(18.207.253.100) 您好!臺灣時間:2021/05/06 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何奎霖
研究生(外文):Kuei-Lin He
論文名稱:質子交換膜燃料電池氣體擴散層之材料改良與性能分析
論文名稱(外文):Improvement of material and performance analysis for gas diffusion layer in PEMFCs
指導教授:宋家驥宋家驥引用關係
口試委員:林益煌楊旭光李坤彥胡龍豪
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:64
中文關鍵詞:質子交換膜燃料電池奈米碳管微孔層氣體擴散層
外文關鍵詞:PEMFCscarbon nanotubeMPLGDL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜燃料電池是目前各種替代能源中,最受各界矚目的其中一種。其作用為氫氣透過質子交換膜解離成氫離子和電子,而氫離子再和氧氣結合生成水。本研究以奈米碳管取代一般用的碳粉,以作為氣體擴散層上的微孔層,目前奈米材料在燃料電池上的應用,用在觸媒層居多,試圖提高電池性能或找出可以替代昂貴白金觸媒的材料。研究內容包括微孔層材料的分析、觸媒層的塗佈、氣體擴散層的塗佈及成品的各項電性分析和耐久性測試。
本研究先以自製觸媒膜Catalyst Coated Membrane (CCM)搭配商購氣體擴散層Gas Diffusion Layer (GDL)組成電池並測試,證明在實驗室自製CCM的製程和性能達到一定水準之後,再對自製的碳粉GDL及奈米碳管GDL做測試,其中最重要的兩項參數為鐵氟龍 (PTFE)含量及燒結時間,若PTFE含量太少,微孔層疏水性不足且易脫落;而PTFE含量太多則會造成導電性下降,影響電子傳遞,燒結時間也是決定疏水性的重要因素之一。
對各種不同材料、不同PTFE含量、不同燒結時間的微孔層做分析比較,最後成功在實驗室做出接近商用性能之燃料電池,更發現使用奈米碳管當作微孔層的燃料電池,擁有比使用碳粉當作微孔層的燃料電池要有更佳的耐久性。


The PEMFC is one of the most important alternative energy sources. It decomposes hydrogen into hydrogen ions and electrons, while the hydrogen ions and oxygen combine to form water. This study replaces the general use of carbon black with carbon nanotube as the microporous layer of GDL. The study includes the analysis of the material for the microporous layer, the coating of the catalyst layer, the coating of the gas diffusion layer, the cell output performance test and accelerated test.
In this study, first we combine the homemade Catalyst Coated Membrane(CCM) with a commercially available gas diffusion layer Gas Diffusion Layer (GDL) to compose a PEM fuel cell and test. After we prove it is worked for our process and performance, then we test our homemade GDL with carbon black and GDL with carbon nanotube, the most two important parameters are the weight percent of PTFE and the sintering time. If the PTFE content is too low, it will lead to insufficient hydrophobic microporous layer and easy to fall off; If the PTFE content is too high, it will lead to decreased conductivity, affect electronic transmission, and the sintering time is also an important factor in the decision of hydrophobicity.
We analyze the PEMFCs with different materials, content of PTFE, sintering time, finally, we successfully make a PEMFC with performance close to the commercial one, and also find that it is more durable for the PEMFC with carbon nanotube as Micro Porous Layer (MPL) than the PEMFC with carbon black as MPL.


第一章 緒論 1
1.1研究動機與目的 1
1.2文獻回顧 2
第二章 原理背景 6
2.1 質子交換膜燃料電池(PEMFC)之構造與運作原理 6
2.1.1 質子交換膜(Proton Exchange Membrane) 8
2.1.2 觸媒層(Catalysts Layer) 9
2.1.3 氣體擴散層(Gas Diffusion Layer) 9
2.1.4 密封墊圈(Gasket) 10
2.1.5 雙極板(Bipolar Plate)與流場 10
2.2 PEMFC之水管理 11
2.3質子交換膜燃料電池極化曲線特性探討 12
2.4 交流阻抗分析 13
2.4.1 一般電化學系統之交流阻抗分析 14
2.4.2 燃料電池放電之阻抗分析 19
2.5 奈米碳管 25
2.5.1 奈米碳管力學性質 26
2.5.2 奈米碳管電學性質 27
2.5.3 奈米碳管的應用 29
第三章 實驗架構與實驗方法 31
3.1 實驗設備 31
3.1.1超音波洗淨機 (LEO-100) 31
3.1.2 加熱板 32
3.1.3 電子天平 33
3.1.4 高溫爐 34
3.1.5 燃料電池測試系統 35
3.1.5.1 電子負載器原理 36
3.1.5.2增濕器(humidifier) 38
3.1.5.3 溫度控制 39
3.1.5.4 軟體功能 40
3.1.5 PEMFC規格 41
3.2 CCM及GDL製備 42
3.2.1 CCM原物料 42
3.2.2 CCM製程 43
3.2.3 GDL原物料 43
3.2.4 GDL製程 44
3.3 實驗方法 44
第四章 實驗結果與討論 46
4.1 商購GDL、自製碳粉GDL及自製奈米碳管GDL測試 46
4.1.1 商購GDL測試 46
4.1.2 自製碳粉及奈米碳管GDL測試 47
4.1.2.1 10% PTFE碳粉及奈米碳管GDL,燒結60分鐘 47
4.1.2.2 20% PTFE碳粉及奈米碳管GDL,燒結2分鐘 49
4.1.2.3 各種PTFE濃度奈米碳管,燒結2分鐘 51
4.1.2.4 25% PTFE奈米碳管GDL,燒結30分鐘 53
4.1.3 商購、碳粉、奈米碳管GDL電池之綜合比較 54
4.1.4 商購、碳粉、奈米碳管GDL電池之SEM比較 55
4.2 碳粉及奈米碳管GDL電池壽命比較 57
4.2.1 極化曲線 57
4.2.2 交流阻抗 59
第五章 結論 61
參考文獻 63


