(3.237.48.165) 您好!臺灣時間:2021/05/09 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧楙升
研究生(外文):Mao-Sheng Lu
論文名稱:偏氟乙烯和三氟乙烯的共聚物在場效電晶體型記憶體元件上之應用
論文名稱(外文):Application of Poly(vinylidenefluoride-co-trifluoroethylene) Copolymer on Field-Effect Transistor Type Memory Devices
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
口試委員:劉振良郭霽慶
口試委員(外文):Cheng-Liang LiuChi-Ching Kuo
口試日期:2013-06-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:125
中文關鍵詞:偏氟乙烯和三氟乙烯的共聚物電晶體型記憶體元件靜電紡絲
外文關鍵詞:P(VDF-TrFE)Transistor-type memory deviceselectrospinning technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於低溫的製程性、和軟性基材的相容性、溶液加工性、以及低成本的加工製程過程,有機(高分子)場效電晶體型記憶體元件近年來受到相當的矚目。一般而言,為了達到非揮發性記憶體元件特性,具有電荷儲存能力的介電層通常使用在記憶體元件的製程上。根據不同的操作機制,介電層的電荷儲存機制主要可細分為以下三類: (1) 電荷擷取記憶體,(2) 浮閘記憶體,以及(3) 鐵電記憶體。因此,在此碩士論文中,我們做了許多的努力在非揮發性記憶體元件的探討並著重於: (1)使用聚亞醯胺(PIs)做為高分子駐極體應於可撓性軟性基板上,和(2)單根鐵電性高分子奈米纖維應用於非揮發性電晶體型記憶體元件。

1.以聚亞醯胺駐極體為基礎之可撓性非揮發性記憶體元件於低電壓下操作(第二章): 在此章節,我們主要對以p-型 poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2) 為主動層的非揮發性記憶體元件進行探討。電荷擷取層主要是由聚醯亞胺材料(PIs)所組成,其分別是poly[2,5-bis(4-aminophenylenesulfanyl)selenophene- hexafluoro-isopropylidenediphthlimide] (PI(APSP-6FDA)) 和poly[2,5-bis(4-aminophenylenesulfanyl)thioophene-hexafluoroisopropylidenediphthalimide] (PI(APSP-6FDA))。通常,有機場效電晶體型的記憶體需要在高電壓下操作,因此為了解決這個問題,我們使用高介電常數的偏氟乙烯和三氟乙烯的共聚物 (P(VDF-TrFE))做為電荷阻漏層。在使用聚醯亞胺做為電荷擷取層後,此電晶體型的記憶體元件在低偏壓(-15V to 10 V)的範圍下,表現出良好的記憶體操作範圍(10.82 V for PI(APSP-6FDA), 和 8.63 V for PI(APST-6FDA))。除此之外,長期穩定性(~104 s),多次的切換操作性(高達100次),以及良好的可撓性(可在曲率半徑5mm下進行1000次的撓曲),展現了聚醯亞胺材料應用於非揮發性記憶體元件上的潛力。

2. 以偏氟乙烯和三氟乙烯的共聚物P(VDF-TrFE)之靜電紡絲應用於非揮發性鐵電性場效電晶體型元件(第三章): 在此章節中,我們提出了一個新穎的場效電晶體型元件。元件主要由單根的偏氟乙烯和三氟乙烯的共聚物P(VDF-TrFE)的靜電紡絲和高載子遷移速度的五環素(pentacene)所組成。在電性的表現中,此記憶體元件表現出最佳的記憶操作範圍(17.91 V)並且提升電動的遷移率至0.205 cm2V-1s-1. 除此之外,對於記憶體元件之數據儲存的能力以及操作的續航力也有仔細的討論。我們發現到使用單根P(VDF-TrFE)電紡絲做為介電層材料之非揮發性鐵電記憶體元件表現出了長時間的穩定性(~2 × 104 s)並且高導態/低導態之訊號比可維持在103,和多次的切換操作性(高達100次)。綜合以上結果,此實驗結果展現了未來利用靜電紡絲應用於記憶體元件的潛力。


Organic (or polymeric) field-effect transistor-type (OFET) memory devices have gained much attention over the past few years owing to their attractive features such as low processing temperature, compatible with flexible substrate, solution processibility, and low manufacturing cost. Generally, a gate dielectric layer with charge trapping/detrapping capabilities is often introduced to achieve nonvolatility of OFET devices. According to different operational mechanisms, the charge storage capability of the gate dielectric on OFET-based devices can be classified into three categories, including (1) charge-trapping memory, (2) floating gate memory, and (3) ferroelectric memory. In this thesis, a lot of efforts have been paid on the exploration of the nonvolatile OFET memory device based on (1) the incorporation of polyimide (PI) as polymer electrets on flexible substrates and (2) the utilization of single-aligned ferroelectric electrospun nanofiber as gate dielectric.

