(3.236.118.225) 您好!臺灣時間:2021/05/17 09:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林欣蓁
研究生(外文):Shin-Jen Lin
論文名稱:白點症病毒蛋白質激酶透過與宿主鐵蛋白交互作用影響宿主鐵衡定之分析
論文名稱(外文):White spot syndrome virus protein kinase 1 (PK1) affects the host iron homeostasis by interacting with host ferritin
指導教授:郭光雄羅竹芳羅竹芳引用關係
口試委員:陳瑞芬黃偉邦李士傑陳歷歷
口試日期:2013-07-30
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:72
中文關鍵詞:白點症病毒蛋白質激酶鐵蛋白鐵衡定
外文關鍵詞:white spot syndrome virusWSSVprotein kinaseferritiniron homeostasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:198
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鐵對於宿主與病原體皆為生存必需之因子,宿主亦可利用限制細胞內自由鐵的機制達到防禦目的,而病原體也常有其因應策略。在本實驗中,利用酵母菌雙雜交系統、pull-down 分析或石英晶體微天平分析證實,白點症病毒蛋白質激酶 PK1 與 WSSV189 及宿主鐵蛋白三者之間具有交互作用。由於已知 pk1 為白點症病毒之必需基因,鐵蛋白則為細胞內最主要的儲鐵蛋白質,故針對 PK1 與鐵蛋白間之作用做進一步探討。以 pull-down 分析及石英晶體微天平分析證實,PK1 除可與攜有鐵的鐵蛋白作用外,亦可與脫鐵蛋白產生交互作用。而利用細胞外的鐵離子結合試驗得知,PK1 雖無法獨力促使鐵離子由鐵蛋白中釋出,但卻可抑制脫鐵蛋白與亞鐵離子結合。當以轉染作用於昆蟲細胞 Sf9 中表現 PK1 時,其細胞內 labile iron pool (LIP) 會高於對照組,甚至達到以檸檬酸銨鐵處理細胞時 LIP 所上升的程度,顯示 PK1 具有可抑制脫鐵蛋白穩定細胞 LIP 程度的特性。此外,利用免疫沈澱法與石墨爐式原子吸收光譜儀分析時可發現,當蝦體受白點症病毒感染 48 小時後,體內每單位總鐵蛋白中的鐵含量較對照組下降約達 83.4%,顯示白點症病毒感染確實會影響蝦體內鐵蛋白的攜鐵含量。而干擾宿主對自由鐵的限制,對於白點症病毒而言是將有利的,因為鐵對核醣核苷酸還原酶活性具有關鍵角色,而白點症病毒亦可表現核醣核苷酸還原酶,此酵素對於病毒可於宿主細胞內快速增殖十分重要。依據本研究所獲得之結果推測,白點症病毒有可能藉由 PK1 抑制宿主鐵蛋白對自由鐵的限制,以取得足量的鐵,確保病毒核醣核苷酸還原酶的活性、維持病毒有效率地增殖。而此結果亦可能是病毒蛋白質透過與宿主鐵蛋白直接產生交互作用、影響其功能,以達到干擾宿主鐵衡定目的相關研究的首例。

Iron is an essential nutrient for nearly all living organisms, including both hosts and invaders. The host iron withholding mechanism is considered part of innate immunity that can restrict iron availability to pathogens. However, pathogens demonstrate strategies for overcoming this obstacle. In this study, we used a yeast two-hybrid system and a pull-down assay, and introduced a 27-MHz quartz crystal microbalance (QCM) instrument to verify the interactions between the white spot syndrome virus (WSSV) PK1, WSSV189 and the host ferritin. Because pk1 is an essential gene for WSSV and ferritin is the major iron storage protein in cells, the interaction between PK1 and ferritin was examined closely in this study. In addition to the iron-containing ferritin, PK1 also interacts with apoferritin. These interactions can be confirmed using the pull-down assay and QCM instrument analysis. Although PK1 cannot promote iron ions released from ferritin, the results of the iron ion-binding assays revealed that the ferrous ion-binding activity of apoferritin can be blocked by PK1. Furthermore, when the PK1 was overexpressed in Sf9 cells, the cellular labile iron pool (LIP) levels were elevated significantly, even in the cells that were not treated with ferric ammonium citrate (FAC). This suggests that PK1 can affect apoferritin in stabilizing the cellular LIP levels. Moreover, using immunoprecipitation