(3.238.99.243) 您好!臺灣時間:2021/05/15 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳韋志
研究生(外文):Wei-Chih Chen
論文名稱:以格林鈉反應合成全共軛雙嵌段共聚高分子PPP-P3EHT及其共結晶行為、自組裝結構與光電性質研究
論文名稱(外文):Synthesis of All-Conjugated Block Copolymers PPP-P3EHT by Using Grignard Metathesis and Study of Co-Crystallization, Self-Assembly and Optoelectronic Properties
指導教授:戴子安戴子安引用關係
指導教授(外文):Chi-An Dai
口試委員:王立義程耀毅楊長謀陳信龍
口試委員(外文):Lee-Yih WangYao-Yi ChengArnold C.M.YangHSIN-LUNG CHEN
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:123
中文關鍵詞:雙共軛雙嵌段共聚高分子共晶自組裝結構
外文關鍵詞:all-conjugated rod-rod copolymercocrystallineself-assembly structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:114
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
含有共軛鏈段之團聯共聚高分子,由於其擁有結晶行為與熱穩定性和自組裝行為上的特點,並擁有光電特性,在近年來越來越受到學術甚至是產業界上的注意。本論文利用格林納聚合法合成一系列的雙共軛鏈段之團聯共聚高分子 PPP-P3EHT 並控制PPP的分子量使之固定在一定鏈段,進而變動P3EHT的分子量以便於詳細的探討其自組裝與結晶行為。在以分子相似度及結晶動力學的平衡為考量上,可結晶的雙共軛鏈段之團聯共聚高分子其不相似的兩個區段產生共晶會對其相圖有極大的影響。在本論文中我們利用廣角X光繞射儀(WAXS)、小角度X光繞射儀(SAXS)、 示差掃描熱量分析儀(DSC)及穿透式電子顯微鏡(TEM)所得到的結果來探討一系列的雙共軛鏈段之團聯共聚高分子 PPP-P3EHT其多種結晶性質相互作用所導致的自組裝行為。儘管 PPP 及P3EHT 這兩個鏈段在主鏈及支鏈的結構上相差極大, PPP 及 P3EHT 這兩個鏈段還是能夠形成交互排列的共晶結構,並在支鏈相互穿插形成一個單一相。共晶結構的形成是由於 PPP 鏈段較大的結晶熱焓,使得 PPP 鏈段在結晶時能夠引入結晶速度較慢、較差的 P3EHT 鏈段,並藉此形成共晶。雙共軛鏈段之團聯共聚高分子 PPP-P3EHT之結晶結構隨著嵌段比例之不同而改變,當P3EHT比例逐漸上升時,依序能夠觀察到 PPP 結晶為主的奈米線、兩鏈段互溶的共晶結構、由共晶結構及 P3EHT 結晶所組成的層狀結構、兩鏈段微觀相分離所導致的層狀結構以及最後P3EHT結晶所產生的奈米線。值得一提的是,共晶及 P3EHT 結晶所組成的層狀結構是由自結晶與共晶所競爭、平衡而導致的結果。此實驗結果顯現出不同主鏈雙共軛鏈段之團聯共聚高分子在共晶行為上的本質,並對自組裝行為、甚至對未來的光電性質應用,提供新穎的設計與理念。

In this study, we synthesized a series of monodisperse all-conjugated BCPs of poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) with different block ratios by varying P3EHT to a nealy fixed PPP molecular weight to detail their self-assembly and crystallization behavior. Gel permeation chromatographer and NMR spectra were used to characterize the block copolymers.
Wherein driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we investigated this multi-crystallization effect in a series of all-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs by using a combination of wide-angle and small-angle X-ray scattering, differential scanning calorimetry, and transmission electron microscopy measurements. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain that comprises of alternating PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. The formation of the co-crystals (P+E) was driven by a large crystallization enthalpy of PPP that allows to incorporating less crystallizable P3EHT into the domain as PPP crystallizes. By varying P3EHT fraction in the copolymers, PPP-P3EHTs form hierarchical superstructures including nanofibrils with predominately PPP crystals, co-crystalline P+E nanofibrils, a bilayer lamellar structure composed of the co-crystalline P+E layer and a pure P3EHT crystalline layer, a microphase-separated bilayer lamellar structure composed of fully PPP and P3EHT crystalline domains, and finally, nanofibrils with mainly P3EHT crystals. In particular, the presence of the co-crystalline lamellar structure is the manifestation of interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.