1. Low Voltage Operation of Flexible Nonvolatile Memory Devices Based on PI Electrets (Chapter 2): A p-type poly(9,9-dioctylfluorene-alt-bithiophene) (F8T2)-based nonvolatile OFET memory device was investigated. Two polyimides (PIs), which are poly[2,5-bis(4-aminophenylenesulfanyl)selenophene- hexafluoro-isopropylidenediphthlimide] (PI(APSP-6FDA)) and poly[2,5-bis(4-aminophenylenesulfanyl)thioophene-hexafluoroisopropylidenediphthalimide] (PI(APSP-6FDA)) were used as polymer electrets, respectively. Moreover, to address the issue of a relatively high operation voltage of the OFET memory device, a high-k poly[(vinylidenefluoride-co-trifluoroethylene] P(VDF-TrFE) polymer as blocking layer was used. The OFET memory device exhibited a promising memory window of 10.82 V for PI(APSP-6FDA) and 8.63 V for PI (APST-6FDA), respectively at a sweep ranging from -15 V to 10 V. Furthermore, a long-term operational stability up to 104 s, multiple switching operation (~100 cycles), and excellent bending durability (1000 times with curvature radius at 5 mm) further made the device a promising candidate for the application of nonvolatile memory devices.

2. Nonvolatile Ferroelectric Field-Effect Transistor (FeFET) Memory Devices Based on Poly[(vinylidenefluoride-co-trifluoroethylene] P(VDF-TrFE) Electrospun Nanofibers (Chapter 3): A novel FeFET memory device consisting of aligned P(VDF-TrFE) electrospun fiber as gate dielectric and a relatively high mobility pentacene as semiconductor was explored. Maximum memory window of the device was found to be 17.91 V with enhancement in hole mobility up to 0.205 cm2V-1s-1. Moreover, the data retained capability and the operation endurance were clearly examined as well. A promising data storage capability for 2 × 104 s with the ON/OFF ratio kept at round 103 and multiple switching operation stability up to 100 cycles revealed that the device may have a potential for the application of nonvolatile memory devices.


口試委員審定書 i
誌謝 ii
Abstract iv
中文摘要 vii
Contents ix
Table Captions xiii
Figure Captions xiv
Chapter 1 Introduction 1
1.1 Overview 1
1.1.1 Brief Introduction of Different Types of Memory Electronics 1
1.1.2 Introduction of Organic Resistive-Type Memory Device 2
1.1.3 Introduction of Organic Capacitor-Type Memory Device 6
1.1.4 Introduction of Polymer Field-Effect Transistor (FET) Memory Device 9
1.2 Introduction of OFET Memory Device Based on Different Mechanisms… 17
1.2.1 Polymer Electrets as Charge Storage in Transistor-Type Memory Devices 17
1.2.2 Organic Nano-Floating Gate Transistor-Type Memory Devices 20
1.2.3 Polymer Ferroelectric Transistor-Type Memory Devices 26
1.3 Introduction to Electrospinning Technique 34
1.3.1 Applications of Electrospun Nanofibers 36
1.4 Research Objective 38
1.5. Reference 40
Chapter 2 Low Voltage Operation of Nonvolatile Flexible OFET Memory Device Using High-k P(VDF-TrFE) Copolymer as Gate Dielectric and Thiophene and Selenophene Polyimides as Polymer Electrets 45
2.1 Introduction 45
2.2 Experimental Section 49
