(3.238.99.243) 您好!臺灣時間:2021/05/16 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡珮珍
研究生(外文):Pei-Zhen Jian
論文名稱:複合靜電紡絲纖維在非揮發性有機記憶體上之應用與形態分析
論文名稱(外文):Electrospun Nanofibers as Polymer Gate Electrets on Pentacene Transistor Memory: Morphology, Structure, and Electrical Characteristics
指導教授:童世煌
指導教授(外文):Shih-Huang Tung
口試委員:邱文英陳文章鄭如忠
口試委員(外文):Wen-Yen ChiuWen-Chang ChenRu-Jong Jeng
口試日期:2013-07-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:106
中文關鍵詞:電紡複合材料有機記憶體形態電性
外文關鍵詞:ElectrospinningCompositeOrganic transistor memoryMorphologyElectrical characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
非揮發性場效電晶體作為儲存資訊的元件具有應用在有機光電元件的潛力。然而直至今日,其在製備方式、型態控制與相關的電性表現上仍有許多探討空間。在本篇論文中,我們採用高分子P4VP混摻半導體小分子PCBM的系統,在靜電紡絲技術下製備複合奈米纖維,並將其作為電介層運用在電晶體式記憶體元件中。複合靜電紡絲纖維對有機半導體分子的影響可主要分為型態和電性二方面,分述如下: 1. 複合靜電紡絲纖維幾何形狀對主動層分子型態與結構之分析: 本研究中的奈米纖維與一般藉由旋轉塗布製成的薄膜最大差異在於改變五聯苯pentacene晶粒型態與結構。由於P4VP與PCBM之間的價電傳輸作用力(charge-transfer interaction),電紡過程獨特之尺寸抑制效應,故纖維表面非常平滑且均勻。由其形態結果來看,蒸鍍在奈米纖維之上的pentacene其結晶度有明顯被提升的效果,且結晶大小較ODTS改質的SiO_2基板提升約二倍,此顯著差異可歸功於纖維特有的半圓柱表面,使得在蒸鍍過程中的pentacene氣相分子不易吸附在纖維凸面上,造成較低的晶核密度,產生較大的晶粒粒徑。此結果初次提供電介層表面曲率對pentacene結晶成長動力學的研究。
2. 複合靜電紡絲纖維之內電場對場效電晶體記憶儲存之影響:奈米纖維是以高分子/半導體小分子PCBM之混摻系統作為材料,依其功能而言,高分子當作電流阻障層(current blocking layer);PCBM則扮演捕捉電子的角色,除PCBM混摻比例之外,高分子本身的極性,更重要的是纖維的奈米尺寸產生極大的內電場,注入並儲存載子於纖維內,其製成的元件載子移動率高達2.95 cm^2⁄Vs,電流開關比(ON/OFF current ratio) 超過〖10〗^7,合適的操作條件下,記憶體操作空間(memory window)達到50 V,電性表現遠優於薄膜電晶體。
目前的研究結果顯示電介層幾何形狀對於主動層結晶型態和記憶體元件特性具有極重要的影響。


The nonvolatile transistor memory is a well-known element as an information storage device in a variety of organic electronics. Up to now, the fabrication, morphology control, and electrical properties of devices with the 1-D (one-dimension) configuration remain challenging. In this thesis, new composite nanofibers of polymer and blending with high fraction of small semiconductor molecule are fabricated by electrospinning technique and first applied on organic field-effect transistor memory (OFET memory) as the polymer dielectrics. We studied the effects of electrospun nanofibers as polymer gate dielectrics on pentacene transistor memory as the following:
1. Influences of dielectric geometry on pentacene monolayer growth and finial morphology: On account of the charge-transfer interaction existing in P4VP (Poly (4-Vinyl Pyridine)) and PCBM ([6, 6]-phenyl-C61-butyric acid methyl ester), along with the high evaporation rate and the confinement effect in the electrospinning process, we can obtain uniform and smooth nanofibers. From the results of experiments and analyses, the nucleation behaviors of pentacene molecules appear to be changed on nanofibers. Averaged grain size of pentacene grown on the semicylinder surface of nanofiber becomes about two times larger than that of ODTS (octadecyltrichlorosilane) modified SiO2, suggesting that the grain size is enhanced by eletrospun nanofibers, which leads to a much higher field-effect mobility of 2.95 cm^2⁄Vs compared to thin-film dielectrics whose resulting in field-effect mobility is only 0.04 cm^2⁄Vs. It is because that a smaller amount of nuclei of pentacene formed on the cylindrical nanofibers at the early stage of crystal development, gives rise to larger grain size. The correlation of surface curvature and the growth dynamics of pentacene is provided in this thesis.