致謝 I
摘要 II
Abstract III
Content V
Figure Caption VIII
Table Caption XV
Chapter 1 Introduction 1
Chapter 2 Literature Review 7
2-1 Self-assembly of block copolymers 7
2-2 Self-assembly of π-conjugated block copolymers 14
2-3 Self-assembly of P3HT-containing block copolymers 17
2-4 Self-assembly of all-conjugated block copolymers 19
2-5 In-Situ Synthesis of Polymer/Semiconductor Nanohybrid Using Block Copolymers as Structural Template 22
2-6 Grignard Metathesis, GRIM 26
2-7 Cocrystallization behaviors in all conjugated polymers 29
Chapter 3 Synthesis, Characterizations, and Optical Properties of poly(2,5-dihexyloxy-p-phenylene)-b- poly(3-(2’-ethyl)-hexylthiophene) Block Copolymers 32
3-1 Introduction 32
3-2 Experimental Section 33
3-2-1 Materials 33
3-2-2 Equipments 35
3-2-3 Synthesis of 2-Bromo-3-(2-ethylhexyl)thiophene 36
3-2-4 Synthesis of 2-bromo-3-(2-ethylhexyl)-5-iodothiophene 37
3-2-5 Synthesis of 1,4-dibromo-2,5-dihexyloxybenzene 38
3-2-5 Synthesis of PPP-P3EHT block copolymers 40
3-3 Results and Characterization 43
3-3-1 1H Nuclear Magnetic Resonance (1H NMR) 43
3-3-2 Gel Permeation Chromatography (GPC) 47
3-3-3 1H Nuclear Magnetic Resonance (1H NMR) of polymers 57
3-3-4 The UV-Vis optical properties of PPP-b-P3EHT 59
3-4 Conclusion 61
Chapter 4 Self-Assembly and Co-Crystallization Phase Transformations of All-Conjugated Block Copolymers poly(2,5-dihexyloxy-p-phenylene)-b- poly(3-(2’-ethyl)-hexylthiophene) with Different Main-Chain Moieties 62
4-1 Introduction 62
4-2 Experimental Section 64
4-2-1 Materials 64
4-2-2 General aspects on the sample preparations 65
4-2-3 Equipments 65
4-3 Results and Discussion 69
4-3-1 Crystalline Behaviors 69
4-3-2 Thermal Analysis 82
4-3-3 SAXS analyses 87
4-3-4 TEM analyses of PPP-b-P3EHT morphology 90
4-4 Conclusion 101
Chapter 5 Reference 103
APPENDIX 110


1.Guenes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324-1338.
2.Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Adv. Mater. 2007, 19, 1551-1566.
3.Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556-4573.
4.Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99-117.
5.Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926-952.
6.Osaheni, J. A.; Jenekhe, S. A. J. Am. Chem. Soc. 1995, 117, 7389-7398.
7.Donley, C. L.; Zaumseil, J.; Andreasen, J. W.; Nielsen, M. M.; Sirringhaus, H.; Friend, R. H.; Kim, J. S. J. Am. Chem. Soc. 2005, 127, 12890-12899.
8.Ho, V.; Boudouris, B. W.; Segalman, R. A. Macromolecules 2010, 43, 7895-7899.
9.Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J. Nano Lett. 2005, 5, 579-583.
10.Tao, Y.; McCulloch, B.; Kim, S.; Segalman, R. A. Soft Matter 2009, 5, 4219-4230.
11.Lee, Y. H.; Chang, C. J.; Kao, C. J.; Dai, C. A. Langmuir 2010, 26, 4196-4206.
12.Ho, V.; Boudouris, B. W.; McCulloch, B. L.; Shuttle, C. G.; Burkhardt, M.; Chabinyc, M. L.; Segalman, R. A. J. Am. Chem. Soc. 2011, 133, 9270-9273.
13.Lee, Y.-H.; Yen, W.-C.; Su, W.-F.; Dai, C.-A. Soft Matter 2011, 7, 10429-10442.
14.Chang, C.-J.; Lee, Y.-H.; Chen, H.-L.; Chiang, C.-H.; Hsu, H.-F.; Ho, C.-C.; Su, W.-F.; Dai, C.-A. Soft Matter 2011, 7, 10951-10960.