and graphite furnace atomic absorption spectrophotometer (AAS) detection, we discovered that the level of iron ions bound by ferritin decreased 84% after 48 h post-WSSV infection. Reduction of the iron sequestered by ferritin is a benefit to WSSV because iron plays a critical role in the ribonucleotide reductase (RR) activity. The WSSV genome has 2 RR genes that encode large and small subunits, respectively, and form a functional holoenzyme that enables WSSV to replicate in a nondividing cell. Because WSSV tends to require iron to enhance RR activity, we speculate that WSSV may inhibit the free iron sequestered by the host ferritin through the PK1 interactions with ferritin to ensure the activity of WSSV RR and maintain efficient proliferation in shrimp. This may be the first report on how the viral protein disrupts the function of ferritin through direct protein-protein interaction and affects the host iron homeostasis.

口試委員會審定書………………………………………………………………… i
誌謝………………………………………………………………………………… ii
中文摘要…………………………………………………………………………… iv
英文摘要…………………………………………………………………………… v
1. 前言 ……………………………………………………………………………. 1
1.1 白點症病毒 ……………………………………………………………….. 1
1.2 白點症病毒之蛋白質激酶 ……………………………………………….. 3
1.3 宿主內的鐵與鐵蛋白…………………………………………...…………. 4
1.4 研究目的 …………………………………………...……………………... 7
2. 材料方法 ………………………………………………………………………. 8
2.1 質體構築 …………………………………………...……………………... 8
2.2 酵母菌雙雜交系統 ...……………………………...…………………….... 9
2.2.1 酵母菌轉型作用 ………………………...…………………………. 9
2.2.2 確認重組蛋白質在酵母菌中之表現 …...…………………………. 10
2.2.3 PK1 與病毒蛋白質交互作用分析 ……...………………………… 11
2.2.4 WSSV189 與白蝦蛋白質交互作用分析 ..………………………... 11
2.2.5 排除可自我激活之菌株,並確認可與 PK1-N-BD-c-Myc 或
WSSV189-BD-c-Myc 交互作用之蛋白質 ………………………. 12
2.3 重組蛋白質表現與純化 …………………………...……………………... 12
2.4 Pull-down 分析 …………………………………...……………………..... 14
2.5 石英晶體微天平分析 ……………………………...……………………... 15
2.6 鐵離子結合試驗 ……………………..…………...………………………. 16
2.7 測定 PK1 對細胞內 labile iron pool (LIP) 之影響 …………………..... 17
2.7.1 細胞轉染作用 ……………………..……………………………….. 17
2.7.2 檸檬酸銨鐵處理 …………………..……………………………….. 18
2.7.3 以螢光法測定細胞內 LIP …………………………………………. 19
2.8 白點症病毒液之製備、人工注射感染與蝦組織檢體採樣 …………….. 20
2.9 抗白蝦鐵蛋白抗體之製備 ………………..……………………………… 20
2.10 專一辨識白蝦鐵蛋白抗體之純化 ………..…………………………….. 21
2.11 免疫沈澱與鐵蛋白中鐵離子含量之測定 ……………..……………….. 22
3. 結果 ……………………………………………………………………………. 24
3.1 白點症病毒蛋白質 PK1 與 WSSV189 具有交互作用 ……………….. 24
3.2 白點症病毒 WSSV189 可與鐵蛋白交互作用 …………………………. 25
3.3 白點症病毒 PK1 可與鐵蛋白產生交互作用 …………………………... 27
3.4 白點症病毒 PK1 不會造成鐵蛋白釋出鐵離子 ………………………... 28
3.5 白點症病毒 PK1 可與脫鐵蛋白產生交互作用 ………………………... 29
3.6 白點症病毒 PK1 可抑制脫鐵蛋白對亞鐵離子之結合能力 …………... 30
3.7 PK1 可影響細胞內鐵之衡定 …………………………………………….. 31
3.8 白點症病毒感染後,白蝦鐵蛋白中之攜鐵量降低 …………………….. 33
4. 討論 …………………………………………………………………………..... 35
參考文獻 ………………………………………………………………………….. 39
圖表 ……………………………………………………………………………….. 53



Andrews, S.C., 1998. Iron storage in bacteria. Adv. Microb. Physiol. 40, 281-351.