2. Effects of the built-in electric field of nanofiber dielectric: In polymer composite nanofibers, polymers are taken as the electron-transporting layer or blocking layers and on the other hand, semiconductor PCBM serves as electron-trapping sites. There are three factors that affect the memory window in nanofiber OFET memory device, i.e. the PCBM corporation, polarity of polymer, and most important of all, the geometry effect of fibers in nanoscale. A higher electrical field generated in the nanofibers allows more electrons to inject into the electrets. With electrospun composite nanofibers as dielectrics, OFET memory exhibits a larger memory window of about 50 V and a higher ON/OFF current ratio of over 〖10〗^7. The present study addresses the importance of dielectric geometry on the pentacene morphology and OFET memory properties.


口試委員審定書 i
誌謝 ii
Abstract iii
中文摘要 v
Chapter 1 Introduction 1
1.1 Introduction to Electrospinning 1
1.2 The Effect of Parameters on Electrospun Nanofiber Morphology 3
1.2.1 Electrospinning Solution parameters and fiber morphology 4
1.2.2 Electrospinning Process parameters and fiber morphology 6
1.2.3 Process Design for coaxial Fibers 9
1.3 Organic Polymer Transistor-Type Memory 10
1.3.1 Organic Field-Effect Transistor Memory 10
1.3.2 Characteristics of OFET Memory 13
1.3.3 Polymer-based Electrets in OFET Memory 14
1.3.4 Pentacene-based Organic Field-Effect Transistor Memory 16
1.4 Research Objectives 19
Reference 21
Chapter 2 Polymer/Semiconductor Composite Nanofibers by Electrospinning as Dielectric in Pentacene-based Transistor Memory 42
2.1 Introduction 42
2.2 Experimental 46
2.2.1 Materials 46
2.2.2 Device fabrication 46
2.2.3 Characterization 49
2.3 Results and Discussion 51
2.3.1 Polymer:PCBM Composite Fibers by Electrospinning 51
2.3.2 OFET Based on P4VP: PCBM ES Fibers 55
2.3.3 Influence of Dielectric Geometry on Pentacene Morphology 57
2.3.4 OFET Memory Performance Based on Fiberous Dielectrics 64
Chapter 3 75
Conclusions 75
References 77




(1)Formalas, A. US, 1934.
(2)Reneker, D. H.; Fong, H. Polymeric nanofibers (ACS Symposium Series 918); Oxford University Press: NY, 2006.
(3)Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216.
(4)Li, D.; Xia, Y. Advanced Materials 2004, 16, 1151.
(5)Larsen, G.; Velarde-Ortiz, R.; Minchow, K.; Barrero, A.; Loscertales, I. G. Journal of the American Chemical Society 2003, 125, 1154.
(6)Shin, Y. M.; Hohman, M. M.; Brenner, M. P.; Rutledge, G. C. Polymer 2001, 42, 9955.
(7)Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. Journal of Applied Physics 2000, 87, 4531.
(8)Wang, C.; Hsu, C. H.; Lin, J. H. Macromolecules 2006, 39, 7662.
(9)Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wnek, G. E. Polymer 2005, 46, 3372.