15.Patel, S. N.; Javier, A. E.; Beers, K. M.; Pople, J. A.; Ho, V.; Segalman, R. A.; Balsara, N. P. Nano Lett 2012, 12, 4901-4906.
16.Lai, C.-S.; Ho, C.-C.; Chen, H.-L.; Su, W.-F. Macromolecules 2013, 46, 2249-2257.
17.Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. J. Am. Chem. Soc. 2007, 129, 11036-11038.
18.Liu, J. S.; Sheina, E.; Kowalewski, T.; McCullough, R. D. Angew. Chem. Int. Ed. 2002, 41, 329-332.
19.Kamps, A. C.; Fryd, M.; Park, S.-J. Acs Nano 2012, 6, 2844-2852.
20.Ho, C.-C.; Lee, Y.-H.; Dai, C.-A.; Segalman, R. A.; Su, W.-F. Macromolecules 2009, 42, 4208-4219.
21.Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. J. Am. Chem. Soc. 2008, 130, 7812-7813.
22.Ohshimizu, K.; Ueda, M. Macromolecules 2008, 41, 5289-5294.
23.Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Chem. Lett. 2008, 37, 1022-1023.
24.Wu, P.-T.; Ren, G.; Li, C.; Mezzenga, R.; Jenekhe, S. A. Macromolecules 2009, 42, 2317-2320.
25.Scherf, U.; Adamczyk, S.; Gutacker, A.; Koenen, N. Macromol. Rapid Commun. 2009, 30, 1059-1065.
26.Zhang, Y.; Tajima, K.; Hashimoto, K. Macromolecules 2009, 42, 7008-7015.
27.Wu, S.; Bu, L.; Huang, L.; Yu, X.; Han, Y.; Geng, Y.; Wang, F. Polymer 2009, 50, 6245-6251.
28.Ge, J.; He, M.; Yang, X.; Ye, Z.; Liu, X.; Qiu, F. J. Mater. Chem. 2012, 22, 19213-19221.
29.Ge, J.; He, M.; Qiu, F.; Yang, Y. Macromolecules 2010, 43, 6422-6428.
30.Wu, P.-T.; Ren, G.; Kim, F. S.; Li, C.; Mezzenga, R.; Jenekhe, S. A. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 614-626.
31.Ho, C.-C.; Liu, Y.-C.; Lin, S.-H.; Su, W.-F. Macromolecules 2012, 45, 813-820.
32.Pal, S.; Nandi, A. K. Macromolecules 2003, 36, 8426-8432.
33.Pal, S.; Nandi, A. K. J. Phys. Chem. B 2005, 109, 2493-2498.
34.Qu, Y.; Li, L.; Lu, G.; Zhou, X.; Su, Q.; Xu, W.; Li, S.; Zhang, J.; Yang, X. Polym. Chem. 2012, 3, 3301-3307.
35.Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091-1098.
36.Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32-38.
37.Gido, S. P.; Schwark, D. W.; Thomas, E. L.; Goncalves, M. D. Macromolecules 1993, 26, 2636-2640.
38.Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1994, 72, 936-939.
39.Li, J.-G.; Lin, R.-B.; Kuo, S.-W. Macromol. Rapid Commun. 2012, 33, 678-682.
40.Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 67-75.
41.Olsen, B. D.; Segalman, R. A. Macromolecules 2005, 38, 10127-10137.
42.Olsen, B. D.; Segalman, R. A. Macromolecules 2006, 39, 7078-7083.
43.Sary, N.; Mezzenga, R.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J. Macromolecules 2007, 40, 3277-3286.
44.Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R. Macromolecules 2007, 40, 6990-6997.
45.Braun, C. H.; Schoepf, B.; Ngov, C.; Brochon, C.; Hadziioannou, G.; Crossland, E. J. W.; Ludwigs, S. Macromol. Rapid Commun. 2011, 32, 813-819.
46.Ren, X.-K.; Wu, Y.-C.; Wang, S.-J.; Jiang, S.-D.; Zheng, J.-F.; Yang, S.; Chen, E.-Q.; Wang, C.-L.; Hsu, C.-S. Macromolecules 2013, 46, 155-163.