Balla, G., Jacob, H.S., Balla, J., Rosenberg, M., Nath, K., Apple, F., Eaton, J.W., Vercellotti, G.M., 1992. Ferritin: a cytoprotective antioxidant strategem of endothelium. J. Biol. Chem. 267, 18148-18153.
Barik, S., Banerjee, A.K., 1992. Sequential phosphorylation of the phosphoprotein of vesicular stomatitis virus by cellular and viral protein kinases is essential for transcription activation. J. Virol. 66, 1109-1118.
Baylis, S.A., Banham, A.H., Vydelingum, S., Dixon, L.K., Smith, G.L., 1993. African swine fever virus encodes a serine protein kinase which is packaged into virions. J. Virol. 67, 4549-4556.
Bevilacqua, M.A., Faniello, M.C., Quaresima, B., Tiano, M.T., Giuliano, P., Feliciello, A., Avvedimento, V.E., Cimino, F., Costanzo, F., 1997. A common mechanism underlying the E1A repression and the cAMP stimulation of the H ferritin transcription. J. Biol. Chem. 272, 20736-20741.
Bischoff, D.S., Slavicek, J.M., 1994. Identification and characterization of a protein kinase gene in the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus. J. Virol. 68, 1728-1736.
Burma, S., Mukherjee, B., Jain, A., Habib, S., Hasnain, S,E., 1994. An unusual 30-kDa protein binding to the polyhedrin gene promoter of Autographa californica nuclear polyhedrosis virus. J. Biol. Chem. 269, 2750-2757.
Chabes, A., Domkin, V., Larsson, G., Liu, A., Graslund, A., Wijmenga, S., Thelander, L., 2000. Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit. Proc. Natl. Acad. Sci. U.S.A. 97, 2474-2479.
Chang, Y.S., Lo, C.F., Peng, S.E., Liu, K.F., Wang, C.H., Kou, G.H., 2002. White Spot Syndrome Virus (WSSV) PCR positive Artemia cysts yield PCR negative nauplii that fail to transmit WSSV to shrimp post larvae. Dis. Aquat. Organ. 49, 1-10.
Chasteen, N.D., Harrison, P.M., 1999. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126, 182-194.
Chen, I.T., Aoki, T., Huang, Y.T., Hirono, I., Chen, T.C., Huang, J.Y., Chang, G.D., Lo, C.F., Wang, H.C., 2011. White spot syndrome virus induces metabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J. Virol. 85, 12919-12928.
Chen, L.L., Leu, J.H., Huang, C.J., Chou, C.M., Chen, S.M., Wang, C.H., Lo, C.F., Kou, G.H., 2002a. Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome virus and characterization of the motif important for targeting VP35 to the nuclei of transfected insect cells. Virology 293, 44-53.
Chen, L.L., Wang, H.C., Huang, C.J., Peng, S.E., Chen, Y.G,. Lin, S.J., Chen, W.Y., Dai, C.F., Yu, H.T., Wang, C.H., Lo, C.F., Kou, G.H., 2002b. Transcriptional analysis of the DNA polymerase gene of shrimp white spot syndrome virus. Virology 301, 136-147.