(10)McKee, M. G.; Wilkes, G. L.; Colby, R. H.; Long, T. E. Macromolecules 2004, 37, 1760.
(11)Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. L. Polymer 2005, 46, 4799.
(12)Wannatong, L.; Sirivat, A.; Supaphol, P. Polymer International 2004, 53, 1851.
(13)Lin, T.; Wang, H.; Wang, X. Nanotechnology 2004, 15, 1375.
(14)Lee, K. H.; Kim, H. Y.; Bang, H. J.; Jung, Y. H.; Lee, S. G. Polymer 2003, 44, 4029.
(15)Kim, S. J.; Lee, C. K.; Kim, S. I. Journal of Applied Polymer Science 2005, 96, 1388.
(16)Fong, H.; Chun, I.; Reneker, D. H. Polymer 1999, 40, 4585.
(17)Zuo, W.; Zhu, M.; Yang, W.; Yu, H.; Chen, Y.; Zhang, Y. Polymer Engineering and Science 2005, 45, 704.
(18)Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B. Polymer 2002, 43, 4403.
(19)Demir, M. M.; Yilgor, I.; Yilgor, E.; Erman, B. Polymer 2002, 43, 3303.
(20)Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Beck Tan, N. C. Polymer 2001, 42, 261.
(21)Jin, H.-J.; Fridrikh, S. V.; Rutledge, G. C.; Kaplan, D. L. Biomacromolecules 2002, 3, 1233.
(22)Kim, K.; Yu, M.; Zong, X.; Chiu, J.; Fang, D.; Seo, Y. S.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Biomaterials 2003, 24, 4977.
(23)Kahol, P. K.; Pinto, N. J. Synth. Met. 2004, 140, 269.
(24)Ye, H.; Lam, H.; Titchenal, N.; Gogotsi, Y.; Ko, F. Appl. Phys. Lett. 2004, 85, 1775.
(25)Dror, Y.; Salalha, W.; Khalfin, R. L.; Cohen, Y.; Yarin, A. L.; Zussman, E. Langmuir 2003, 19, 7012.
(26)Lee, K. H.; Kim, H. Y.; La, Y. M.; Lee, D. R.; Sung, N. H. Journal of Polymer Science Part B: Polymer Physics 2002, 40, 2259.
(27)Ko, F.; Gogotsi, Y.; Ali, A.; Naguib, N.; Ye, H.; Yang, G. L.; Li, C.; Willis, P. Advanced Materials 2003, 15, 1161.
(28)Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Cha, D. I.; Lee, D. R. Materials Letters 2004, 58, 3368.
(29)Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Lee, D. R.; Kim, S. R.; Morris, M. A. Chemical Physics Letters 2003, 374, 79.
(30)Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A. Advanced Materials 2003, 15, 1929.
(31)Yu, J.; Fridrikh, S.; Rutledge, G. Advanced Materials 2004, 16, 1562.
(32)McCann, J. T.; Marquez, M.; Xia, Y. Nano Letters 2006, 6, 2868.
(33)Wang, M.; Jing, N.; Su, C. B.; Kameoka, J.; Chou, C. K.; Hung, M. C.; Chang, K. A. Appl. Phys. Lett. 2006, 88, 1.
(34)Moghe, A. K.; Gupta, B. S. Polymer Reviews 2008, 48, 353.
(35)Greiner, A.; Wendorff, J. H.; Yarin, A. L.; Zussman, E. Applied Microbiology and Biotechnology 2006, 71, 387.
(36)Li, D.; Xia, Y. Nano Letters 2004, 4, 933.
(37)Ling, Q.-D.; Liaw, D.-J.; Zhu, C.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Progress in Polymer Science 2008, 33, 917.
(38)Heremans, P.; Gelinck, G. H.; Muller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y. Chemistry of Materials 2010, 23, 341.
(39)Liu, C.-L.; Chen, W.-C. Polymer Chemistry 2011, 2, 2169.