47.Ren, G.; Wu, P.-T.; Jenekhe, S. A. Acs Nano 2011, 5, 376-384.
48.He, M.; Han, W.; Ge, J.; Yang, Y.; Qiu, F.; Lin, Z. Energ. Environ. Sci. 2011, 4, 2894-2902.
49.Suspene, C.; Miozzo, L.; Choi, J.; Gironda, R.; Geffroy, B.; Tondelier, D.; Bonnassieux, Y.; Horowitz, G.; Yassar, A. J. Mater. Chem. 2012, 22, 4511-4518.
50.Campo, B. J.; Bevk, D.; Kesters, J.; Gilot, J.; Bolink, H. J.; Zhao, J.; Bolsee, J.-C.; Oosterbaan, W. D.; Bertho, S.; D''Haen, J.; Manca, J.; Lutsen, L.; Van Assche, G.; Maes, W.; Janssen, R. A. J.; Vanderzande, D. Org. Electron. 2013, 14, 523-534.
51.Bertho, S.; Campo, B.; Piersimoni, F.; Spoltore, D.; D''Haen, J.; Lutsen, L.; Maes, W.; Vanderzande, D.; Manca, J. Sol. Energ. Mat. Sol. 2013, 110, 69-76.
52.Hotta, S.; Rughooputh, D. D. V.; Heeger, A. J.; Wudl, F. Macromolecules 1987, 20, 212-215.
53.Hotta, S.; Soga, M.; Sonoda, N. Synth. Met. 1988, 26, 267-279.
54.Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater. 1999, 11, 250-253.
55.Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38, 8649-8656.
56.Iovu, M. C.; Craley, C. R.; Jeffries-El, M.; Krankowski, A. B.; Zhang, R.; Kowalewski, T.; McCullough, R. D. Macromolecules 2007, 40, 4733-4735.
57.Iovu, M. C.; Zhang, R.; Cooper, J. R.; Smilgies, D. M.; Javier, A. E.; Sheina, E. E.; Kowalewski, T.; McCullough, R. D. Macromol. Rapid Commun. 2007, 28, 1816-1824.
58.Brinkmann, M.; Rannou, P. Adv. Funct. Mater. 2007, 17, 101-108.
59.Nguyen, L. H.; Hoppe, H.; Erb, T.; Guenes, S.; Gobsch, G.; Sariciftci, N. S. Adv. Funct. Mater. 2007, 17, 1071-1078.
60.Yu, X.; Yang, H.; Wu, S.; Geng, Y.; Han, Y. Macromolecules 2012, 45, 266-274.
61.Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542-17547.
62.Miyakoshi, R.; Shimono, K.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2006, 128, 16012-16013.
63.Teetsov, J.; Fox, M. A. J. Mater. Chem. 1999, 9, 2117-2122.
64.Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946-953.
65.Tian, Y.; Chen, C.-Y.; Yip, H.-L.; Wu, W.-C.; Chen, W.-C.; Jen, A. K. Y. Macromolecules 2010, 43, 282-291.
66.Olsen, B. D.; Alcazar, D.; Krikorian, V.; Toney, M. F.; Thomas, E. L.; Segalman, R. A. Macromolecules 2008, 41, 58-66.
67.Koh, H.-D.; Changez, M.; Rahman, M. S.; Lee, J.-S. Langmuir 2009, 25, 7188-7192.
68.Zhong, K.; Chen, T.; Jin, L. Prog. Chem. 2012, 24, 1353-1358.
69.Wright, M.; Uddin, A. Sol. Energ. Mat. Sol. 2012, 107, 87-111.
70.Paul, G. S.; Sarmah, P. J.; Iyer, P. K.; Agarwal, P. Macromol. Chem. Phys. 2008, 209, 417-423.
71.Lohwasser, R. H.; Thelakkat, M. Macromolecules 2012, 45, 3070-3077.
72.Smith, K. A.; Lin, Y.-H.; Dement, D. B.; Strzalka, J.; Darling, S. B.; Pickel, D. L.; Verduzco, R. Macromolecules 2013, 46, 2636-2645.
73.Schmuecker, S.; Kuckling, D. Macromol. Chem. Phys. 2012, 213, 1725-1734.
74.Zhang, X.; Yang, W.; Kong, F.; Yang, H.; Lin, B. Polym. Int. 2013, 62, 204-209.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top