描分析儀檢測改質在碳黑表面的量,並以紅外線光譜儀、固態矽譜核磁共振儀檢驗改質結果。
實驗最後的部分為高分子顆粒和碳黑顆粒的異質吸引實驗,藉由調控適當的pH值與加熱溫度,使高分子與碳黑藉靜電吸引力互相吸引,同時加熱讓高分子表面軟化,形成穩定的複合顆粒。以低轉速離心純化反應後的複合顆粒,同時洗去殘餘碳黑與分散劑,接著用掃描式電子顯微鏡觀察顆粒表面的吸附狀況,再以熱重示差同步掃描分析儀檢測吸附的量,最後將複合顆粒以樹酯包埋,用超薄切片機切片後,以穿透式電子顯微鏡進行觀察。

In this study, we synthesized micron-sized carbon black/polymer composites by heterocoagulation. First of all, we fabricated the polymeric latex with narrow size distribution and positive surface charge. Secondly, carbon black surface modification with silane coupling agent by sol-gel process had been achieved. In the last part, polymeric latex and surface-modified carbon black were mixed in water then we adjusted the pH value of the solution to a certain level and heated above the glass transition temperature of the polymeric latex to form carbon black/polymer composites.
In the first part, we studied some experimental parameters that may affect the polydispersity, zeta potential, isoelectric point or Tg of the polymeric latex fabricated by dispersion polymerization. Dynamic light scattering zetasizer had been used to measure the zeta potential of the polymeric latex. We also used scanning electron microscopy(SEM) to measure the size of the latex particles. Glass transition temperature was measured by differential scanning calorimeter.
In the second part, carbon black surface modification with various functional group on the silane coupling agents via sol-gel process had been studied. The size and its distribution of the modified carbon black were measured by dynamic light scattering and thermogravimetric analysis, then Fourier transform infrared spectrometer was used to confirm the results.
In the last part, we fabricated the carbon black/polymer composites via heterocoagulation method. Appropriate pH values were controlled to achieve good heterocoagulation results. By heating up the polymeric latex to above its Tg, the surface of polymeric latex will become soft to form the stable composites with heterocoagulated carbon black on their surfaces. The composites were purified with centrifuge and the amount of the heterocoagulated carbon black was tested by thermogravimetric analysis. The morphologies of the cross section of the composites were observed via transmitting electron microscope ultra-thin sectioning technique.


論文口試委員會審定書
致謝 i
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 前言 1
1-2 研究目的 1
第二章 文獻回顧 2
2-1 分散聚合法 2
2-2 溶膠凝膠法 6
2-2-1 溶膠凝膠法簡介 6
2-2-2 矽烷氧化合物種類的影響 8
2-2-3 水量的影響 9
2-2-4 pH值的影響 9
2-2-5 溶劑的影響 10
2-3 異質吸引法 12
2-3-1 異質吸引法簡介 12
2-3-2 靜電作用力 12
2-3-3 疏水作用力 15
2-3-4 次級作用力 17
第三章 實驗方法 19
3-1 實驗藥品 19
3-2 實驗儀器 23
3-3 實驗步驟 25
3-3-1 實驗流程圖 25
3-3-1-1 高分子乳膠顆粒合成 25
3-3-1-2 碳黑表面改質 26
3-3-1-3 複合顆粒合成 27
3-3-2 高分子乳膠顆粒合成 28
3-3-2-1 合成方法 28
3-3-2-2 界面電位量測 29
3-3-2-3 掃描式電子顯微鏡顆粒型態觀察 29
3-3-2-4 玻璃轉移溫度測試 29
3-3-2-5 高分子乳膠顆粒轉化率測定 30
3-3-3 碳黑表面改質 30
3-3-3-1 改質方法 30
3-3-3-2 熱裂解溫度檢測 31
3-3-3-3 粒徑與界面電位分析 31
3-3-3-4 FTIR光譜檢測 32
3-3-4 以異質吸引法製備碳黑/高分子複合顆粒 32