1.P. Gallo Stampino , S.L., D. Molina, S. Turri, M. Levi, G. Dotelli, Investigation of hydrophobic treatments with perfluoropolyether derivatives of gas diffusion layers by electrochemical impedance spectroscopy in PEM-FC. Solid State Ionics, 2012. 216: p. 100-104.
2.Zhigang Zhana, J.X., c,Yongsheng Zhanga,b, Mu Pana, RunzhangYuana, Gas diffusion through differently structured gas diffusion layers of PEM fuel cells. International Journal of Hydrogen Energy, 2007. 32: p. 4443-4451.
3.M.S. Ismaila, T.D., D.B. Inghama, L. Maa, M. Pourkashanian, Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the in-plane permeability of gas diffusion layers used in proton exchange membrane fuel cells. Journal of Power Sources, 2010. 195: p. 6619-6628.
4.Guobao Chen, H.Z., Haipeng Ma, Hexiang Zhong, Electrochemical durability of gas diffusion layer under simulated proton exchange membrane fuel cell conditions. International Journa l of Hydrogen Energy, 2009. 34: p. 8185-8192.
5.Yuyan Shao, J.W., Mark Engelhard, Chongmin Wang and Yuehe Lin, Facile and controllable electrochemical reduction of graphene oxide and its applications. Journal of Materials Chemistry.
6.黃建鈞, 不同疏水層與微孔層對質子交換膜燃料電池的效能影響. 逢甲大學材料科學及工程學系, 2008.
7.Hyung-Suk Oh, K.K., Hansung Kim, Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells. International Journa l of Hydrogen Energy, 2011. 36: p. 11564-11571.
8.Daping He, S.M., Mu Pan, Improved carbon nanotube supported Pt nanocatalysts with lyophilization. International Journa l of Hydrogen Energy, 2012(37): p. 4699-4703.
9.Kordesch, K., and Simader, G., Fuel cells and their applications. Weinheim, New York, 1996.
10.E.Warburg, Drud.Ann.der Physik. 1901. 6: p. 125.
11.J.E.B.Ramdles, Disc Faraday Soc. 1947. 1: p. 11.
12.M. Sluyters-Rehbach, J.H.S., Comprehensive Treatise of Electrochemistry. Plenum,New York, 1984. 9: p. 177.
13.M. Sluyters-Rehbach, J.H.S., Electroanalytical Chemistry. Marcel Dekker,New York, 1970. 4.
14.C.M. Brett, A.M.O.B., Electrochemistry-Principles, Methods,and Applications. Oxgord,New York, 1993: p. 405.
15.Levie, R.D., On Porous Electrodes in Electrolyte Solution-IV. Electrochim. Acta, 1964. 9: p. 1231.
16.Levie, R.D., On Porous Electrodes in Electrolyte Solution. Electrochim. Acta, 1963. 8: p. 751.
17.T.E.Springer, D.R., Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes. J. Electrochem. Soc., 1989. 136: p. 1594.
18.I.D.Raistric, Impedance Studies of Porous Electrodes. Electrochim. Acta, 1990. 35: p. 1579.
19.Arvind Parthasarathy, B.D., Supramaniam Srinivasan, John Appleby, and Charles R. Marrin, The Platinum Microeledtrode/Nafion Interface:An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics. J. Electrochem. Soc., 1992. 139: p. 1634.
20.M. Eikerling, A.A.K., Electrochemical Impedance of the Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells. J.Electroanal.Chem.Soc, 1999. 475: p. 107.
21.林昱志, 質子交換膜型燃料電池阻抗之分析. 成功大學化工所, 2001.
22.S.Iijima, Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56-58.
23.J.Hone, B.B.Z.B., et al,, Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science, 2000. 289: p. 1730.
24.al., Y.H.Y.e., Radial elasticity of single-walled carbon nanotube measured by atomic force microscopy. Applied Physics Letters 98: 041901.
25.C. Liu, Y.I.F., et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. Science, 1999. 286(1127).
26.白程元, 超音波霧化系統針對質子交換膜燃料電池雙極反應氣體增濕效率之探討. 台灣大學工科海洋所, 2011.
27.彭思塽, 結合模糊滑動平面控制與超音波增濕系統最佳化質子交換膜燃料電池輸出. 台灣大學工科海洋所, 2012


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