Clavero-Salas, A., Sotelo-Mundo, R.R., Gollas-Galván, T., Hernández-López, J., Peregrino-Uriarte, A.B., Muhlia-Almazán, A., Yepiz-Plascencia, G., 2007. Transcriptome analysis of gills from the white shrimp Litopenaeus vannamei infected with White Spot Syndrome Virus. Fish Shellfish Immunol. 23, 459-472.
Cooper, C.E., Lynagh, G.R., Hoyes, K.P., Hider, R.C., Cammack, R., Porter, J.B., 1996. The relationship of intracellular iron chelation to the inhibition and regeneration of human ribonucleotide reductase. J. Biol. Chem. 271, 20291-20299.
Dai, Y., Gold, B., Vishwanatha, J.K., Rhode, S.L., 1994. Mimosine inhibits viral DNA synthesis through ribonucleotide reductase. Virology 205, 210-216.
De Graaf, J., Amons, R., Möller, W., 1990. The primary structure of artemin from Artemia cysts. Eur. J. Biochem. 193, 737-750.
Dong, F., Zhang, X., Culver, B., Chew, H.G. Jr., Kelley, R.O., Ren, J., 2005. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clin. Sci. (Lond). 109, 277-286.
Dupuy, J., Volbeda, A., Carpentier, P., Darnault, C., Moulis, J.M., Fontecilla-Camps, J.C., 2006. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure 14, 129-139.
Epsztejn, S., Glickstein, H., Picard, V., Slotki, I.N., Breuer, W., Beaumont, C., Cabantchik, Z.I., 1999. H-ferritin subunit overexpression in erythroid cells reduces the oxidative stress response and induces multidrug resistance properties. Blood 94, 3593-3603.
Espósito, B.P., Epsztejn, S., Breuer, W., Cabantchik, Z.I., 2002. A review of fluorescence methods for assessing labile iron in cells and biological fluids. Anal. Biochem. 304, 1-18.
Fernaeus, S., Land, T., 2005. Increased iron-induced oxidative stress and toxicity in scrapie-infected neuroblastoma cells. Neurosci. Lett. 382, 217-220.
Flegel, T.W., 1997. Special topic review: Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J. Microbiol. Biotech. 13, 433-442.
Georgiou, N.A., van der Bruggen, T., Oudshoorn, M., Nottet, H.S., Marx, J.J., van Asbeck, B.S., 2000, Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J. Infect. Dis. 81, 484-490.
Guarino, L.A., Dong, W., Xu, B., Broussard, D.R., Davis, R.W., Jarvis, D.L., 1992. Baculovirus phosphoprotein pp31 is associated with virogenic stroma. J. Virol. 66, 7113-7120.
Halliwell, B., Gutteridge, J.M., 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 186, 1-85.
Harrison, P.M., Andrews, S.C., Artymiuk, P.J., Ford, G.C., Guest, J.R., Hirzmann, J., Lawson, D.M., Livingstone, J.C., Smith, J.M.A., Treffry, A., Yewdall, S.J., 1991. Probing structure-function relations in ferritin and bacterioferritin. Adv. Inorg. Chem. 36:449-486.
Harrison, P.M., Arosio, P., 1996. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta. 1275, 161-203.
Hatefi, Y., 1985. The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015-1069.
Herman, P.K., Stack, J.H., DeModena, J.A., Emr, S.D., 1991. A novel protein kinase homolog essential for protein sorting to the yeast lysosome-like vacuole. Cell 64, 425-437.
Hunter, T., 2000. Signaling-2000 and beyond. Cell 100, 113-127.
Hsieh, S.L., Chiu, Y.C., Kuo, C.M., 2006. Molecular cloning and tissue distribution of ferritin in Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 21, 279-283.