3-3-4-1 合成方法 32
3-3-4-2 掃描式電子顯微鏡粒徑與型態觀察 33
3-3-4-3 熱裂解溫度檢測 33
3-3-4-4 穿透式電子顯微鏡切片觀察[51] 34
第四章 結果與討論 35
4-1 高分子乳膠顆粒 35
4-1-1 轉化率之測定 35
4-1-2 高分子粒徑觀察及探討 35
4-1-2-1 分散劑之影響 35
4-1-2-2 共分散劑量之影響 36
4-1-2-3 溶劑組成之影響 37
4-1-2-4 起始劑量之影響 37
4-1-3 影響界面電位之因素探討 38
4-1-4 高分子乳膠顆粒之玻璃轉移溫度 39
4-2 碳黑表面改質 39
4-2-1 改質劑使用量不同的影響 40
4-2-2 改質環境中水量(酸鹼度)的差異 41
4-2-3 矽烷氧改質劑種類的影響 41
4-3異質吸引法製備碳黑/高分子複合顆粒 42
4-3-1 酸鹼性調整的影響 42
4-3-2 高分子乳膠顆粒與碳黑顆粒表面性質對吸附結果的影響 44
4-3-3 增加碳黑的進料量對於吸附結果的影響 45
4-3-4 高分子/碳黑複合顆粒TEM切片觀察 45
第五章 結論及未來展望 46
文獻回顧 69
第六章 附錄 76
6-1 異方向性導電性材料 76
6-2 迷你乳化聚合 78
6-2-1 文獻回顧 78
6-2-2 實驗方法與實驗流程圖 80
6-2-3 階段性實驗結果與討論 82
6-2-4 未來展望 82
6-3 懸浮聚合 85
6-3-1 文獻回顧 85
6-3-2 實驗方法與實驗流程圖 86
6-3-3 階段性實驗結果與討論 87
6-3-4 未來展望 87


1.张凯, et al., 分散聚合反应. 化学通报, 2002. 65: p. w85.
2.Ishizu, K., Synthesis and structural ordering of core-shell polymer microspheres. Prog. Polym. Sci., 1998. 28(8).
3.王群 and 府寿宽, 乳液聚合的最新进展 (上). 高分子通报, 1996(3): p. 141-151.
4.Paine, A.J., W. Luymes, and J. McNulty, Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly (N-vinylpyrrolidone)-stabilized reactions. Macromolecules, 1990. 23(12): p. 3104-3109.
5.Viswanathan, N.B., et al., Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. Journal of controlled release, 1999. 58(1): p. 9-20.
6.张洪涛, et al., 制备单分散交联聚苯乙烯微球共聚合动力学和粒径的研究. 应用化学, 2001. 18(9): p. 726-730.
7.Okubo, M., et al., Preparation of micron-sized, monodispersed, anomalous polymer particles by utilizing the solvent-absorbing/releasing method. Colloid and Polymer Science, 2000. 278(10): p. 919-926.
8.Shen, S., E. Sudol, and M. El‐Aasser, Control of particle size in dispersion polymerization of methyl methacrylate. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(6): p. 1393-1402.
9.Saenz, J.M. and J.M. Asua, Dispersion polymerization in polar solvents. Journal of Polymer Science Part A: Polymer Chemistry, 1995. 33(9): p. 1511-1521.
10.Ober, C.K. and K.P. Lok, Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules, 1987. 20(2): p. 268-273.
11.Tseng, C., et al., Uniform polymer particles by dispersion polymerization in alcohol. Journal of Polymer Science Part A: Polymer Chemistry, 1986. 24(11): p. 2995-3007.
12.Hu, R., et al., Monodisperse poly (butadiene/styrene) particles by dispersion polymerization. Journal of applied polymer science, 1995. 55(10): p. 1411-1415.
13.Bourgeat-Lami, E. and J. Lang, Encapsulation of inorganic particles by dispersion polymerization in polar media: 2. Effect of silica size and concentration on the morphology of silica–polystyrene composite particles. Journal of colloid and interface science, 1999. 210(2): p. 281-289.
14.蔣孝澈, 溶凝膠製作與應用專輯. 化工, 1999. 41.
15.Wright, J.D. and N.A. Sommerdijk, Sol Gel Materials: Chemistry and Applications. Statistics, 2011. 21: p. 528.
16.Teixeira, R.F. and S.A. Bon, Physical methods for the preparation of hybrid nanocomposite polymer latex particles, in Hybrid Latex Particles. 2010, Springer. p. 19-52.