2.2.1 Materials 49
2.2.2 Device Fabrication 49
2.2.3 Characterizations 50
2.3 Results and Discussion 52
2.3.1 Device configuration 52
2.3.2 Phase transition in 77/23 P(VDF-TrFE) 53
2.3.3 GIWAXD analysis 55
2.3.4 Annealing effect of P(VDF-TrFE) dielectric layer on OFET performance 57
2.3.5 OFET performance and memory characteristics 60
2.3.6 Capacitance and thickness measurement 69
2.3.7 Investigation of data retained capability and repeated operation endurance 75
2.3.8 Bending test for P(VDF-TrFE) thin film at curvature 5 mm 78
2.3.9 Transistor memories under various bending conditions 81
2.4 Conclusion 88
2.5 Reference 88
Chapter 3 High Performance FeFET Nonvolatile Memory Device Based on Electrospun P(VDF-TrFE) Nanofibers and High-Mobility Pentacene 91
3.1 Introduction 91
3.2 Experimental Section 96
3.2.1 Materials 96
3.2.2 Electrospinning Process 96
3.2.3 Device Fabrication 97
3.2.4 Characterizations 98
3.3 Results and Discussion 99
3.3.1 Device configuration 99
3.3.2 Grazing incident wide-angle x-ray diffraction (GIWAXD) analysis 101
3.3.3 Morphology of electrospun P(VDF-TrFE) nanofibers 105
3.3.4 Fiber-based FeFET performance and memory characteristics 107
3.3.5 Examination of data retention and electrical fatigue characteristics 113
3.3.6 Presumable operation mechanism 115
3.4 Conclusion 118
3.5 Future work 119
3.6 Reference 120
Chapter 4 Future prospect 123
Conclusion and future work 123


Chapter 1 Reference
[1]Q.-D. Ling, Y. Song, S.-L. Lim, E. Y.-H. Teo, Y.-P. Tan, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang, K.-G. Neoh, Angew. Chem. Int. Ed. 2006, 45, 2947.
[2]P. C. Moller S, Jackson W, Taussig C, Forrest SR., Nature 2003, 426.
[3]C. C. Ouyang, C.R. J. Szmanda, L.P. Ma , Y. Yang, Nat Mater 2004, 3, 918.
[4]Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
[5]J. C. Scott, Science 2004, 304, 62.
[6]R. F. Service, Science 2001, 293, 1746.
[7]L. P. Ma, J. H. Wu, Y. Yang, Materials Research Society Bulletin 2004, 29, 833.
[8]P. Heremans, G. H. Gelinck, R. Muller, K.-J. Baeg, D.-Y. Kim, Y.-Y. Noh, Chem. Mat. 2010, 23, 341.
[9]S. Song, B. Cho, T. W. Kim, Y. Ji, M. Jo, G. Wang, M. Choe, Y. H. Kahng, H. Hwang, T. Lee, Adv. Mater. 2010, 22, 5048.
[10]J. C. Scott, L. D. Bozano, Adv. Mater. 2007, 19, 1452.
[11]R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Adv. Mater. 2010, 22, 933.
[12]T. Furukawa, Phase Transitions 1989, 18, 143.
[13]K. Tashiro, M. Kobayashi, Phase Transitions 1989, 18, 213.
[14]J.F.Scott, Ferroelectric memories Springer-Verlag, New York 2000.
[15]P. Youn Jung, B. In-sung, K. Seok Ju, C. Jiyoun, P. Cheolmin, Dielectrics and Electrical Insulation, IEEE Transactions on 2010, 17, 1135.
[16]R. Su, J.-K. Tseng, M.-S. Lu, M. Lin, Q. Fu, L. Zhu, Polymer 2012, 53, 728.
[17]R. C. G. Naber, P. W. M. Blom, A. W. Marsman, and D. M. de Leeuw Appl. Phys. Lett. 2004, 85, 2032.
[18]H.S Xu, J.H. Zhong, X.B. Liu, J.H. Chen, D. Shen, Appl. Phys. Lett. 2007, 90, 092903.
[19]A.K. Tagantsev, I. Stolichnov, E.L. Colla, N.Setter, J. Appl. Phys. 2001, 90, 1387.