Iwai, K., Drake, S.K., Wehr, N.B., Weissman, A.M., LaVaute, T., Minato, N., Klausner, R.D., Levine, R.L., Rouault, T.A., 1998. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins. Proc. Natl. Acad. Sci. U.S.A. 95, 4924-4928.
Jordan, A., Reichard, P., 1998. Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71-98.
Jose, S., Jayesh, P., Sudheer, N.S., Poulose, G., Mohandas, A., Philip, R., Singh, I.S.B., 2012. Lymphoid organ cell culture system from Penaeus monodon (Fabricius) as a platform for white spot syndrome virus and shrimp immune-related gene expression. J. Fish Dis. 35, 321-334.
Kamiie, K., Yamashita, T., Taira, H., Kidou, S., Ejiri, S., 2003. Interaction between elongation factors 1beta and 1gamma from Bombyx mori silk gland. Biosci. Biotechnol. Biochem. 67, 1522-1529.
Kanchanaphum, P., Wongteerasupaya, C., Sitidilokratana, N., Boonsaeng, V., Panyim, S., Tassanakajon, A., Withyachumnarnkul, B., Flegel, T.W., 1998. Experimental transmission of white spot syndrome virus (WSSV) from crabs to shrimp Penaeus monodon. Dis. Aquat. Organ. 34, 1-7.
Kang, S.T., Leu, J.H., Wang, H.C., Chen, L.L., Kou, G.H., Lo, C.F., 2009. Polycistronic mRNAs and internal ribosome entry site elements (IRES) are widely used by white spot syndrome virus (WSSV) structural protein genes. Virology 387, 353-363.
Kann, M., Sodeik, B., Vlachou, A., Gerlich, W.H., Helenius, A., 1999. Phosphorylation-dependent binding of hepatitis B virus core particles to the nuclear pore complex. J. Cell Biol. 145, 45-55.
Kim, C.S., Kosuke, Z., Nam, Y.K., Kim, S.K., Kim, K.H., 2007. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol. 23, 242-246.
Klinge, S., Hirst, J., Maman, J.D., Krude, T., Pellegrini, L., 2007. An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis. Nat. Struct. Mol. Biol. 14, 875-877.
Konopka, K., Mareschal, J.C., Crichton, R.R., 1981. Iron transfer from transferrin to ferritin mediated by polyphosphate compounds. Biochim. Biophys. Acta. 677, 417-423.
Laham, N., Ehrlich, R., 2004. Manipulation of iron to determine survival: competition between host and pathogen. Immunol. Res. 30, 15-28.
Lamarche, N., Matton, G., Massie, B., Fontecave, M., Atta, M., Dumas, F., Gaudreau, P., Langelier, Y., 1996. Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity. Biochem. J. 320, 129-135.
Lawson, D.M., Artymiuk, P.J., Yewdall, S.J., Smith, J.M., Livingstone, J.C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G., Thomas, C.D., Shaw, W.V., Harrison, P.M., 1991. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541-544.
Leader, D.P., Katan, M., 1988. Viral aspects of protein phosphorylation. J. Gen. Virol. 69, 1441-1464.
Leu, J.H., Chen, L.L., Lin, Y.R., Kou, G.H., Lo, C.F., 2010. Molecular mechanism of the interactions between white spot syndrome virus anti-apoptosis protein AAP-1 (WSSV449) and shrimp effector caspase. Dev. Comp. Immunol. 34, 1068-1074.
Leu, J.H., Kuo, Y.C., Kou, G.H., Lo, C.F., 2008a. Molecular cloning and characterization of an inhibitor of apoptosis protein (IAP) from the tiger shrimp, Penaeus monodon. Dev. Comp. Immunol. 32, 121-133.
Leu, J.H., Wang, H.C., Kou, G.H., Lo, C.F., 2008b. Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Dev. Comp. Immunol. 32, 476-486.