(40)Kang, N.-G.; Cho, B.; Kang, B.-G.; Song, S.; Lee, T.; Lee, J.-S. Advanced Materials 2012, 24, 385.
(41)Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; de Leeuw, D. M.; de Boer, B. Advanced Materials 2010, 22, 933.
(42)Ling, Q.-D.; Chang, F.-C.; Song, Y.; Zhu, C.-X.; Liaw, D.-J.; Chan, D. S.-H.; Kang, E.-T.; Neoh, K.-G. Journal of the American Chemical Society 2006, 128, 8732.
(43)Forrest, S. R. Nature 2004, 428, 911.
(44)Peter Peumans, A. Y., Stephen R. Forrest J. Appl. Phys. 2003, 93, 3693.
(45)Sirringhaus, H. Advanced Materials 2005, 17, 2411.
(46)Yang, Y.; Ma, L.; Wu, J. MRS Bulletin 2004, 29, 833.
(47)Tseng, R. J.; Huang, J.; Ouyang, J.; Kaner, R. B.; Yang Nano Letters 2005, 5, 1077.
(48)Moller, S.; Perlov, C.; Jackson, W.; Taussig, C.; Forrest, S. R. Nature 2003, 426, 166.
(49)Gao, S.; Song, C.; Chen, C.; Zeng, F.; Pan, F. The Journal of Physical Chemistry C 2012, 116, 17955.
(50)Baeg, K. J.; Noh, Y. Y.; Ghim, J.; Kang, S. J.; Lee, H.; Kim, D. Y. Advanced Materials 2006, 18, 3179.
(51)Baeg, K.-J.; Noh, Y.-Y.; Ghim, J.; Lim, B.; Kim, D.-Y. Adv. Funct. Mater. 2008, 18, 3678.
(52)Di, C.-a.; Zhang, F.; Zhu, D. Advanced Materials 2013, 25, 313.
(53)Huang, C.; West, J. E.; Katz, H. E. Adv. Funct. Mater. 2007, 17, 142.
(54)Kim, S.-J.; Lee, J.-S. Nano Letters 2010, 10, 2884.
(55)Guo, Y.; Di, C.-a.; Ye, S.; Sun, X.; Zheng, J.; Wen, Y.; Wu, W.; Yu, G.; Liu, Y. Advanced Materials 2009, 21, 1954.
(56)Galeotti, F.; Mroz, W.; Bolognesi, A. Soft Matter 2011, 7, 3832.
(57)Yablonovitch, E. J. Opt. Soc. Am. B 1993, 10, 283.
(58)Masahiro Imada, S. N. A. C., Takashi Tokuda, Michio Murata, and Goro Sasaki Appl. Phys. Lett. 1999, 75, 316.
(59)Clarke, T. M.; Durrant, J. R. Chemical Reviews 2010, 110, 6736.
(60)Yabu, H.; Hirai, Y.; Kojima, M.; Shimomura, M. Chemistry of Materials 2009, 21, 1787.
(61)Govor, L. V.; Bashmakov, I. A.; Kiebooms, R.; Dyakonov, V.; Parisi, J. Advanced Materials 2001, 13, 588.
(62)Francois, O. P. a. B. Eur. Phys. J. B 1999, 225.
(63)Acatay, K.; Simsek, E.; Ow-Yang, C.; Menceloglu, Y. Z. Angewandte Chemie International Edition 2004, 43, 5210.
(64)Osada, Y., Matsuda, A. Nature 1995, 376, 219.
(65)de Boer, B.; Stalmach, U.; Nijland, H.; Hadziioannou, G. Advanced Materials 2000, 12, 1581.
(66)Bolognesi, A.; Galeotti, F.; Giovanella, U.; Bertini, F.; Yunus, S. Langmuir 2009, 25, 5333.
(67)Connal, L. A.; Vestberg, R.; Hawker, C. J.; Qiao, G. G. Adv. Funct. Mater. 2008, 18, 3706.