[20]W. L. Leong, N. Mathews, B. Tan, S. Vaidyanathan, F. Dotz, S. Mhaisalkar, J. Mater. Chem. 2011, 21, 5203.
[21]B. M. Dhar, R. Ozgun, T. Dawidczyk, A. Andreou, H. E. Katz, Mater. Sci. Eng. R: Rep. 2011, 72, 49.
[22]C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bredas, P. C. Ewbank, K. R. Mann, Chem. Mat. 2004, 16, 4436.
[23]S.-J. Kim, J.-S. Lee, Nano Lett 2010, 10, 2884.
[24]S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed, New York 2007.
[25]Y.-H. Chou, W.-Y. Lee, W.-C. Chen, Adv. Funct.Mater. 2012, 22, 4352.
[26]A. Facchetti, Mater. Today 2007, 10, 28.
[27]C.R. Kagan, P. Andry , Thin-film transistors, 2003.
[28]K.-J. Baeg, D.-Y. Kim, S.-W. Jung, J. B. Koo, Y.-Y. Noh, Jpn. J. Appl. Phys. 2010, 49, 05EB01
[29]M. G. D. Broadhurst, G. T.; Gross, B.; Mascarenhas, S.; Sessler, G. M.; van Turnhout, J. West, J. E., Topics in Applied Physics:Electrets, Vol. 33, Springer-Verlag, Berlin 1980.
[30]H. E. H. Katz, X. M.; Dodabalapur, A.; Sarpeshkar, R., J. Appl.Phys 2002, 91, 1572.
[31]D. B. M. Debucquoy, J. Genoe, G. H. Gelinck, and P. Heremans, Appl. Phys. Lett. 2009, 95, 103311.
[32]K.-J. Baeg, Y.-Y. Noh, J. Ghim, B. Lim, D.-Y. Kim, Adv. Funct.Mater. 2008, 18, 3678.
[33]E. I. Mal''tsev, M. A. Brusentseva, D. A. Lypenko, V. I. Berendyaev, V. A. Kolesnikov, B. V. Kotov, A. V. Vannikov, Polymer. Adv. Tech. 2000, 11, 325.
[34]W.-Y. Lee, T. Kurosawa, S.-T. Lin, T. Higashihara, M. Ueda, W.-C. Chen, Chem. Mat. 2011, 23, 4487.
[35]Q.-D. Ling, F.-C. Chang, Y. Song, C.-X. Zhu, D.-J. Liaw, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, J. AM. CHEM. SOC. 2006, 128, 8732.
[36]C.-L. Liu, T. Kurosawa, A.-D. Yu, T. Higashihara, M. Ueda, W.-C. Chen, The Journal of Physical Chemistry C 2011, 115, 5930.
[37]Y.-L. Liu, K.-L. Wang, G.-S. Huang, C.-X. Zhu, E.-S. Tok, K.-G. Neoh, E.-T. Kang, Chem. Mat. 2009, 21, 3391.
[38]G. Tian, D. Wu, S. Qi, Z. Wu, X. Wang, Macromol. Rapid Commun. 2011, 32, 384.
[39]K.-L. Wang, Y.-L. Liu, I. H. Shih, K.-G. Neoh, E.-T. Kang, J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 5790.
[40]N.-H. You, C.-C. Chueh, C.-L. Liu, M. Ueda, W.-C. Chen, Macromolecules 2009, 42, 4456.
[41]D. Muhlbacher, C. J. Brabec, N. S. Sariciftci, B. V. Kotov, V. I. Berendyaev, B. M. Rumyantsev, J. C. Hummelen, Synth. Met. 2001, 121, 1609.
[42]S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, J. C. Kim, W. Kwon, K. Kim, M.-J. Kim, O. Kim, M. Ree, J. Mater. Chem. 2009, 19, 2207.
[43]S. G. Hahm, S. Choi, S.-H. Hong, T. J. Lee, S. Park, D. M. Kim, W.-S. Kwon, K. Kim, O. Kim, M. Ree, Adv. Funct.Mater. 2008, 18, 3276.
[44]K. Kim, S. Park, S. G. Hahm, T. J. Lee, D. M. Kim, J. C. Kim, W. Kwon, Y.-G. Ko, M. Ree, J. Phys. Chem. B 2009, 113, 9143.