Leu, J.H., Yang, F., Zhang, X., Xu, X., Kou, G.H., Lo, C.F., 2009. Whispovirus. Curr. Top Microbiol. Immunol. 328, 197-227.
Li, Q., Pan, D., Zhang, J.H., Yang, F., 2004. Identification of the thymidylate synthase within the genome of white spot syndrome virus. J. Gen. Virol. 85, 2035-2044.
Li, Y., Miller, L.K., 1995. Expression and functional analysis of a baculovirus gene encoding a truncated protein kinase homolog. Virology 206, 314-323.
Li, Z., Lin, Q., Chen, J., Wu, J.L., Lim, T.K., Loh, S.S., Tang, X., Hew, C.L., 2007. Shotgun identification of the structural proteome of shrimp white spot syndrome virus and iTRAQ differentiation of envelope and nucleocapsid subproteomes. Mol. Cell Proteomics. 6, 1609-1620.
Lightner, D.V., 1996. A handbook of pathology and diagnostic procedures for diseases of penaeid shrimp, World Aquaculture Society, Baton Rouge, Louisiana, U.S.A.
Lightner, D.V., Redman, R.M., Poulos, B.T., Nunan, T., Mari, L.M., Hasson, J.L., 1997. Risk of spread of penaeid shrimp viruses in the Americas by the international movement of live and frozen shrimp. Rev. Sci. Tech. 16, 146-160.
Lin, S., Chen, W., Broyles, S.S., 1992. The vaccinia virus B1R gene product is a serine/threonine protein kinase. J. Virol. 66, 2717-2723.
Liu, W.J., Yu, H.T., Peng, S.E., Chang, Y.S., Pien, H.W., Lin, C.J., Huang, C.J., Tsai, M.F., Huang, C.J., Wang, C.H., Lin, J.Y., Lo, C.F., Kou, G.H., 2001. Cloning, characterization, and phylogenetic analysis of a shrimp white spot syndrome virus gene that encodes a protein kinase. Virology 289, 362-377.
Liu, X., Yang, F., 2005. Identification and function of a shrimp white spot syndrome virus (WSSV) gene that encodes a dUTPase. Virus Res. 110, 21-30.
Lo, C.F., Ho, C.H., Peng, S.E., Chen, C.H., Hsu, H.C., Chiu, Y.L., Chen, Y.T., Chang, C.F., Liu, K.F., Su, M.S., Wang, C.H., Kou, G.H., 1996. Infection of white spot syndrome associated virus (WSBV) in cultured and wild-caught shrimps, crabs and other arthropods. Dis. Aquat. Organ. 27, 215-225.
Lu, H., Ruan, L., Xu, X., 2011. An immediate-early protein of white spot syndrome virus modulates the phosphorylation of focal adhesion kinase of shrimp. Virology 419, 84-89.
Nadala, E.C. Jr., Loh, P.C., 1998. A comparative study of three different isolates of white spot virus. Dis. Aquat. Organ. 33, 231-234.
Ohgami, R.S., Campagna, D.R., Greer, E.L., Antiochos, B., McDonald, A., Chen, J., Sharp, J.J., Fujiwara, Y., Barker, J.E., Fleming, M.D., 2005. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37, 1264-1269.
Oppenheimer, S.J., 2001. Iron and its relation to immunity and infectious disease. J. Nutr. 131, 616S-635S.
Pan, D., He, N., Yang, Z., Liu, H., Xu, X., 2005. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev. Comp. Immunol. 29, 103-112.
Pang, H., Bartlam, M., Zeng, Q., Miyatake, H., Hisano, T., Miki, K., Wong, L.L., Gao, G.F., Rao, Z., 2004. Crystal structure of human pirin: an iron-binding nuclear protein and transcription cofactor. J. Biol. Chem. 279, 1491-1498.
Pantopoulos, K., 2004. Iron metabolism and the IRE/IRP regulatory system: an update. Ann. N. Y. Acad. Sci. 1012, 1-13.