(68)Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V. Angewandte Chemie International Edition 2001, 40, 3428.
(69)Barner-Kowollik, C.; Dalton, H.; Davis, T. P.; Stenzel, M. H. Angewandte Chemie International Edition 2003, 42, 3664.
(70)Hsu, J.-C.; Sugiyama, K.; Chiu, Y.-C.; Hirao, A.; Chen, W.-C. Macromolecules 2010, 43, 7151.
(71)Karthaus, O.; Maruyama, N.; Cieren, X.; Shimomura, M.; Hasegawa, H.; Hashimoto, T. Langmuir 2000, 16, 6071.
(72)Ke, B.-B.; Wan, L.-S.; Zhang, W.-X.; Xu, Z.-K. Polymer 2010, 51, 2168.
(73)Qin, S.; Saget, J.; Pyun, J.; Jia, S.; Kowalewski, T. Macromolecules 2003, 36, 8969.
(74)Li, C.; Guo, R.; Jiang, X.; Hu, S.; Li, L.; Cao, X.; Yang, H.; Song, Y.; Ma, Y.; Jiang, L. Advanced Materials 2009, 21, 4254.
(75)Lim, H. S.; Baek, J. H.; Park, K.; Shin, H. S.; Kim, J.; Cho, J. H. Advanced Materials 2010, 22, 2138.
(76)Dorrer, C.; Ruhe, J. Soft Matter 2009, 5, 51.
(77)Kuo, C.-C.; Tung, Y.-C.; Lin, C.-H.; Chen, W.-C. Macromolecular Rapid Communications 2008, 29, n/a.
(78)Katz, H. E. Chemistry of Materials 2004, 16, 4748.
(79)Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; de Leeuw, D. M. Nat Mater 2005, 4, 243.
(80)R. C. G. Naber, J. M., M. Spijkman, K. Asadi, P. W. M. Blom, and D. M. de Leeuw Appl. Phys. Lett. 2007, 90, 113509.
(81)Wu, W.; Zhang, H.; Wang, Y.; Ye, S.; Guo, Y.; Di, C.; Yu, G.; Zhu, D.; Liu, Y. Adv. Funct. Mater. 2008, 18, 2593.
(82)Park, B.; Choi, S.; Graham, S.; Reichmanis, E. The Journal of Physical Chemistry C 2012, 116, 9390.
(83)Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. Electron Device Letters, IEEE 1997, 18, 606.
(84)Max Shtein, J. M., Jay B. Benziger, Stephen R. Forrest Appl. Phys. Lett. 2002, 81, 268.
(85)Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. Electron Device Letters, IEEE 1997, 18, 87.
(86)Yen-Yi, L.; Gundlach, D. I.; Nelson, S. F.; Jackson, T. N. Electron Devices, IEEE Transactions on 1997, 44, 1325.
(87)Max Shtein, H. F. G., Jay B. Benziger, Stephen R. Forrest J. Appl. Phys. 2001, 89, 1470.
(88)Takashi Minakata, H. I., Masaru Ozaki, Kentaro Saco J. Appl. Phys. 1992, 75, 5220.
(89)Verlaak, S.; Steudel, S.; Heremans, P.; Janssen, D.; Deleuze, M. S. Physical Review B 2003, 68, 195409.
(90)Yang, H.; Shin, T. J.; Ling, M.-M.; Cho, K.; Ryu, C. Y.; Bao, Z. Journal of the American Chemical Society 2005, 127, 11542.
(91)Facchetti, A.; Yoon, M. H.; Marks, T. J. Advanced Materials 2005, 17, 1705.
(92)Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Chemistry of Materials 2004, 16, 4543.
(93)Kobayashi, S.; Nishikawa, T.; Takenobu, T.; Mori, S.; Shimoda, T.; Mitani, T.; Shimotani, H.; Yoshimoto, N.; Ogawa, S.; Iwasa, Y. Nat Mater 2004, 3, 317.