17.Derjaguin, B., A theory of the heterocoagulation, interaction and adhesion of dissimilar particles in solutions of electrolytes. Discussions of the Faraday Society, 1954. 18: p. 85-98.
18.Jachowicz, J. and M. Berthiaume, Heterocoagulation of silicon emulsions on keratin fibers. Journal of colloid and interface science, 1989. 133(1): p. 118-134.
19.Deraguin, B. and L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim: USSR, 1941. 14: p. 633-662.
20.Verwey, E.J.W. and J.T.G. Overbeek, Theory of the stability of lyophobic colloids. 1999: Courier Dover Publications.
21.Visser, J., On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants. Advances in Colloid and Interface Science, 1972. 3(4): p. 331-363.
22.Hamaker, H., The London—van der Waals attraction between spherical particles. physica, 1937. 4(10): p. 1058-1072.
23.Hogg, R., T. Healy, and D. Fuerstenau, Mutual coagulation of colloidal dispersions. Trans. Faraday Soc., 1966. 62: p. 1638-1651.
24.Bleier, A. and E. Matijevic, Heterocoagulotion. I. Interactions of monodispersed chromium hydroxide with polyvinyl chloride latex. Journal of Colloid and Interface Science, 1976. 55(3): p. 510-524.
25.Luckham, P., B. Vincent, and T.F. Tadros, The controlled flocculation of particulate dispersions using small particles of opposite charge. IV. Effect of surface coverage of adsorbed polymer on heteroflocculation. Colloids and Surfaces, 1983. 6(2): p. 119-133.
26.Luckham, P., B. Vincent, and T.F. Tadros, The controlled flocculation of particulate dispersions using small particles of opposite charge. III. Investigation of floc structure using rheological techniques. Colloids and Surfaces, 1983. 6(2): p. 101-118.
27.Luckham, P., et al., The controlled flocculation of particulate dispersions using small particles of opposite charge. II. Investigation of floc structure using a freeze-fracture technique. Colloids and Surfaces, 1983. 6(1): p. 83-95.
28.Vincent, B., C.A. Young, and T.F. Tadros, Equilibrium aspects of heteroflocculation in mixed sterically-stabilised dispersions. Faraday Discuss. Chem. Soc., 1978. 65: p. 296-305.
29.Vincent, B., et al., Adsorption of small, positive particles onto large, negative particles in the presence of polymer. Part 2.—Adsorption equilibrium and kinetics as a function of temperature. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1980. 76: p. 674-682.
30.Hansen, F.K. and E. Matijević, Heterocoagulation. Part 5.—Adsorption of a carboxylated polymer latex on monodispersed hydrated metal oxides. J. Chem. Soc., Faraday Trans. 1, 1980. 76: p. 1240-1262.
31.Barouch, E., et al., Heterocoagulation II. Interaction energy of two unequal spheres. Journal of Colloid and Interface Science, 1978. 67(1): p. 1-9.
32.Furusawa, K. and C. Anzai, Preparation of composite fine particles by heterocoagulation. Colloid and Polymer Science, 1987. 265(10): p. 882-888.
33.Furusawa, K. and C. Anzai, Heterocoagulation behaviour of polymer latices with spherical silica. Colloids and surfaces, 1992. 63(1): p. 103-111.
34.S, H., Ph.D. dissertation thesis. University of Bristol, 1990.
35.Harley, S., D.W. Thompson, and B. Vincent, The adsorption of small particles onto larger particles of opposite charge Direct electron microscope studies. Colloids and surfaces, 1992. 62(1): p. 163-176.
36.Ottewill, R., et al., Preparation of core-shell polymer colloid particles by encapsulation. Colloid and Polymer Science, 1997. 275(3): p. 274-283.
37.Xu, Y., et al., Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method. Polymer, 2004. 45(11): p. 3735-3746.
38.Chen, J.H., et al., Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites by heterocoagulation and blending with PET. Journal of Colloid and Interface Science, 2007. 308(1): p. 81-92.
39.W, K., Some forces in the interpretation of protein denaturation. Advances in Protein Chemistry, 1959.
40.Attard, P., Nanobubbles and the hydrophobic attraction. Advances in colloid and interface science, 2003. 104(1): p. 75-91.
