(3.236.122.9) 您好!臺灣時間:2021/05/14 06:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳庭豪
研究生(外文):Ting-Hao Wu
論文名稱:聲學頭部關係轉移函數模擬與心理聲學參數研究
論文名稱(外文):Study on the characteristics of acoustic HRTF and Psychoacoustic parameters
指導教授:洪振發洪振發引用關係
口試委員:吳孝文王昭男劉德源徐茂濱
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:109
中文關鍵詞:頭部關係轉移函數心理聲學參數邊界元素法互易原理雙耳量測
外文關鍵詞:HRTFsPsychoacousticsBEMreciprocitybinaural technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:603
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聲學頭部關係轉移函數(Head related transfer function, HRTF)係指在自由聲場下,聲音傳遞至人耳的轉移函數。由於人頭與耳廓等幾何形狀影響聲場的散射與繞射等效應,HRTF之分佈與音源-人頭的相對方向有莫大關係。因此HRTF對於研究音源對於人耳感受之研究頗為重要,對應於心理聲學與雙耳量測技術中,扮演相當重要的腳色。本文以理論解與邊界元素法分析剛性圓球模型周圍聲場,確認聲場與HRTF模擬之正確性。再探討以橢圓球與加上耳廓的類人頭模型作為簡化人頭的頭部關係轉移函數特性,並利用聲學互易原理縮減HRTF的計算量。另外,整理MIT依KEMAR的人體模型建立的HRTF資料庫之基本特性,與橢圓球與加上耳廓的類人頭模型之分析結果進行比較;分析結果顯示加上耳廓的類人頭模型,已能表現大部分KEMAR人體模型具備的HRTF特性。橢圓球與加上耳廓的類人頭模型之分析結果與實驗結果一致性很高。將實驗結果加上心理聲學參數,探討不同方位的聲音對響度與銳度計算結果之影響。

The Head Related Transfer Functions (HRTFs) describe the effects of human head and ears on sound wave propagation from sound source to ears in free field, which are defined to indicate the characteristics of human hearing acoustic. Owing to the geometric parameters of human head and ears, the distribution of HRTF has close relationship of relative positions between sound source and human ears. HRTFs are important on the hearing perception and binaural technique in psychoacoustic research. In this reasearch, the basic characters of a rigid sphere HRTFs were investigated by using analytical solution and boundary element method (BEM). Then, the HRTFs for a simplified ellipsoid head with and without ears models were examined. To reduce the computation resource, the acoustic reciprocal principle was used for numerical analysis. The HRTFs of these two models were compared with the characters of MIT KEMAR HRTF database, and the results show that the characters of the with ears model match well with MIT KEMAR HRTF database. T he simulated results match well with the experimental data. Finally, the experimental data are examined with several psychoacoustic parameters, and the effects sound directions on the loudness and sharpness were investigated.

誌謝........................................................... i
中文摘要...................................................... iii
Abstract ...................................................... v
目 錄......................................................... vii
圖目錄......................................................... xi
表目錄........................................................ xix
第一章 緒論..................................................... 1
1.1 研究動機.................................................... 1
1.2 文獻探討.................................................... 2
1.3 研究方法與目的.............................................. 4
第二章 基本理論介紹.............................................. 7
2.1 聲學基本理論................................................. 7
2.1.1 聲波的散射(scattering)與繞射(diffraction) ................. 7
2.1.2 聲學互易性(acoustic reciprocity) .......................... 8
2.1.3 頭部關係轉移函數........................................... 9
2.1.4 MIT HRTF 資料庫 ........................................... 11
2.2 聲學邊界元素法............................................... 15
2.3 心理聲學基本理論............................................. 18
2.3.1 遮蔽效應(Masking) ......................................... 18
2.3.2 三分之一倍頻程(Third Octave) .............................. 18
2.3.3 臨界頻帶(Critical Bands) .................................. 20
2.3.4 心理聲學參數............................................... 21
第三章 剛性球模型的HRTF 之解析解與數值解......................... 25
3.1 入射平面波在剛性圓球上散射的解析解的推導..................... 25
3.2 剛性圓球模型HRTF 的解析解.................................... 30
3.3 邊界元素法計算剛性圓球模型HRTF............................... 32
3.3.1 直接改變音源位置與利用聲學互易原理計算HRTF................. 32
3.3.2 以直接改變音源位置分析剛性圓球模型HRTF..................... 33
3.3.3 以聲學互易原理分析剛性圓球模型HRTF......................... 38
3.4 討論......................................................... 41
第四章 簡化仿真人偶的HRTF 特性分析............................... 43
4.1 幾何模型說明................................................. 44
4.2 邊界元素模型................................................. 47
4.3 簡化仿真人偶聲場分析......................................... 48
4.3.1 直接法與互易原理比較....................................... 48
4.3.2 分析結果討論............................................... 49
4.4 單耳聲場分析................................................. 71
ix
第五章 HRTF 量測實驗............................................. 73
5.1 實驗場地介紹................................................. 73
5.2 簡化型聲學仿真人偶模型....................................... 73
5.3 實驗儀器與實驗佈置........................................... 75
5.3.1 實驗儀器介紹............................................... 75
5.3.2 實驗佈置................................................... 79
5.4 實驗流程..................................................... 82
5.5 實驗結果與討論............................................... 83
5.5.1 實驗與分析結果比較......................................... 83
5.5.2 心理聲學參數計算結果....................................... 87
5.5.3 心理聲學參數計算結果討論................................... 92
第六章 結論...................................................... 95
參考文獻......................................................... 97
附 錄............................................................ 101
A. MIT HRTF 資料庫(Gardner & Martin, 1994b) ..................... 101
B. 單體喇叭規格 ................................................. 108
C. 麥克風規格 ................................................... 109