(94)J. Takeya, T. N., T. Takenobu, S. Kobayashi, Y. Iwasa Appl. Phys. Lett. 2004, 85, 5078.
(95)Yang, H.; Kim, S. H.; Yang, L.; Yang, S. Y.; Park, C. E. Advanced Materials 2007, 19, 2868.
(96)Drummy, L. F.; Martin, D. C. Advanced Materials 2005, 17, 903.
(97)D. Holmes, S. K., A. J. Matzger, K. P. C. Vollhardt Chem. Eur. J. 2001, 7, 933.
(98)Mattheus, C. C.; Dros, A. B.; Baas, J.; Meetsma, A.; Boer, J. L. d.; Palstra, T. T. M. Acta Crystallographica Section C 2001, 57, 939.
(99)Wu, J. S.; Spence, J. C. H. Journal of Applied Crystallography 2004, 37, 78.
(100)Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Werzer, O.; Resel, R.; Smilgies, D.-M. Physical Review B 2007, 76, 235322.
(101)C. D. Dimitrakopoulos, A. R. B., and A. Pomp J. Appl. Phys. 1996, 80, 2501.
(102)Bouchoms, I. P. M.; Schoonveld, W. A.; Vrijmoeth, J.; Klapwijk, T. M. Synth. Met. 1999, 104, 175.
(103)Jentzsch, T.; Juepner, H. J.; Brzezinka, K. W.; Lau, A. Thin Solid Films 1998, 315, 273.
(104)D. Knipp, R. A. S., A. Volkel, and J. Ho J. Appl. Phys. 2003, 347.
(105)Takashi Minakata, H. I., Masaru Ozaki, and Kentaro Saco J. Appl. Phys. 1992, 72, 5220.
(106)Wei-Yang Chou, C.-W. K., Horng-Long Cheng, Yi-Ren Chen, Fu-Ching Tang Appl. Phys. Lett. 2006, 89, 112126.
(107)Lee, H. S.; Kim, D. H.; Cho, J. H.; Park, Y. D.; Kim, J. S.; Cho, K. Adv. Funct. Mater. 2006, 16, 1859.
(108)Daisuke Kumaki, S. A., Satoshi Shimono, Yoshiro Yamashita, Tokiyoshi Umeda Appl. Phys. Lett. 2007, 90, 053506.
(109)Grecu, S.; Roggenbuck, M.; Opitz, A.; Brutting, W. Organic Electronics 2006, 7, 276.
(110)Lee, H. S.; Kim, D. H.; Cho, J. H.; Hwang, M.; Jang, Y.; Cho, K. Journal of the American Chemical Society 2008, 130, 10556.
(111)Forrest, S. R.; Burrows, P. E. Supramolecular Science 1997, 4, 127.
(112)Wang, H.; Zhu, F.; Yang, J.; Geng, Y.; Yan, D. Advanced Materials 2007, 19, 2168.
(113)Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bre''das, J.-L.; Ewbank, P. C.; Mann, K. R. Chemistry of Materials 2004, 16, 4436.
(114)She, X.-J.; Liu, C.-H.; Sun, Q.-J.; Gao, X.; Wang, S.-D. Organic Electronics 2012, 13, 1908.
(115)Kang, S. J.; Park, Y. J.; Bae, I.; Kim, K. J.; Kim, H.-C.; Bauer, S.; Thomas, E. L.; Park, C. Adv. Funct. Mater. 2009, 19, 2812.
(116)Chou, Y.-H.; Lee, W.-Y.; Chen, W.-C. Adv. Funct. Mater. 2012, 22, 4352.
(117)Kakade, M. V.; Givens, S.; Gardner, K.; Lee, K. H.; Chase, D. B.; Rabolt, J. F. Journal of the American Chemical Society 2007, 129, 2777.
(118)Norris, I. D.; Shaker, M. M.; Ko, F. K.; MacDiarmid, A. G. Synth. Met. 2000, 114, 109.