41.Eriksson, J.C., S. Ljunggren, and P.M. Claesson, A phenomenological theory of long-range hydrophobic attraction forces based on a square-gradient variational approach. J. Chem. Soc., Faraday Trans. 2, 1989. 85(3): p. 163-176.
42.Stillinger, F.H., Capillary waves and the inherent density profile for the liquid–vapor interface. The Journal of Chemical Physics, 1982. 76: p. 1087.
43.Yamaguchi, K., et al., Preparation of core–shell composite polymer particles by a novel heterocoagulation based on hydrophobic interaction. Colloid and Polymer Science, 2004. 282(4): p. 366-372.
44.Zubarev, E.R., et al., Amphiphilic gold nanoparticles with V-shaped arms. Journal of the American Chemical Society, 2006. 128(15): p. 4958-4959.
45.Miller, W.L. and A. Cacciuto, Hierarchical self-assembly of asymmetric amphiphatic spherical colloidal particles. Physical Review E, 2009. 80(2).
46.Whitelam, S. and S.A. Bon, Self-assembly of amphiphilic peanut-shaped nanoparticles. The Journal of chemical physics, 2010. 132: p. 074901.
47.Maeda, S. and S.P. Armes, Preparation of novel polypyrrole-silica colloidal nanocomposites. Journal of colloid and interface science, 1993. 159(1): p. 257-259.
48.Maeda, S. and S.P. Armes, PREPARATION AND CHARACTERIZATION OF NOVEL POLYPYRROLE-SILICA COLLOIDAL NANOCOMPOSITES. Journal of Materials Chemistry, 1994. 4(6): p. 935-942.
49.Li, R., et al., Core-corona polymer composite particles by self-assembled heterocoagulation based on a hydrogen-bonding interaction. Langmuir, 2006. 22(19): p. 8127-8133.
50.Jin, J., et al., Self-assembly of uniform spherical aggregates of magnetic nanoparticles through pi-pi interactions. Angewandte Chemie-International Edition, 2001. 40(11): p. 2135-2138.
51.Richardson, K.C., L. Jarett, and E.H. Finke, EMBEDDING IN EPOXY RESINS FOR ULTRATHIN SECTIONING IN ELECTRON MICROSCOPY. Stain Technology, 1960. 35(6): p. 313-323.
52.Fox, T.G. and P.J. Flory, Second‐order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. Journal of Applied Physics, 1950. 21(6): p. 581-591.
53.Yim, M.-J. and K.-W. Paik. Design and understanding of anisotropic conductive films (ACFs) for LCD packaging. in Polymeric Electronics Packaging, 1997. Proceedings., The First IEEE International Symposium on. 1997. IEEE.
54.HETTCK, C., RHINE, 1932, Google Patents.
55.Ugelstad, J., M. El‐Aasser, and J. Vanderhoff, Emulsion polymerization: Initiation of polymerization in monomer droplets. Journal of Polymer Science: Polymer Letters Edition, 1973. 11(8): p. 503-513.
56.Delgado, J., et al., Miniemulsion copolymerization of vinyl acetate and butyl acrylate. III. Experimental evidence for the role of the cosurfactant. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(1): p. 193-202.
57.Delgado, J., et al., Miniemulsion copolymerization of vinyl acetate and butyl acrylate. IV. Kinetics of the copolymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1990. 28(4): p. 777-794.
58.Wang, S. and F. Schork, Miniemulsion polymerization of vinyl acetate with nonionic surfactant. Journal of applied polymer science, 1994. 54(13): p. 2157-2164.
59.Carlier, C., D. Douay, and J.-M. Galewski, Expandable polystyrene composition, expanded beads and moulded parts, 2001, Google Patents.
60.潘祖仁, 懸浮聚合. 2001.
61.Lee, Y., J. Rho, and B. Jung, Preparation of magnetic ion‐exchange resins by the suspension polymerization of styrene with magnetite. Journal of applied polymer science, 2003. 89(8): p. 2058-2067.
62.Zhang, B., et al., Preparation of poly (styrene‐co‐isobornyl methacrylate) beads having controlled glass transition temperature by suspension polymerization. Journal of Applied Polymer Science, 2012.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