Algazi, V. R., Avendano, C., and Thompson, D. M. (1999). Dependence of Subject and Measurement Position in Binaural Signal Acquisition. J. Aud. Eng. Soc., Vol. 47 issue 11, pp. 937-947.
Algazi, V. R., Duda, R. O., and Thompson, D. M. (2001). The CIPIC HRTF Database. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pp. 99-102.
Blauert, J. (1983). Spatial Hearing : The psychophysics of Human Sound Localiation. 1st edition, The MIT press, Cambridge, Mass.
Blauert, J. (2005). Communication acoustics. 1st edition, Springer, Berlin.
Burkhard, M. D., and Sachs, R. M. (1975). Anthropometric manikin for acoustic research. J. Acoust. Soc. Am., vol. 58, No. 1, pp.214-222.
Chang, S. H., Wu, H. W., and Hung, C. F. (2013). A Sound Quality Study of Household Electrical Appliances by Jury Test in Indoor Space. The Open Acoustics Journal, vol. 6, pp.11-19.
Cheng, C. I., and Wakefield, G. H. (2001). Introduction to head-related transfer functions (HRTFs): Representations of HRTFs in time, frequency, and space. J. Acoust. Soc. Am., vol. 49, pp. 231-249.
Ciskowski, R. D., Brebbia, C. A. (1991). Boundary element methods in acoustics. Computational Mechanics Publications, Boston and Elsevier Applied Science, London, New York.

Gardner, B., and Martin, K. (1994a). HRTF Measurements of a KEMAR Dummy-Head Microphone. MIT Media Lab Perceptual Computing-Technical Report #280, pp.1-7.
Gardner, B., and Martin, K. (1994b). HRTF Measurements of a KEMAR Dummy-Head Microphone. MIT Media Lab. Available at: http://sound.media.mit.edu/resources/ KEMAR.html. Accessed 18 July 2000.
Gierlich, H. W. (1992). The Application of Binaural Technology. Applied acoustics, vol. 36, pp. 219-242.
Hammershoi, D., and Moller, H. (1996). Sound transmission to and within the human ear canal. J. Acoust. Soc. Am. vol. 100 No. 1, pp. 408-427.
Kahana, Y., Nelson, P. A., Petyt, M., and Choi, S. (1999). Numerical Modelling of the Transfer Functions of a Dummy-Head and of the External Ear. AES 16th International Conference on Spatial Sound Reproduction, pp. 1-16.
Katz, B. F. G. (2001). Boundary Element Method Calculation of Individual Head-Related Transfer Function. I. Rigid Model Calculation. J. Acoust. Soc. Am., vol. 110, pp.2440-2448.
Leach, W. M. (2010). Introduction to electroacoustics and audio amplifier design. 4th edition, Kendall, Dubuque, IA.
Martens, W. L., and Duda, R. O. (1998). Range dependence of the response of a spherical head model. J. Acoust. Soc. Am., vol. 104, No. 5, pp.3048-3058.
Moller, H. (1992). Fundamental of binaural technology. Applied acoustics, vol. 36, pp.171-218.

Morse, P. M., and Ingrad, K. U. (1986). Theoretical acoustics. Princeton University Press, Princeton, N. J..
Otani, M., Iwaya, Y., Suzuki, Y., and Itoh, K. (2010). Numerical analysis of HRTF spectral characteristics based on sound pressures on a pinna surface. Proceedings of 20th International Congress on Acoustics (ICA 2010), pp. 1-8.
Peterson, A. P. G. (1980). Handbook of noise measurement. 9th edition, GenRad, Concord, Mass.
Walsh, T., Demkowicz, L., and Charles, R.(2004). Boundary element modelling of the external human auditory system. J Acoust Soc Am., vol. 115, pp. 1033-1043.
Wightman, F. L., and Kistler, D. J. (1989). Headphone Simulation of Free-Field Listening, I: Stimulus synthesis. J. Acoust. Soc. Am. vol. 85, No. 2, pp. 868-878.
Wightman, F. L., Kistler, D. J. (1997). Monaural sound localization revisited. J. Acoust. Soc. Am. vol. 101 No. 2, pp 1050-1063.
Xie B., Zhong X., Rao, D., and Liang, Z. (2007). Head-related transfer function database and its analyses, Sci. China-Phys. Mech. Astron., vol. 50, No.3 ,pp. 267-280.
Zwicker, E., and Fastl, H. (1999). Psychoacoustics:Facts and Models. 2nd edition, Springer, Berlin, Heidelberg, New York.
白明憲 (2006)。工程聲學。全華圖書股份有限公司,新北市。
蔡國隆、王光賢、涂聰賢 (2011)。聲學原理與噪音量測控制(修訂版)。全華圖書股份有限公司,新北市。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