[45]Y.-L. L. Liu, Q.-D.; Kang, E.-T.; Neoh, K.-G.; Liaw, D.-J.;, K.-L. L. Wang, W.-T.; Zhu, C.-X.; Chan, D. S.-H. , J. Appl. Phys. 2009, 105, 044501.
[46]Y.-H. Chou, N.-H. You, T. Kurosawa, W.-Y. Lee, T. Higashihara, M. Ueda, W.-C. Chen, Macromolecules 2012, 45, 6946.
[47]Y. Zhou, S.-T. Han, Z.-X. Xu, V. A. L. Roy, Nanoscale 2013, 5, 1972.
[48]D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 2009, 110, 389.
[49]K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, D.-Y. Kim, Adv. Funct.Mater. 2010, 20, 224.
[50]C.-A. Di, G. Yu, Y. Liu, Y. Guo, Y. Wang, W. Wu, D. Zhu, Adv. Mater. 2008, 20, 1286.
[51]M. D. Seager CH, Warren WL, Tuttle BA, Appl. Phys.Lett. 1996, 68.
[52]T. P. Ma., J. P. Han , IEEE Electron Device Lett 2002, 23.
[53]N. RCG, Vol. PhD University of Groningen, Nijenborgh, The Netherlands 2006.
[54]H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Bottger, R. Waser, Microelectronic Engineering 2005, 80, 296.
[55]H.S.Nalwa, Ferroelectric Polymers:Chemistry, Physics,and Applications, Marcel Dekker, New York 1995.
[56]R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. de Leeuw, Nat Mater 2005, 4, 243.
[57]C. A. Nguyen, S. G. Mhaisalkar, J. Ma, P. S. Lee, Org. Electron. 2008, 9, 1087.
[58]J. Chang, C. H. Shin, Y. J. Park, S. J. Kang, H. J. Jeong, K. J. Kim, C. J. Hawker, T. P. Russell, D. Y. Ryu, C. Park, Org. Electron. 2009, 10, 849.
[59]S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H.-C. Kim, S. Bauer, E. L. Thomas, C. Park, Adv. Funct.Mater. 2009, 19, 2812.
[60]R. C. G. Naber, M. Mulder, B. de Boer, P. W. M. Blom, D. M. de Leeuw, Org. Electron. 2006, 7, 132.
[61]S. K. Hwang, I. Bae, R. H. Kim, C. Park, Adv. Mater. 2012, 24, 5910.
[62]R. C. Naber, B. de B, P. W. M. Blom, and D. M. de Leeuw, Appl. Phys. Lett. 2005, 87, 203509.
[63]S. Fujisaki, H. Ishiwara, Y. Fujisaki, Appl. Phys. Lett. 2007, 90, 162902
[64]S.-W. Jung, J.-K. Lee, Y. S. Kim, S.-M. Yoon, I.-K. You, B.-G. Yu, Y.-Y. Noh, Curr. Appl. Phys. 2010, 10, e58.
[65]P. S. Jo, J. Sung, C. Park, E. Kim, D. Y. Ryu, S. Pyo, H.-C. Kim, J. M. Hong, Adv. Funct.Mater. 2008, 18, 1202.
[66]A. Greiner, J. H. Wendorff, Angew. Chem. Int. Ed. 2007, 46, 5670.
[67]A. K. Moghe, B. S. Gupta, Polymer Reviews 2008, 48, 353.
[68]M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, J. H. Wendorff, Adv. Mater. 2001, 13, 70.
[69]C.L.Casper, J.S.Stephens, N. G. Tassi, D. B. Chase, J. F. Rabolt, Macromolecules 2003, 37, 573.
[70]H.-C. Chang, C.-L. Liu, W.-C. Chen, Adv. Funct.Mater. 2013, n/a.

Chapter 2 Reference
[1]Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
[2]B. Cho, S. Song, Y. Ji, T.-W. Kim, T. Lee, Adv. Funct.Mater. 2011, 21, 2806.
[3]Y. Guo, G. Yu, Y. Liu, Adv. Mater. 2010, 22, 4427.
[4]T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science 2009, 326, 1516.