Pongsomboon, S., Tang, S., Boonda, S., Aoki, T., Hirono, I., Yasuike, M., Tassanakajon, A., 2008. Differentially expressed genes in Penaeus monodon hemocytes following infection with yellow head virus. BMB Rep. 41, 670-677.
Prives, C., 1990. The replication functions of SV40 T antigen are regulated by phosphorylation. Cell 61, 735-738.
Reilly, L.M., Guarino, L.A., 1994. The pk-1 gene of Autographa californica multinucleocapsid nuclear polyhedrosis virus encodes a protein kinase. J. Gen. Virol. 75, 2999-3006.
Romeo, A.M., Christen, L., Niles, E.G., Kosman, D.J., 2001. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: ribonucleotide reductase maturation as a probe of intracellular iron pools. J. Biol. Chem. 276, 24301-24308.
Ruan, Y.H., Kuo, C.M., Lo, C.F., Lee, M.H., Lian, J.L., Hsieh, S.L., 2010. Ferritin administration effectively enhances immunity, physiological responses, and survival of Pacific white shrimp (Litopenaeus vannamei) challenged with white spot syndrome virus. Fish Shellfish Immunol. 28, 542-548.
Rudolf, J., Makrantoni, V., Ingledew, W.J., Stark, M.J., White, M.F., 2006. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23, 801-808.
Salahudeen, A.A., Thompson, J.W., Ruiz, J.C., Ma, H.W., Kinch, L.N., Li, Q., Grishin, N.V., Bruick, R.K., 2009. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326, 722-726.
Smith, R.F., Smith, T.F., 1989. Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus. J. Virol. 63, 450-455.
Taylor, M.C., Kelly, J.M., 2010. Iron metabolism in trypanosomatids, and its crucial role in infection. Parasitology 137, 899-917.
Theil, E.C., 1987. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu. Rev. Biochem. 56, 289-315.
Tsai, J.M., Wang, H.C., Leu, J.H., Hsiao, H.H., Wang, A.H.J., Kou, G.H., Lo, C.F., 2004. Genomic and proteomic analysis of thirty-nine structural proteins of shrimp white spot syndrome virus. J. Virol. 78, 11360-11370.
Tsai, J.M., Wang, H.C., Leu, J.H., Wang, A.H.J., Zhuang, Y., Walker, P.J., Kou, G.H., Lo, C.F., 2006. Identification of the nucleocapsid, tegument, and envelope proteins of the shrimp white spot syndrome virus virion. J. Virol. 80, 3021-3029.
Tsai, M.F., Lo, C.F., van Hulten, M.C., Tzeng, H.F., Chou, C.M., Huang, C.J., Wang, C.H., Lin, J.Y., Vlak, J.M., Kou, G.H., 2000a. Transcriptional analysis of the ribonucleotide reductase genes of shrimp white spot syndrome virus. Virology 277, 92-99.
Tsai, M.F., Yu, H.T., Tzeng, H.F., Leu, J.H., Chou, C.M., Huang, C.J., Wang, C.H., Lin, J.Y., Kou, G.H., Lo, C.F., 2000b. Identification and characterization of a shrimp white spot syndrome virus (WSSV) gene that encodes a novel chimeric polypeptide of cellular-type thymidine kinase and thymidylate kinase. Virology 277, 100-110.
Tsai, Y.L., Lin, Y.C., Chou, P.H., Teng, P.H., Lee, P.Y., 2012. Detection of white spot syndrome virus by polymerase chain reaction performed under insulated isothermal conditions. J. Virol. Methods 181, 134-137.
Tsuji, Y., Akebi, N., Lam, T.K., Nakabeppu, Y., Torti, S.V., Torti, F.M., 1995. FER-1, an enhancer of the ferritin H gene and a target of E1A-mediated transcriptional repression. Mol. Cell Biol. 15, 5152-5164.