(119)Pinto, N. J.; A. T. Johnson, J.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A. Appl. Phys. Lett. 2003, 83, 4244.
(120)Lee, S.; Moon, G. D.; Jeong, U. J. Mater. Chem. 2009, 19, 743.
(121)Jang, S. Y.; Seshadri, V.; Khil, M. S.; Kumar, A.; Marquez, M.; Mather, P. T.; Sotzing, G. A. Advanced Materials 2005, 17, 2177.
(122)Kuo, C.-C.; Tung, Y.-C.; Chen, W.-C. Macromolecular Rapid Communications 2010, 31, 65.
(123)Li, D.; Xia, Y. N. Advanced Materials 2004, 16, 1151.
(124)B. Stadlober, U. H., H. Maresch, and A. Haase Phys. Rev. B 2006, 74, 165302.
(125)Babel, A.; Li, D.; Xia, Y.; Jenekhe, S. A. Macromolecules 2005, 38, 4705.
(126)Chu, C. W.; Ouyang, J.; Tseng, J. H.; Yang, Y. Advanced Materials 2005, 17, 1440.
(127)Tanaka, K.; Matsuura, Y.; Nishio, S.; Yamabe, T. Synth. Met. 1994, 62, 97.
(128)Kim, D. H.; Lee, H. S.; Yang, H.; Yang, L.; Cho, K. Adv. Funct. Mater. 2008, 18, 1363.
(129)Baeg, K.-J.; Khim, D.; Kim, D.-Y.; Jung, S.-W.; Koo, J. B.; Noh, Y.-Y. Japanese Journal of Applied Physics 2010, 49, 05EB01.
(130)K. P. Pernstich, S. H., D. Oberhoff, C. Goldmann, D. J. Gundlach J. Appl. Phys. 2004, 96, 6431.
(131)Y.-Y. Lin, D. J. G., S. F. Nelson, and T. N. Jackson IEEE Trans. Electron Devices 1997, 18, 1325.
(132)M. Shtein, J. M., J. B. Benziger, and S. R. Forrest Appl. Phys. Lett. 2002, 81, 268.
(133)D. Knipp, R. A. S., A. Volkel, and J. Ho J. Appl. Phys. 2003, 93, 347.
(134)Volkel, A. R.; Street, R. A.; Knipp, D. Physical Review B 2002, 66, 195336.
(135)Jef Poortmans, V. A. John Wiley & Sons 2006.
(136)Sakai, T.; Jonas, J. J. Acta Metallurgica 1984, 32, 189.
(137)Sato, O. A. L. a. Y. J. Appl. Phys. 1998, 84, 6673.
(138)H. Kawarada, T. S., H. Nagasawa Appl. Phys. Lett. 1995, 66, 583.
(139)Suesada, T.; Nakamura, N.; Nagasawa, H.; Kawarada, H. Japanese Journal of Applied Physics 1995, 34, 4898.
(140)Fritz, S. E.; Martin, S. M.; Frisbie, C. D.; Ward, M. D.; Toney, M. F. Journal of the American Chemical Society 2004, 126, 4084.
(141)Howard E. Katz, X. M. H., Ananth Dodabalapur, and Rahul Sarpeshkar J. Appl. Phys. 2002, 91, 1572.
(142)Tsai, T.-D.; Chang, J.-W.; Wen, T.-C.; Guo, T.-F. Advanced Functional Materials 2013, n/a.
(143)Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y. Advanced Functional Materials 2010, 20, 224.
(144)Hong, X. M.; Katz, H. E.; Lovinger, A. J.; Wang, B.-C.; Raghavachari, K. Chemistry of Materials 2001, 13, 4686.
(145)Finazzo, C.; Calle, C.; Stoll, S.; Van Doorslaer, S.; Schweiger, A. Physical Chemistry Chemical Physics 2006, 8, 1942.
(146)Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A. Nature 2000, 404, 478.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top