[5]Y. Yang, J. Ouyang, L. Ma, R. J. H. Tseng, C. W. Chu, Adv. Funct.Mater. 2006, 16, 1001.
[6]D. K. Kang-Jun Baeg, Dong-Yu Kim, Soon-Won Jung, Jae Bon Koo, and Yong-Young Noh, Jpn. J. Appl. Phys. 2010, 49, 05EB01.
[7]K.-J. Baeg, Y.-Y. Noh, H. Sirringhaus, D.-Y. Kim, Adv. Funct.Mater. 2010, 20, 224.
[8]S.-T. Han, Y. Zhou, Z.-X. Xu, V. A. L. Roy, T. F. Hung, J. Mater. Chem. 2011, 21, 14575.
[9]S. J. Kang, I. Bae, Y. J. Shin, Y. J. Park, J. Huh, S.-M. Park, H.-C. Kim, C. Park, Nano Lett 2010, 11, 138.
[10]K.-J. Baeg, D. Khim, J. Kim, B.-D. Yang, M. Kang, S.-W. Jung, I.-K. You, D.-Y. Kim, Y.-Y. Noh, Adv. Funct.Mater. 2012, 22, 2915.
[11]K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, D. Y. Kim, Adv. Mater. 2006, 18, 3179.
[12]K.-J. Baeg, Y.-Y. Noh, J. Ghim, B. Lim, D.-Y. Kim, Adv. Funct.Mater. 2008, 18, 3678.
[13]C.-L. Liu, W.-C. Chen, Polymer Chemistry 2011, 2, 2169.
[14]Y.-H. Chou, N.-H. You, T. Kurosawa, W.-Y. Lee, T. Higashihara, M. Ueda, W.-C. Chen, Macromolecules 2012, 45, 6946.
[15]P. Y. Jung, I. S. Bae, S. J. Kang, J.Y. Chang, C.M. Park, Dielectrics and Electrical Insulation, IEEE Transactions on 2010, 17, 1135.
[16]S. Fujisaki, H. Ishiwara, Y. Fujisaki, Appl. Phys. Lett. 2007, 90, 162902
[17]D. B. M. Debucquoy, J. Genoe, G. H. Gelinck, P. Heremans, Appl. Phys. Lett. 2009, 95, 103311.
[18]T. Furukawa, A. J. Lovinger, G. T. Davis, M. G. Broadhurst, Macromolecules 1983, 16, 1885.
[19]K. Tashiro, M. Kobayashi, Phase Transitions 1989, 18, 213.
[20]I. L. Guy, J. Unsworth, J. Appl. Phys. 1987, 61, 5374.
[21]J. S. Lee, A. A. Prabu, K. J. Kim, Polymer 2010, 51, 6319.
[22]Y. S. Choi, J. Sung, S. J. Kang, S. H. Cho, I. Hwang, S. K. Hwang, J. Huh, H.-C. Kim, S. Bauer, C. Park, Adv. Funct.Mater. 2013, 23, 1120.
[23]R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Adv. Mater. 2010, 22, 933.
[24]V. S. Bystrov, E.V. Paramonova, Y. Dekhtyar, A. Katashev, N. Polyaka, A.V. Bystrova, A.V. Sapronova, V. M. Fridkin, H. Kliem, A.L. Kholkin, Mathematical Biology & Bioinformatics 2011, 6, t14.
[25]B. M. Dhar, R. Ozgun, T. Dawidczyk, A. Andreou, H. E. Katz, Mater. Sci. Eng. R: Rep. 2011, 72, 49.
[26]J.-H. B. W.-H. Kim, M.-H. Kim, C.-M. Keum, J.H. Park, J. Appl. Phys 2011, 109, 024508.
[27]C. A. Nguyen, S. G. Mhaisalkar, J. Ma, P. S. Lee, Org. Electron. 2008, 9, 1087.
[28]L. O. Faria, R. L. Moreira, J. Polym. Sci. Part B: Polym. Phys. 2000, 38, 34.
[29]H. Xu, G. Shanthi, V. Bharti, Q. M. Zhang, T. Ramotowski, Macromolecules 2000, 33, 4125.