Vashisht, A.A., Zumbrennen, K.B., Huang, X., Powers, D.N., Durazo, A., Sun, D., Bhaskaran, N., Persson, A., Uhlen, M., Sangfelt, O., Spruck, C., Leibold, E.A., Wohlschlegel, J.A., 2009. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326, 718-721.
van Hulten, M.C., Vlak, J.M., 2001. Identification and phylogeny of a protein kinase gene of white spot syndrome virus. Virus Genes. 22, 201-207.
Vijayan, K.K., Stalin Raj, V., Balasubramanian, C.P., Alavandi, S.V., Thillai Sekhar, V., Santiago, T.C, 2005. Polychaete worms--a vector for white spot syndrome virus (WSSV). Dis. Aquat. Organ. 63, 107-111.
Valk, J.M., Bonami, J.R., Flegel, T.W., Kou, G.H., Lightner, D.V., Lo, C.F., Loh, P.C., Walker, P.W., 2004. Nimaviridae. In: VIIIth Report of the International Committee on Taxonomy of Viruses (Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A., Eds.), Elservier, p.187-192.
Walden, W.E., Selezneva, A.I., Dupuy, J., Volbeda, A., Fontecilla-Camps, J.C., Theil, E.C., Volz, K., 2006. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314, 1903-1908.
Wallander, M.L., Leibold, E.A., Eisenstein, R.S., 2006. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim. Biophys. Acta. 1763, 668-689.
Wang, C.H., Lo, C.F., Leu, J.H.,. Chou, C.M, Yeh, P.Y., Chou, H.Y., Tung, M.C., Chang, C.F., Su, M.S., Kou, G.H., 1995. Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis. Aquat. Organ. 23, 239-242.
Wang, H.C., Wang, H.C., Ko, T.P., Lee, Y.M., Leu, J.H., Ho, C.H., Huang, W.P., Lo, C.F., Wang, A.H.J., 2008. White spot syndrome virus protein ICP11: A histone-binding DNA mimic that disrupts nucleosome assembly. Proc. Natl. Acad. Sci. U.S.A. 105, 20758-20763.
Wang, H.C., Wang, H.C., Leu, J.H., Kou, G.H., Wang, A.H.J., Lo, C.F., 2007. Protein expression profiling of the shrimp cellular response to white spot syndrome virus infection. Dev. Comp. Immunol. 31, 672-686.
Weaver, J., Pollack, S., 1989. Low-Mr iron isolated from guinea pig reticulocytes as AMP-Fe and ATP-Fe complexes. Biochem. J. 261, 787-792.
Weinberg, E. D., 1998. Patho-ecological implications of microbial acquisition of host iron. Rev. Med. Microbiol. 9, 171-178.
Weinberg, E.D., 1999. Iron loading and disease surveillance. Emerg. Infect. Dis. 5, 346-352.
Weinberg, E.D., Miklossy, J., 2008. Iron withholding: a defense against disease. J. Alzheimers Dis. 13, 451-463.
Widmann, C., Gibson, S., Jarpe, M.B., Johnson, G.L., 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79, 143-180.
Wu, J.Y., Zhou, Z.Y., Judd, A., Cartwright, C.A., Robinson, W.S., 1990. The hepatitis B virus-encoded transcriptional trans-activator hbx appears to be a novel protein serine/threonine kinase. Cell 63, 687-695.
Zhang, J., Li, F., Wang, Z., Zhang, X., Zhou, Q., Xiang, J., 2006. Cloning, expression and identification of ferritin from Chinese shrimp, Fenneropenaeus chinensis. J. Biotechnol. 125, 173-184.
Zhang, G., Stevens, R., Leader, D.P., 1990. The protein kinase encoded in the short unique region of pseudorabies virus: description of the gene and identification of its product in virions and in infected cells. J. Gen. Virol. 71, 1757-1765.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