[30]R. Su, J.-K. Tseng, M.-S. Lu, M. Lin, Q. Fu, L. Zhu, Polymer 2012, 53, 728.
[31]Y. J. Park, S. J. Kang, C. Park, B. Lotz, A. Thierry, K. J. Kim, J. Huh, Macromolecules 2007, 41, 109.
[32]K. Tashiro, M. Kobayashi, H. Tadokoro, Macromolecules 1981, 14, 1757.

Chapter 3 Reference
[1]K. Asadi, D. M. de Leeuw, B. de Boer, P. W. M. Blom, Nat Mater 2008, 7, 547.
[2]S. J. Kang, I. Bae, Y. J. Park, T. H. Park, J. Sung, S. C. Yoon, K. H. Kim, D. H. Choi, C. Park, Adv. Funct.Mater. 2009, 19, 1609.
[3]R. C. G. Naber, C. Tanase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, D. M. de Leeuw, Nat Mater 2005, 4, 243.
[4]J. I. Sohn, S. S. Choi, S. M. Morris, J. S. Bendall, H. J. Coles, W.-K. Hong, G. Jo, T. Lee, M. E. Welland, Nano Lett 2010, 10, 4316.
[5]J. Y. Son, S. Ryu, Y.-C. Park, Y.-T. Lim, Y.-S. Shin, Y.-H. Shin, H. M. Jang, ACS Nano 2010, 4, 7315.
[6]T. Furukawa, T. Nakajima, Y. Takahashi, Dielectrics and Electrical Insulation, IEEE Transactions on 2006, 13, 1120.
[7]C. A. Nguyen, P. S. Lee, N. Ng, H. Su, S. G. Mhaisalkar, J. Ma, F.Y.C. Boey, Appl. Phys. Lett. 2007, 91, 042909.
[8]K. N. Narayanan Unni, R. d. Bettignies, D.-S. Sylvie, J.-M. Nunzi, Appl. Phys. Lett. 2004, 85, 1823.
[9]C. A. Nguyen, P. S. Lee, S. G. Mhaisalkar, Org. Electron. 2007, 8, 415.
[10]R. C. Naber, B. de Boer, P. W. M. Blom, D. M. de Leeuw, Appl. Phys. Lett. 2005, 87, 203509
[11]R. C. G. Naber, K. Asadi, P. W. M. Blom, D. M. de Leeuw, B. de Boer, Adv. Mater. 2010, 22, 933.
[12]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Nature 1999, 401, 685.
[13]R. C. G. Naber, M. Mulder, B. de Boer, P. W. M. Blom, D. M. de Leeuw, Org. Electron. 2006, 7, 132.
[14]H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen, D. M. de Leeuw, Nature 2001, 414, 599.
[15]K. S. Park, B. Cho, J. Baek, J. K. Hwang, H. Lee, M. M. Sung, Adv. Funct.Mater. 2013, n/a.
[16]R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, Yang, Nano Lett 2005, 5, 1077.
[17]S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Adv. Funct.Mater. 2007, 17, 1377.
[18]Y.-H. Chou, W.-Y. Lee, W.-C. Chen, Adv. Funct.Mater. 2012, 22, 4352.
[19]H.-C. Chang, C.-L. Liu, W.-C. Chen, Adv. Funct.Mater. 2013, n/a.
[20]S. Cavaliere, S. Subianto, I. Savych, D. J. Jones, J. Roziere, Energy & Environmental Science 2011, 4, 4761.
[21]J.-Y. Chen, C.-C. Kuo, C.-S. Lai, W.-C. Chen, H.-L. Chen, Macromolecules 2011, 44, 2883.
[22]A. Greiner, J. H. Wendorff, Angew. Chem. Int. Ed. 2007, 46, 5670.
[23]J. S. Lee, A.A. Prabu, K. J. Kim, Polymer. 2010, 51, 6319.
[24] I. L. Guy, J. Unsworth, J. Appl. Phys. 1987, 61, 5374.
[25] Z. Hu, M. Tian, B. Nysten, A. M. Jonas, Nat Mater 2009, 8, 62.
[26]D. Mandal, S. Yoon, K. J. Kim, Macromol. Rapid Commun. 2011, 32, 831.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